

2361-16

School on Large Scale Problems in Machine Learning and Workshop on Common Concepts in Machine Learning and Statistical Physics

20 - 31 August 2012

MACHINE LEARNING IN SYSTEMS BIOLOGY: Estimating the Size of the Transcriptome

Ole WINTHER

Technical University of Denmark DTU and University of Copenhagen KU Denmark

How	many	species?	

Species sampling modeling

★ E → < E →</p>

DTU & KU

Conclusion o

Estimating the size of the transcriptome

Ole Winther

The Bioinformatics Centre/BRIC, University of Copenhagen (KU) and Technical University of Denmark (DTU)

August 22, 2012

Ole Winther

How	many	species?
•		

High-throughput	sequencing	technologies
00		

Species sampling modeling

Conclusion o

How many species?

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● のへぐ

DTU & KU

Ole Winther

How many species? o	High-throughput sequencing technologies ●○ ○	Species sampling modeling oo ooo	Conclusion o
High throughout coguono	sing technologies		

Solexa and Solid sequencing offer $10^6 - 10^8$ reads of length 20-60 nt at a price comparable to a micro-array.

- CAGE = cap analysis gene expression. 5' end of mRNAs. Pinpoints transcription start sites (TSSs). High throughput.
- EST = expressed sequence tag. Relatively low throughput. Used for gene identification.
- SAGE = Serial analysis of gene expression. Medium throughput and longer reads.
- ChIP/DNA/RNA seq or whole transcriptome shotgun sequencing. High throughput and longer reads.

イロト イヨト イヨト イヨト

How many species?	High-throughput sequencing technologies	Species sampling modeling	Conclusion
	○● ○ ○	00 000	

High-throughput sequencing technologies

DTU & KU

How many species?

High-throughput sequencing technologies $\circ \circ$ $\bullet \circ$ Species sampling modeling

ChIP

- ChIP
- Chromatin ImmunoPrecipitation
- identifies protein-DNA interactions

<ロ> <四> <四> <三</p>

How many species? o	High-throughput sequencing technologies	Species sampling modeling oo ooo	Conclusion o
CAGE library			

Cerebellum library - frequency of frequency plot.

Setting up the problem

- Library of *n* tags (reads)
- A sequence of genomic coordinates (c_1, c_2, \ldots, c_n) .
- Contains *k* unique TSSs with counts $\mathbf{n} = (n_1, \dots, n_k)$, $n = \sum_{j=1}^k n_j$.
- · Label the tags in order of their arrival such that

$$c_i \in \{1,\ldots,k\}$$
.

• The *n* + 1th tag may either be one of the *k* previously seen TSSs or a new one:

$$C_{n+1} \in \{1, \ldots, k, k+1\}$$

イロト イヨト イヨト イヨト

DTU & KU

How many species? o	High-throughput sequencing technologies oo o	Species sampling modeling ○● ○○○	Conclusion o

Chinese restaurant process - Yor-Pitman sampling formula

- Applied to this problem by Lijoi, Mena, Prünster, et. al.
- Observing new species given counts n = n₁,..., n_k in k bins:

$$p(c_{n+1} = k+1 | \mathbf{n}, \sigma, \theta) = \frac{\theta + k\sigma}{n+\theta}$$
 with $\sum_{i=1}^{k} n_i = n$

• Re-observing *j*:

$$\mathsf{P}(c_{n+1} = j | \mathbf{n}, \sigma, \theta) = rac{n_j - \sigma}{n + \theta}$$

Exchangeability – invariant to re-ordering

$$E, E, M, T, T: \qquad p_1 = \frac{\theta}{\theta} \frac{1 - \sigma}{1 + \theta} \frac{\theta + \sigma}{2 + \theta} \frac{\theta + 2\sigma}{3 + \theta} \frac{1 - \sigma}{4 + \theta}$$
$$M, E, T, T, E: \qquad p_2 = \frac{\theta}{\theta} \frac{\theta + \sigma}{1 + \theta} \frac{\theta + 2\sigma}{2 + \theta} \frac{1 - \sigma}{3 + \theta} \frac{1 - \sigma}{4 + \theta} = \dots = p_1$$

How many species? o	High-throughput sequencing technologies oo o	Species sampling modeling oo ooo	Conclusion o
Chinese restaurant proce	ess - Yor-Pitman sampling formula		

• Likelihood function, e.g. *E*, *E*, *M*, *T*, *T*

$$p(\mathbf{n}|\sigma,\theta) = \frac{\theta}{\theta} \frac{1-\sigma}{1+\theta} \frac{\theta+\sigma}{2+\theta} \frac{\theta+2\sigma}{3+\theta} \frac{1-\sigma}{4+\theta}$$
$$= \frac{1}{\prod_{i=1}^{n-1}(i+\theta)} \prod_{j=1}^{k-1} (\theta+j\sigma) \prod_{i'=1}^{k} \prod_{j'=1}^{n_{i'}-1} (j'-\sigma)$$

- Maximum likelihood (ML) inference or Gibbs sampling
- Predictions simulate new sequence $c_{n+1}, c_{n+2}, \ldots, c_{n+n'}$ using the sampling formula iteratively:

$$p(c_{n+1},\ldots,c_{n+n'}|\mathbf{n},\sigma_{\mathrm{ML}},\theta_{\mathrm{ML}})$$

Image: A matrix

How	many	species?

Results

DTU & KU

2

Ole Winther

How many species? $_{\rm O}$

High-throughput sequencing technologies

Species sampling modeling

Conclusion

Results

Cross-validated predictions from half to full size

Ole Winther

DTU & KU

Þ

ъ

How many species? o	High-throughput sequencing technologies oo o	Species sampling modeling ○○ ○○●	Conclusion o
Results			

 Model assigns a probability to each of the observed species, j = 1,..., k:

$$\frac{n_j - \sigma}{n + \theta}$$

- What is the probability to see something we have already seen?
- Coverage (weight species by their observation probabilities):

Coverage =
$$\sum_{j=1}^{k} \frac{n_j - \sigma}{n + \theta} = 1 - \frac{\theta + k\sigma}{n + \theta}$$
.

• Empirical predictions from 95%+ (genes) down to 60% (genomic positions).

How many species?

High-throughput sequencing technologies

Species sampling modeling

Conclusion

- Experimental technologies develop fast, lot to learn!
- Species sampling models accurate but not completely accurate for real data.
- Link to code and data: http://people.binf.ku. dk/albin/supplementary_ data/tss_saturation/

