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Motivation — multivariate data

Google vision: develop the “perfect search engine,” defined by
co-founder Larry Page as something that, “understands exactly
what you mean and gives you back exactly what you want.”
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The random surfer
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Motivation — multivariate data

The Anatomy of a Large-Scale
Hypertextual Web Search Engine

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

p(t) — Tp(t_1)
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Motivation — multivariate data

Statistical machine learning merges statistics, modeling and
computational sciences

Pathway Scores
L B LR

e Learning can be gt

« Supervised p(y|x) ok i
e classification
e regression

e Unsupervised p(x)

253 gene sets

e clustering
o factor analysis

Score

200 Patient samples <15 0 10

Ole Winther
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Motivation — multivariate data

e Data is often (but not always) represented as a matrix of d
features and N samples:

size(X) = [d N]

In stats d = p, N = n and data matrix transposed X — X
Collaborative filtering:

X = item-user matrix

Gene expression:

X = gene-tissue matrix

Text analysis:
X = term-document matrix

e Neuro-informatics: X = sensor-time series

Ole Winther




Summary

Continuous latent variable models

le——— 18,000 movies ——

KB X 1 1 X X

X X X 5 X

X X 3 X X

480,000 4 B X 2
users

X X X X

X 5 X 1 X

X 3 3 X

b 1 X X 2

e v, : “taste” vector of viewer n, length(v,) =
e Uy : “profile” vector movie m.
e Rating model:

I'mn =Um - Vn+ €mn

e Learn U and V from rating matrix. Computation!

Ole Winther
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Continuous latent variable models

¢ Functional magnetic resonance imaging (fMRI) data
Decomposing data into independent sources

X:ZUKVZ—FG
k

uy is the brain-image of the kth process
vy is the time-series of the kth process
Play video

Ole Winther
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Continuous latent variable models

Bag of words representation — term-document matrix

‘Larma Lrocumanta
M1 M2 M3 M4 MR M6 M7 ME MBS MMIO MII MIZ MIF M4
abnormalities 0 [1] o 0 [i] [1] [1] 1 [1] 1 [1] [1] [1] [1]
age 1 L1} 1] 1] 1} 0 1] 1] 1] 1] 1] 1 1] 1]
bahaylior 1] 1] o 0 1 1 o 0 0 0 0 1] 0 0
blood 1] [} (1] (1] 1] 0 (1] 1 (1] (1] 1 1] (1] (1]
closa L1} L1} 1] 1] 1} 0 1 1] 1] 1] 1 L1} 1] 1]
cultura 1 1 o 0 a 1] 0 1 1 0 0 1] 0 0
dapresged 1 L1} 1 1 1 0 1] 1] 1] 1] 1] L1} 1] 1]
discharga 1 1 1] 1] 1} 1 1] 1] 1] 1] 1] L1} 1] 1]
disaasa 1} L1} (1] (1] 1] 0 (1] (1] 1 (1] 1 1} (1] (1]
fast L1} L1} 1] 1] 1} 0 1] 1] 1] 1 1] 1 1 1
franaration 1] 1] o 0 a 1] o 0 1 0 0 1] 1 0
oeatrogan 1} L1} 1 1 1] 0 (1] (1] (1] (1] (1] 1} (1] (1]
patients 1 1 1] 1 1} 0 1] 1 1] 1] 1] L1} 1] 1]
preagura 1] 1] o 0 a 1] o 0 0 0 1 1] 0 1
rata L1} L1} 1] 1] 1} 0 1] 1] 1] 1] 1] L1} 1 1
reapact L1} 0 1] 1] 1} 0 1] 1 1] 1] 1] 1 1] 1]
risa 1} L1} (1] 1 1] 0 (1] (1] (1] (1] (1] 1} (1] 1
atudy 1 0 1 1] 1] [ 1] 1] 1 1] 1] 1] 1] 1]

Uy is the kth latent topic and v is the usage of that topic across
documents.

Ole Winther
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Continuous latent variable models

e Gene expression profiling — simultaneous measurement of
50k genes (MRNA levels).

e Use library of gene sets representing response to genetic
and chemical perturbations.
e Covariation (redundancy) — use factor model

X=WZ+E
e ] ui II‘ .\\I\“‘\“ | ‘\ it |‘\‘I"\‘\
j E= Y |\|'\”¥‘ ‘|'|H\‘\
“‘\ ) o ‘W‘“H'\ "“P‘\ 1!
‘ \H\II\IIJ‘I‘”‘I* it ‘IH‘H u
H [ - H . b n “H‘\II‘:IIJ‘:
g g 3 “1"["\\‘\“ “\'\‘\ '\H
& g it o0 g o b
" ‘I\ i HI\I\ i
I | ! i
\'\:lu‘lJ “ “ Ko '\I|:| I‘HJ‘
\H'W :I“‘Aunm‘\ ! L

200 patient samples.

200 patierit'&amples
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Overview

Roadmap / (learning objectives)

Principal component analysis (PCA)
Independent component analysis (ICA) - identifiability
Factor modeling - Bayesian formulation with sparsity

Insights from physics - fundamental limitations for learning
covariance structure

Sparse linear identifiable modeling (SLIM) - learning
models of genomic data

+ exercises and breaks!

Ole Winther
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Overview

¢ Reading material:

e PCA: Bishop (Pattern Recogniyion and Machine Learning)
12-12.2.1,12.1.2 and 12.2.1

e ICA: Bishop 12.4-12.4.1
e Factor analysis: 12.2.4 and in case story below

e Covariance learning: Hoyle and Rattray, 2003+2004;
Alexei Onatski, 2007

e Henao and Winther, 2011; Shimizu et. al., 2006; Carvalho
et al, 2008 http://cogsys.imm.dtu.dk/slim

Ole Winther
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Principal Component Analysis (PCA)

¢ Principal Component Analysis (PCA) is the number one
multivariate data analysis method.

e Play video from models.life.ku.dk

Ole Winther
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Principal Component Analysis (PCA)

e Principal components (PCs): >
orthogonal directions with s
most variance. ;
e Empirical co-variance os . i
(centered) data: '
Of- s
S o lXXT —0.5..
=N )
e size(S) = [ d d ] -15
e PCs: eigen-vectors of S = T 0 1 2
Su; = \u; Plot axis v/\u;

Ole Winther
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Principal Component Analysis (PCA)

e Database of N, d = 28 x 28 = 784 pixel values
e Mean and first four PCs

Mean A\ =3.4-10° Az = 2.8-10° A3 =24-10° Ay =16-10°
I —
* s e -.' B}
} -
- - F )

e Reconstruction

53 [T u

e Projections and reconstruction can be computed efficiently
with singular value decomposition (SVD), see exercise.

Ole Winther




Principal Component Analysis (PCA)

Where is the signal?

x 10
3
Ai
Original M=1 M =10 M =50 M =250
2
0
0 200 400 600 i
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Probabilistic PCA

Probabilistic PCA

e Tipping and Bishop, 1999 proposed:

p(z) = Norm(z;0,l)
p(e;02) = Norm(e; 0,5°l)

e = X Gaussian with mean and covariance

X = Wz+€e=0
xxT = WzzTW7 + ee” = WWT + 52
p(x;W,02) = Norm(x;0,WWT + 52I)

Ole Winther
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Probabilistic PCA

o Log likelihood for W and o2 is joint distribution of all data:

log L(6;X) = > logp(X,|W,0?)
n

_ _g' {log det2r¥ + Tr [2—13} }

Model covariance: ¥ = WWT 4 42l

Empirical covariance: S = 4 XX

Maximum likelihood: Wy, is spanned by first M PCs
 The remaining variance is fitted by o2l,

d
o= Y, ANi/(d—M).

i=M+1

e Example of structured covariance estimation.

Ole Winther
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Probabilistic PCA

e We now have a probabilistic model for the data
P(X; pmr, Zmr) = Norm(X; pmr, Tmr)
¢ Projected distribution M = 2: Uy = [ug uy]:

p(UDX; v, Tae) = Norm (U/\T/l x; Ul i, U/\T//ZMLUM)

oo

#Bmith

Davi

*illiarms

Ole Winther
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Probabilistic PCA

e We now have a probabilistic model for the data
P(X; pmr, Tmr) = N (X; pmr, Tmr)
¢ Projected distribution M = 2: Uy = [uquy]:

(UL i, Twm) = N (U/\T/l x; Ul i, U/\T//ZMLUM)

oo

#Bmith

Davig

Ole Winther
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Probabilistic PCA

e Let us try to solve the cocktalil
party problem:

Recordings = Mixing x Speakers

or
x =Wz
e Use PCA to estimate W (and z).

e Ignore complications of room
acoustics.

Ole Winther
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Probabilistic PCA

Stop sign! Non-uniqueness of solution!
Likelihood only depends upon W through ¥ = WW7 + 52]
Rotate W:

W« WU

leave covariance unchanged

Ole Winther

WW'™ = WUU'w =ww’ .




Independent component analysis (ICA)

Independent component analysis (ICA)

Ole Winther




Independent component analysis (ICA)

Ole Winther

Prior knowledge to the
rescue!

Real signals are not
Gaussian

Example X = w2y + Wo2o
with z; and z, independent
and heavy tailed.

Include this prior
information in our
modeling!

15

10

-5

20

40




Bell and Sejnowski algorithm

¢ Bell and Sejnowski Algorithm aka InfoMax
Assumption square mixing and no noise

x =Wz W: dxd

Likelihood - one sample

p(x|W) = /dz P(x|W,z)P(z) :/dzé(x—Wz)P(z)

Make change of variables y = Wz and dy = |W|dz:

p(XW) = |1W, [ aystx—ypaw-ty)
1w
= \W]P(W X)

Maximize log likelihood: )", log P(x,|W).

Ole Winther




Identifiability

Ole Winther

If a statistical model p(x; #) has the property that
p(x;0) =p(x;0") = 60=6¢ foral 6,6 co.

then the model is said to be identifiability.

The pPCA model is not identifiable since W and WU give
same model.

Many variants of ICA can be proven to be identifiable,
Kagan et. al., 1973 and Comon, 1994.

up to arbitrary permutation P and sign Sign:
z - SignPz W — —WP~'Sign

PCA not strictly a statistical model, but PC projections
identifiable up to sign.




Identifiability

Matlab exercises on these topics available from

http://www.imm.dtu.dk/Forskning/ISP/
Undervisning/02901_2012.aspx

(For offline use)
Student Exercise 1

e PCA and ICA on cocktail party problem - identifiability
Student Exercise 2

e Singular value decomposition (SVD) for PCA

Ole Winther
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Factor modeling

Factor modeling

e A bit of history

¢ Invented by Spearman 1904. A single underlying g-factor
can explain most of variation in cognitive tests.

e Raymond Cattell expanded on Spearman’s idea of a
two-factor theory of intelligence and developed 16
Personality Factors.

o Widely used in any field working with multivariate data:
Psychology, Economy, Bioinformatics,...

e Vanilla Bayes - Gaussian factors and Gaussian weights.
¢ Non-identifiable and identifiable models
e Sparsity and model selection

Ole Winther
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Bayesian formulation

e We will only consider iid observations with Gaussian noise:

Xn :W2n + en

N
X/W,Z, W ~ ] Norm(x,|Wz,, V),
n=1
where X =[xy ...xy]and Z = [z ... zp].
e Priors:

wl_1 ‘SS, Sr ~ Gamma(wl_1 5 Ss, Sr)
z, ~ Norm(z,|0,1), w; ~ Norm(w;|0,D)

e ; = 1) is a (non-identifiable) Bayesian version of pPCA.

Ole Winther
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Bayesian formulation

Access significance of PCA findings in:

e Frequentist sense - how different PCs for another dataset?
e Bayesian sense - posterior over W and W - how much does
subspace vary?

Bayesian answer depends upon the prior!
Depending upon whom you ask this is big weakness, or
an advantage as our assumptions are explicit.

Ole Winther




Factor modeling

ooe

Bayesian formulation

Closer look at the distribution for the (inverse) noise
variance

¢S5, 8¢ ~ Gamma(y); ', Ss, Sr)

Ss shape and s, rate:

s7
Ss — 1)2(ss — 2)

< >= <1/1;2>—<¢i>2=(

ss— 17

Shape ss needs to be s; > 1 and s; > 2 for mean and
variance to be defined.

Rate s, scales mean and standard deviation of variance

Ole Winther
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Posterior inference - an example

o MCMC: draw samples, W), w(") from posterior p(W, ¥|X)
e Plot contours of covariance samples and expected value

R
Ehwx ~ 55 D [WOWO)T + w0
r

e Prior ss =2 and s, = 1: var(¢;) = % = °°

0 Davi
-0.5| -0.5|
-1 -
Mhjarhs
-1.5|

mith

Ole Winther
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Posterior inference - an example

e Bayesian sparsity - slab and spike!
e Two component mixture of a continuous component and a
point-mass at zero:

Wil ~ (1 — niy)d(Wj) + ngN' (W0, 7)

e Parsimoneous two-level model, Carvalho et. al., JASA,
2008.

nijlvj ~ (1 = v;)d(n;) + vBeta(njlapam, ap(1 — am))

8000 : el a0 A
5000
6000
° 4000
£ 4000 i £ 3000
2000
2000 P
000
0 01 02 03 04 05 06 07 01 02 03 04 05 06 07 08 09
aij eij

Ole Winther
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Posterior inference - an example

o Matlab exercises on these topics available from

http://www.imm.dtu.dk/Forskning/ISP/
Undervisning/02901_2012.aspx

e (For offline use)
e Student Exercise 3:

e Bayesian factor analysis using MCMC inference on some
simple datasets.

o Inference summaries

o |dentifiable quantities and multivariate data.

e Student Exercise 4:

o Model interpretation - slab and spike
e Sparsity
e Model selection - how many factors?

e Break!

Ole Winther
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Marcenko-Pastur distribution

e Factor model x = Wz + ¢, true covariance
C=xx"T=(Wz+e)(Wz+e)T =WWT + v

e Empirical covariance:

e Marcenko-Pastur - eigenvalue spectrum of S: p(\)
o for d — oo and o = d/N finite, example C = o2/

N=200
=200
o=t 3

Ole Winther
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Learning factors - symmetry breaking

¢ How much data do we need to learn direction w?

e Hoyle and Rattray, 2003+2004; Alexei Onatski, 2007;
(Halkjeer and Winther, 1997).

e Bulk spectrum - contribution from C = o2/

A=2A)(A = A)
27 \o2

p(A)=(1—a)0(1 —a)d(\) +« VA
with A\ = 0?(1 £ /a)?/«

« Single direction w,,w] only visible in spectrum when
a > acas o(A — Ay) with

2
Ay = (02 + |Wm|?) (1 4 ")
a|Wm

2
e Learning transition at Ay(ac) = Ap(ae): ac = ("—2)

Ole Winther




Physics

Learning factors - symmetry breaking

a < Q¢ a = Q¢ o > Q¢
02) N=400 d=800 | o2 N=400 d=800 | 0.2 N=400 d=800
o?=1 |wf?=1)00 o?=1 |wP=].41p o’=1 |w[’=4.000
=05 a =1 0=05 0o =05 0=05 0 =0.0625
0.15] 0.15 ° 0.15]

Ole Winther




Physics

Infinite factor model w Indian Buffet Process

e The number of factors should adapt to data.

e Knowles and Ghahramani, 2004+2011 model the sparsity
pattern in W with an Indian Buffet Process.

e Model has an infinite number of factors but only a finite
number is active.

e Number of active factors adapt approximately to the
number of orthogonal directions with
d -

w3, > i

Ole Winther
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Sparse linear identifiable modeling (SLIM)

Protein signalling network textbook — Sachs et. al. Science,
2005.

Activators
1. a-CD3

4. PMA
5. p2cAMP

Inhibitors
6. G06ITH
7. AKT inh
8. Psitect
9.U0126
10. LY294002

Ole Winther
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Sparse linear identifiable modeling (SLIM)

e Sparse linear identifiable modeling (SLIM)
¢ Use connection between factor model and Bayes network
¢ to learn structure of both and do model comparison
e Henao and Winther, JMLR, 2011. netp://cogsys. imn.atu.dx/s1in

Ole Winther
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Sparse linear identifiable modeling (SLIM)

Ole Winther

Factor model (FM)

X=Az+¢€
Linear Bayes network (LBN)
x=Cx+z

C = P 'BP with P permutation matrix

B upper triangular < C defines a directed acyclic graph
(DAG)

Sparse A and B (parsimonious)

Identifiable - z must be non-Gaussian — no rotation
ambiguity

Learn both FM and LBN and perform quantitative test
likelihood model comparison

Models complementary and aid in scientific discovery
Sparsity and non-Gaussianty often justifiable assumptions
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Sparse linear identifiable modeling (SLIM)

—® @ ()
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Sparse linear identifiable modeling (SLIM)

e Factor model
X=Wz+e

Bayesian network (BN)

X=Cx+2z

Rewriting BN as factor model:

x=(1-C)'z

Inspired by LINGAM, Shimizu et. al., JMLR, 2006.
Novelty here: explicit model of sparsity, stochastic order
search and quantitative model comparison.

Stochastic ~ search P~"WP; should be approximately
triangular.

Ole Winther
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Sparse linear identifiable modeling (SLIM)

e Model comparison, parameter shorthand 6
¢ Marginal likelihood

pOX|M) — / p(X|0, M)p(6]M)do
e Test likelihood
p(xtest‘x) _ /p(xtest|9’M)p(9|X7M)d9

o Test likelihood relatively easy to compute!
e Extensions, see http://cogsys.imm.dtu.dk/slim,
e Non-linear DAGS
o Latent variables - raises new identifiability problems
o time-series data - temporal smoothness with Gaussian
process factors

Ole Winther
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Single cell flow cytometry data

o
=
w

Y
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Single cell flow cytometry data

e Single cell flow cytometry measurements of 11
phosphorylated proteins and phospholipids.

e Data was generated from a series of stimulatory cues and
inhibitory interventions.

e Observational data: 1755 general stimulatory conditions,
e Experimental data ~ 80% not used in our approach.
e Not “small nlarge p”!

Ole Winther




Single cell flow cytometry data

log(Lrm) = —3.46€3

10

SLIM

[e]e] le]e]ele)

T+ - wlmr

ol ——{T}+— s

7
—FM
- - DAG|

=i e ]
-_plo

10° 10° 10

Ole Winther
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Single cell flow cytometry data

|Og<£DAg> = —4.30e3

Ole Winther
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Single cell flow cytometry data

|Og<£DAg> =—-4.10e3

Ole Winther
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Single cell flow cytometry data

Iog <£DAG> = —-3.4e3

Ole Winther
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Single cell flow cytometry data

|Og<£DAg> = —-3.70e3

Ole Winther
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Summary

Factor models - from PCA to

e identifiable models (ICA) and
¢ sparsity (model selection)

We can learn learn model structure
when N > d

Markov chain Monte Carlo - used as
standard inference tool.

Thank you!

Ole Winther
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