

2361-17

School on Large Scale Problems in Machine Learning and Workshop on Common Concepts in Machine Learning and Statistical Physics

20 - 31 August 2012

MACHINE LEARNING IN SYSTEMS BIOLOGY: Factor Modeling 'Identifiability and Sparsity - Learning Models of Genomic Data'

Ole WINTHER

Technical University of Denmark DTU and University of Copenhagen KU Denmark

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000 000000	00 0 00	0 000 000		000000	

Factor Modeling Identifiability and Sparsity - Learning models of genomic data

Ole Winther

Technical University of Denmark (DTU)

August 21, 2012

イロト イヨト イヨト イヨト

DTU

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary			
●00000 0000 00	0000	00 0 00	0 000 000		000000				
Motivation – multivariate data									

Google vision: develop the "perfect search engine," defined by co-founder Larry Page as something that, "understands exactly what you mean and gives you back exactly what you want."

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
00000 0000 00	0000 000000	00 0 00	o 000 000		000000	

Motivation - multivariate data

The random surfer

 $\mathbf{p}^{(t)} = \mathbf{T} \mathbf{p}^{(t-1)}$

Ole Winther

DTU

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
00000 0000 00	0000 000000	00 0 00	0 000 000		000000	

Motivation – multivariate data

The Anatomy of a Large-Scale Hypertextual Web Search Engine

Sergey Brin and Lawrence Page

Computer Science Department, Stanford University, Stanford, CA 94305, USA sergey@cs.stanford.edu and page@cs.stanford.edu

 $\mathbf{p}^{(t)} = \mathbf{T} \mathbf{p}^{(t-1)}$

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000	00 0 00	0 000 000		000000	
Motivation – multiv	variate data					

Introduction 000000 00000	PCA 0000 000000	ICA 00 00	Factor modeling o ooo ooo	Physics o oo o	SLIM 000000 0000000	Summary o
	Niveriete dete					

Statistical machine learning merges statistics, modeling and computational sciences

- Learning can be
- Supervised p(y|x)
 - classification
 - regression
- Unsupervised *p*(*x*)
 - clustering
 - factor analysis

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
00000 0000 00	0000 000000	00 0 00	0 000 000		000000	
Motivation - multivaria	te data					

 Data is often (but not always) represented as a matrix of *d* features and *N* samples:

$$size(\mathbf{X}) = [d \ N]$$

- In stats d = p, N = n and data matrix transposed $\mathbf{X} \to \mathbf{X}^T$
- Collaborative filtering:

 $\mathbf{X} = \text{item-user matrix}$

Gene expression:

 $\mathbf{X} = \text{gene-tissue matrix}$

• Text analysis:

 $\mathbf{X} = \text{term-document matrix}$

Neuro-informatics: X = sensor-time series

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000	00 0 00	0 000 000		000000	

- \mathbf{v}_n : "taste" vector of viewer *n*, length(\mathbf{v}_n) = *K*.
- **u**_m : "profile" vector movie m.
- Rating model:

$$\mathbf{r}_{mn} = \mathbf{u}_m \cdot \mathbf{v}_n + \epsilon_{mn}$$

Learn U and V from rating matrix. Computation!

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000 000000	00 0 00	0 000 000		000000	
Continuous latent	variable models					

- Functional magnetic resonance imaging (fMRI) data
- Decomposing data into independent sources

$$\mathbf{X} = \sum_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{T} + \epsilon$$

- **u**_k is the brain-image of the kth process
- v_k is the time-series of the kth process
- Play video

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000 000000	00 0 00	0 000 000		000000	
0	and a later search at a factor					

Bag of words representation - term-document matrix

Terms							De	cuma	nts					
	MI	M2	M3	M4	M5	M6	M7	M8	M9	M10	MH	M12	M13	M14
abnormalities	0	0	0	0	0	0	0	1	0	1	0	0	0	0
age	I	0	0	0	0	0	0	0	0	0	0	I	0	0
behavior	0	0	0	0	1	1	0	0	0	0	0	0	0	0
blood	0	0	0	0	0	0	0	1	0	0	1	0	0	0
close	0	0	0	0	0	0	1	0	0	0	1	0	0	0
culture	1	1	0	0	0	0	0	1	1	0	0	0	0	0
depressed	1	0	1	I	1	0	0	0	0	0	0	0	0	0
discharge	I	1	0	0	0	1	0	0	0	0	0	0	0	0
disease	0	0	0	0	0	0	0	0	1	0	1	0	0	0
fast	0	0	0	0	0	0	0	0	0	1	0	I	1	I
generation	0	0	0	0	0	0	0	0	1	0	0	0	1	0
oestrogen	0	0	1	1	0	0	0	0	0	0	0	0	0	0
patients	1	1	0	I	0	0	0	1	0	0	0	0	0	0
pressure	0	0	0	0	0	0	0	0	0	0	I	0	0	1
rats	0	0	0	0	0	0	0	0	0	0	0	0	1	I
respect	0	0	0	0	0	0	0	1	0	0	0	I	0	0
rise	0	0	0	1	0	0	0	0	0	0	0	0	0	1
study	I	0	1	0	0	0	0	0	1	0	0	0	0	0

 \mathbf{u}_k is the *k*th latent topic and \mathbf{v}_k is the usage of that topic across documents.

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary			
000000 0000 00	0000	00 0 00	0 000 000		000000				
Continuous latent variable models									

- Gene expression profiling simultaneous measurement of 50k genes (mRNA levels).
- Use library of gene sets representing response to genetic and chemical perturbations.
- Covariation (redundancy) use factor model

$\mathbf{X} = \mathbf{W}\mathbf{Z} + \mathbf{E}$

Introduction 00000 000 00	PCA 0000 000000	ICA 00 00	Factor modeling o ooo ooo	Physics o oo o	SLIM 000000 0000000	Summary O
Overview						

Roadmap / (learning objectives)

- Principal component analysis (PCA)
- Independent component analysis (ICA) identifiability
- Factor modeling Bayesian formulation with sparsity
- Insights from physics fundamental limitations for learning covariance structure
- Sparse linear identifiable modeling (SLIM) learning models of genomic data
- + exercises and breaks!

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 0•	0000 000000	00 0 00	o 000 000		000000	
Overview						

- Reading material:
- PCA: Bishop (Pattern Recognition and Machine Learning) 12-12.2.1, 12.1.2 and 12.2.1
- ICA: Bishop 12.4-12.4.1
- Factor analysis: 12.2.4 and in case story below
- Covariance learning: Hoyle and Rattray, 2003+2004; Alexei Onatski, 2007
- Henao and Winther, 2011; Shimizu et. al., 2006; Carvalho et. al., 2008. http://cogsys.imm.dtu.dk/slim

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
000000 0000 00	• 000 000000	00 0 00	0 000 000		000000			
Principal Component Analysis (PCA)								

- Principal Component Analysis (PCA) is the number one multivariate data analysis method.
- Play video from models.life.ku.dk

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
00000	000000	00 0 00	0 000 000		0000000			
Principal Component Analysis (PCA)								

- Principal components (PCs): orthogonal directions with most variance.
- Empirical co-variance (centered) data:

$$\mathbf{S} = \frac{1}{N} \mathbf{X} \mathbf{X}^T$$

- size(**S**) = [d d]
- PCs: eigen-vectors of S

$$\mathbf{S}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

Plot axis $\sqrt{\lambda_i} \mathbf{u}_i$

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
000000 0000 00	0000 000000	00 0 00	0 000 000		000000			
Principal Component Analysis (PCA)								

- Database of N, $d = 28 \times 28 = 784$ pixel values
- Mean and first four PCs

Reconstruction

$$\tilde{\mathbf{x}}_n = \bar{\mathbf{x}} + \sum_{i=1}^M \left[(\mathbf{x}_n - \bar{\mathbf{x}})^T \mathbf{u}_i \right] \mathbf{u}_i$$

• Projections and reconstruction can be computed efficiently with singular value decomposition (SVD), see exercise.

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
000000 0000 00	0000 000000	00 0 00	0 000 000		000000			
Principal Component Analysis (PCA)								

Where is the signal?

Introduction 000000 0000 00	PCA ○○○○ ●○○○○○	ICA 00 00	Factor modeling o ooo ooo	Physics o oo o	SLIM 000000 0000000	Summary O		
Probabilistic PCA								
Probabilistic PCA								

• Tipping and Bishop, 1999 proposed:

$$p(\mathbf{z}) = \operatorname{Norm}(\mathbf{z}; \mathbf{0}, \mathbf{l})$$
$$p(\epsilon; \sigma^2) = \operatorname{Norm}(\epsilon; \mathbf{0}, \sigma^2 \mathbf{l})$$

 $\bullet \ \Rightarrow \textbf{x}$ Gaussian with mean and covariance

$$\overline{\mathbf{x}} = \mathbf{W}\overline{\mathbf{z}} + \overline{\epsilon} = \mathbf{0} \overline{\mathbf{x}\mathbf{x}^{T}} = \mathbf{W}\overline{\mathbf{z}\mathbf{z}^{T}}\mathbf{W}^{T} + \overline{\epsilon\epsilon^{T}} = \mathbf{W}\mathbf{W}^{T} + \sigma^{2}\mathbf{I} \rho(\mathbf{x}; \mathbf{W}, \sigma^{2}) = \operatorname{Norm}(\mathbf{x}; \mathbf{0}, \mathbf{W}\mathbf{W}^{T} + \sigma^{2}\mathbf{I})$$

Introduction 000000 000	PCA ○○○○ ○●○○○○	Factor modeling	Physics 0 00	SLIM 000000 0000000	Summary O
Probabilistic PCA					

• Log likelihood for **W** and σ^2 is joint distribution of all data:

$$\log L(\theta; \mathbf{X}) = \sum_{n} \log p(\mathbf{x}_{n} | \mathbf{W}, \sigma^{2})$$
$$= -\frac{N}{2} \left\{ \log \det 2\pi \Sigma + \operatorname{Tr} \left[\Sigma^{-1} \mathbf{S} \right] \right\}$$

- Model covariance: $\Sigma = WW^T + \sigma^2 I$
- Empirical covariance: $\mathbf{S} = \frac{1}{N} \mathbf{X} \mathbf{X}^{T}$
- Maximum likelihood: W_{ML} is spanned by first M PCs
- The remaining variance is fitted by $\sigma^2 \mathbf{I}$,

$$\sigma_{\mathrm{ML}}^2 = \sum_{i=M+1}^d \lambda_i / (d - M) \; .$$

Example of structured covariance estimation.

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000 00 000 0	00 0 00	0 000 000		000000	
Probabilistic PCA						

• We now have a probabilistic model for the data

$$p(\mathbf{x}; \mu_{\mathrm{ML}}, \Sigma_{\mathrm{ML}}) = \mathrm{Norm}(\mathbf{x}; \mu_{\mathrm{ML}}, \Sigma_{\mathrm{ML}})$$

Projected distribution M = 2: U_M = [u₁ u₂]:

$$\boldsymbol{\rho}(\mathbf{U}_{M}^{T}\mathbf{x};\mu_{\mathrm{ML}},\boldsymbol{\Sigma}_{\mathrm{ML}}) = \mathrm{Norm}\left(\mathbf{U}_{M}^{T}\mathbf{x};\mathbf{U}_{M}^{T}\mu_{\mathrm{ML}},\mathbf{U}_{M}^{T}\boldsymbol{\Sigma}_{\mathrm{ML}}\mathbf{U}_{M}\right)$$

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000 000000	00 0 00	0 000 000		000000	
Probabilistic PCA						

• We now have a probabilistic model for the data

$$p(\mathbf{x}; \mu_{\mathrm{ML}}, \Sigma_{\mathrm{ML}}) = \mathcal{N}(\mathbf{x}; \mu_{\mathrm{ML}}, \Sigma_{\mathrm{ML}})$$

• Projected distribution M = 2: $\mathbf{U}_M = [\mathbf{u}_1 \mathbf{u}_2]$:

$$p(\mathbf{U}_{M}^{T}\mathbf{x}; \mu_{\mathrm{ML}}, \Sigma_{\mathrm{ML}}) = \mathcal{N}\left(\mathbf{U}_{M}^{T}\mathbf{x}; \mathbf{U}_{M}^{T}\mu_{\mathrm{ML}}, \mathbf{U}_{M}^{T}\Sigma_{\mathrm{ML}}\mathbf{U}_{M}
ight)$$

Introduction 000000 0000 00	PCA ○○○○ ○○○○●○	ICA 00 00	Factor modeling o ooo ooo	Physics o oo o	SLIM 000000 0000000	Summary o
Probabilistic PCA						

• Let us try to solve the cocktail party problem:

 $Recordings = Mixing \times Speakers$

or

$\mathbf{x} = \mathbf{W}\mathbf{z}$

- Use PCA to estimate **W** (and **z**).
- Ignore complications of room acoustics.

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000 000000	00 0 00	o 000 000		000000	
Probabilistic PCA						

- Stop sign! Non-uniqueness of solution!
- Likelihood only depends upon W through $\Sigma = WW^T + \sigma^2 I$
- Rotate W:

$$\textbf{W} \gets \widetilde{\textbf{W}}\textbf{U}$$

• leave covariance unchanged

$$\mathbf{W}\mathbf{W}^T = \widetilde{\mathbf{W}}\mathbf{U}\mathbf{U}^T\widetilde{\mathbf{W}} = \widetilde{\mathbf{W}}\widetilde{\mathbf{W}}^T \; .$$

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000 000000	• 0 0 00	0 000 000		000000	

Independent component analysis (ICA)

Independent component analysis (ICA)

Introduction 000000 0000 00	PCA 0000 000000	ICA ○● ○	Factor modeling o ooo ooo	Physics o oo o	SLIM 000000 0000000	Summary o		
Independent component analysis (ICA)								

- Prior knowledge to the rescue!
- Real signals are not Gaussian
- Example $\mathbf{x} = \mathbf{w}_1 z_1 + \mathbf{w}_2 z_2$
- with *z*₁ and *z*₂ independent and heavy tailed.
- Include this prior information in our modeling!

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
000000 0000 00	0000	00	0 000 000		000000			
Bell and Sejnowski algorithm								

- · Bell and Sejnowski Algorithm aka InfoMax
- · Assumption square mixing and no noise

 $\mathbf{x} = \mathbf{W}\mathbf{z}$ $\mathbf{W}: d \times d$

Likelihood - one sample

$$p(\mathbf{x}|\mathbf{W}) = \int d\mathbf{z} P(\mathbf{x}|\mathbf{W}, \mathbf{z}) P(\mathbf{z}) = \int d\mathbf{z} \, \delta(\mathbf{x} - \mathbf{W}\mathbf{z}) P(\mathbf{z})$$

• Make change of variables $\mathbf{y} = \mathbf{W}\mathbf{z}$ and $d\mathbf{y} = |\mathbf{W}|d\mathbf{z}$:

$$p(\mathbf{x}|\mathbf{W}) = \frac{1}{|\mathbf{W}|} \int d\mathbf{y} \delta(\mathbf{x} - \mathbf{y}) P(\mathbf{W}^{-1}\mathbf{y})$$
$$= \frac{1}{|\mathbf{W}|} P(\mathbf{W}^{-1}\mathbf{x})$$

• Maximize log likelihood: $\sum_{n} \log P(\mathbf{x}_{n} | \mathbf{W})$.

★ E → E

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000 000000	00 0 ••	0 000 000		000000	
Identifiability						

• If a statistical model *p*(**x**; *θ*) has the property that

$$p(\mathbf{x}; \theta) = p(\mathbf{x}; \theta') \quad \Rightarrow \quad \theta = \theta' \quad \text{ for all } \theta, \theta' \in \Theta.$$

- then the model is said to be identifiability.
- The pPCA model is not identifiable since **W** and **WU** give same model.
- Many variants of ICA can be proven to be identifiable, Kagan et. al., 1973 and Comon, 1994.
- up to arbitrary permutation **P** and sign **Sign**:

$z \rightarrow \text{Sign}\, P\, z \quad W \rightarrow -W\, P^{-1}\, \text{Sign}$

• PCA not strictly a statistical model, but PC projections identifiable up to sign.

Introduction 000000 000	PCA 0000 000000	Factor modeling o ooo	Physics o oo	SLIM 000000 0000000	Summary o
Identifiability			• •		

· Matlab exercises on these topics available from

http://www.imm.dtu.dk/Forskning/ISP/ Undervisning/02901_2012.aspx

- (For offline use)
- Student Exercise 1
 - PCA and ICA on cocktail party problem identifiability
- Student Exercise 2
 - Singular value decomposition (SVD) for PCA

Introduction 000000 0000 00	PCA 0000 000000	ICA 00 00	Factor modeling ● ○○○ ○○○	Physics o oo o	SLIM 000000 0000000	Summary o
Factor modeling						

Factor modeling

- A bit of history
 - Invented by Spearman 1904. A *single* underlying *g*-factor can explain most of variation in cognitive tests.
 - Raymond Cattell expanded on Spearman's idea of a two-factor theory of intelligence and developed 16 Personality Factors.
 - Widely used in any field working with multivariate data: Psychology, Economy, Bioinformatics,...
- Vanilla Bayes Gaussian factors and Gaussian weights.
- Non-identifiable and identifiable models
- Sparsity and model selection

イロト イヨト イヨト イヨト

Introduction 000000 0000	PCA 0000 000000	ICA 00 00	Factor modeling ○ ● ○ ○ ○	Physics o o o	SLIM 000000 0000000	Summary o
Bayesian formulation						

• We will only consider iid observations with Gaussian noise:

$$\mathbf{x}_n = \mathbf{W} \mathbf{z}_n + \epsilon_n$$
$$\mathbf{X} | \mathbf{W}, \mathbf{Z}, \Psi \sim \prod_{n=1}^N \operatorname{Norm}(\mathbf{x}_n | \mathbf{W} \mathbf{z}_n, \Psi) ,$$

where
$$\mathbf{X} = [\mathbf{x}_1 \dots \mathbf{x}_N]$$
 and $\mathbf{Z} = [\mathbf{z}_1 \dots \mathbf{z}_N]$.

• Priors:

$$\psi_i^{-1} | s_s, s_r \sim \text{Gamma}(\psi_i^{-1}, s_s, s_r)$$

$$\mathbf{z}_n \sim \text{Norm}(\mathbf{z}_n | \mathbf{0}, \mathbf{I}) , \ \mathbf{w}_j \sim \text{Norm}(\mathbf{w}_j | \mathbf{0}, \mathbf{D})$$

• $\psi_i = \psi$ is a (non-identifiable) Bayesian version of pPCA.

イロト イヨト イヨト イヨト

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000 000000	00 0 00	0 000 000		000000 0000000	
Bayesian formulation						

- Access significance of PCA findings in:
 - Frequentist sense how different PCs for another dataset?
 - Bayesian sense posterior over W and Ψ how much does subspace vary?
- Bayesian answer depends upon the prior!
- Depending upon whom you ask this is big weakness, or
- an advantage as our assumptions are explicit.

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000 000000	00 0 00	0 000 000		000000 0000000	
Bayesian formulation						

Closer look at the distribution for the (inverse) noise variance

$$\psi_i^{-1}|s_s, s_r \sim \text{Gamma}(\psi_i^{-1}, s_s, s_r)$$

s_s shape and s_r rate:

$$<\psi_i>=rac{s_r}{s_s-1}\;,\quad <\psi_i^2>-<\psi_i>^2=rac{s_r^2}{(s_s-1)^2(s_s-2)}$$

- Shape *s*_s needs to be *s*_s > 1 and *s*_s > 2 for mean and variance to be defined.
- Rate s_r scales mean and standard deviation of variance

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
000000 0000 00	0000 000000	00 0 00	0 000 ●00		000000 0000000			
Posterior inference - an example								

- MCMC: draw samples, $\mathbf{W}^{(r)}, \Psi^{(r)}$ from posterior $p(\mathbf{W}, \Psi | \mathbf{X})$
- · Plot contours of covariance samples and expected value

$$\langle \Sigma \rangle_{\mathbf{W}|\mathbf{X}} \approx \frac{1}{R} \sum_{r}^{R} \left[\mathbf{W}^{(r)} (\mathbf{W}^{(r)})^{T} + \Psi^{(r)} \right]$$

• Prior
$$s_s = 2$$
 and $s_r = 1$: $var(\psi_i) = \frac{s_r^2}{(s_s-1)^2(s_s-2)} = \infty$.

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
000000 0000 00	0000 000000	00 0 00	0 000 000		000000 0000000			
Posterior inference - an example								

- Bayesian sparsity slab and spike!
- Two component mixture of a continuous component and a point-mass at zero:

$$W_{ij}|\eta_{ij} \sim (1 - \eta_{ij})\delta(W_{ij}) + \eta_{ij}\mathcal{N}(W_{ij}|0, \tau_{ij})$$

• Parsimoneous two-level model, Carvalho et. al., JASA, 2008.

$$\eta_{ij}|\nu_j \sim (1-\nu_j)\delta(\eta_{ij}) + \nu_j \operatorname{Beta}(\eta_{ij}|\alpha_p \alpha_m, \alpha_p(1-\alpha_m))$$

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
000000 0000 00	0000 000000	00 0 00	o 000 00●		000000			
Posterior inference - an example								

Matlab exercises on these topics available from

http://www.imm.dtu.dk/Forskning/ISP/ Undervisning/02901_2012.aspx

- (For offline use)
- Student Exercise 3:
 - Bayesian factor analysis using MCMC inference on some simple datasets.
 - Inference summaries
 - Identifiable quantities and multivariate data.
- Student Exercise 4:
 - Model interpretation slab and spike
 - Sparsity
 - Model selection how many factors?
- Break!

・ロト ・回ト ・ヨト ・ヨト

Introduction 000000 0000 00	PCA 0000 000000	ICA 00 00	Factor modeling o ooo ooo	Physics	SLIM 000000 0000000	Summary o
Marcenko-Pastur	distribution					

• Factor model $\mathbf{x} = \mathbf{W}\mathbf{z} + \epsilon$, true covariance

$$\mathbf{C} = \overline{\mathbf{x}\mathbf{x}^{T}} = \overline{(\mathbf{W}\mathbf{z} + \epsilon)(\mathbf{W}\mathbf{z} + \epsilon)^{T}} = \mathbf{W}\mathbf{W}^{T} + \Psi$$

• Empirical covariance:

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^T$$

- Marcenko-Pastur eigenvalue spectrum of **S**: $p(\lambda)$
- for $d \to \infty$ and $\alpha \equiv d/N$ finite, example $\mathbf{C} = \sigma^2 I$

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000	00 0 00	0 000 000		000000	
Learning factors -	symmetry breaking	g				

- How much data do we need to learn direction w?
- Hoyle and Rattray, 2003+2004; Alexei Onatski, 2007; (Halkjær and Winther, 1997).
- Bulk spectrum contribution from $\mathbf{C} = \sigma^2 I$

$$p(\lambda) = (1 - \alpha)\Theta(1 - \alpha)\delta(\lambda) + \alpha \frac{\sqrt{(\lambda - \lambda_{-})(\lambda_{+} - \lambda)}}{2\pi\lambda\sigma^{2}}$$

with $\lambda_{\pm} = \sigma^2 (1 \pm \sqrt{\alpha})^2 / \alpha$

 Single direction **w**_m**w**_m^T only visible in spectrum when α ≥ α_c as δ(λ − λ_u) with

$$\lambda_{u} = (\sigma^{2} + |\mathbf{w}_{m}|^{2}) \left(1 + \frac{\sigma^{2}}{\alpha |\mathbf{w}_{m}|^{2}}\right)$$

• Learning transition at $\lambda_u(\alpha_c) = \lambda_+(\alpha_c)$: $\alpha_c = \left(\frac{\sigma^2}{|\mathbf{w}_m|^2}\right)^2$

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
000000 0000 00	0000 000000	00 0 00	0 000 000	0 0 0	000000			
Learning factors - symmetry breaking								

$$\alpha < \alpha_{c}$$
 $\alpha = \alpha_{c}$ $\alpha > \alpha_{c}$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
000000 0000 00	0000 000000	00 0 00	0 000 000	0 00 0	000000			
Infinite factor model w Indian Buffet Process								

- The number of factors should adapt to data.
- Knowles and Ghahramani, 2004+2011 model the sparsity pattern in **W** with an Indian Buffet Process.
- Model has an infinite number of factors but only a finite number is active.
- Number of active factors adapt approximately to the number of orthogonal directions with

$$|\mathbf{w}_m^2| \ge \frac{d}{N}\sigma^2$$

Introduction 000000 0000 00	PCA 0000 000000	ICA 00 0 00	Factor modeling o ooo ooo	Physics o oo o	SLIM ●00000 ○○○○○○○	Summary o			
Sparse linear identifiable modeling (SLIM)									

Protein signalling network textbook – Sachs et. al. Science, 2005.

æ

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
000000 0000 00	0000 000000	00 0 00	0 000 000		0 00000 0000000			
Sparse linear identifiable modeling (SLIM)								

- Sparse linear identifiable modeling (SLIM)
 - Use connection between factor model and Bayes network
 - to learn structure of both and do model comparison
 - Henao and Winther, JMLR, 2011. http://cogsys.imm.dtu.dk/slim

Image: Image:

글 🕨 🔸 글 🕨

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary			
000000 0000 00	0000	00 0 00	0 000 000		000000 0000000				
Sparse linear iden	Sparse linear identifiable modeling (SLIM)								

• Factor model (FM)

$$\mathbf{X} = \mathcal{A}\mathbf{Z} + \boldsymbol{\epsilon}$$

Linear Bayes network (LBN)

$$\mathbf{x} = \mathbf{C}\mathbf{x} + \mathbf{z}$$

- $\mathbf{C} = \mathbf{P}^{-1}\mathbf{B}\mathbf{P}$ with \mathbf{P} permutation matrix
- B upper triangular ⇔ C defines a directed acyclic graph (DAG)
- Sparse A and **B** (parsimonious)
- Identifiable z must be non-Gaussian no rotation ambiguity
- Learn both FM and LBN and perform quantitative test likelihood model comparison
- · Models complementary and aid in scientific discovery
- Sparsity and non-Gaussianty often justifiable assumptions

Introduction 000000 0000 00	PCA 0000 000000	ICA 00 00	Factor modeling o ooo ooo	Physics o oo o	SLIM 000000 000000	Summary O				
Sparse linear ider	Sparse linear identifiable modeling (SLIM)									

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
000000 0000 00	0000 000000	00 0 00	0 000 000		000000 0000000			
Sparse linear identifiable modeling (SLIM)								

• Factor model

$$\mathbf{X} = \mathbf{W}\mathbf{Z} + \boldsymbol{\epsilon}$$

Bayesian network (BN)

$$\mathbf{x} = \mathbf{C}\mathbf{x} + \mathbf{z}$$

• Rewriting BN as factor model:

$$\mathbf{x} = (\mathbf{I} - \mathbf{C})^{-1}\mathbf{z}$$

- Inspired by LiNGAM, Shimizu et. al., JMLR, 2006.
- Novelty here: explicit model of sparsity, stochastic order search and quantitative model comparison.
- Stochastic search P⁻¹WP_f should be approximately triangular.

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
000000 0000 00	0000	00 0 00	0 000 000		000000 0000000			
Sparse linear identifiable modeling (SLIM)								

- Model comparison, parameter shorthand θ
 - Marginal likelihood

$$p(\mathbf{X}|\mathcal{M}) = \int p(\mathbf{X}| heta,\mathcal{M}) p(heta|\mathcal{M}) d heta$$

Test likelihood

$$p(\mathbf{X}^{ ext{test}}|\mathbf{X}) = \int p(\mathbf{X}^{ ext{test}}| heta, \mathcal{M}) p(heta|\mathbf{X}, \mathcal{M}) d heta$$

- Test likelihood relatively easy to compute!
- Extensions, see http://cogsys.imm.dtu.dk/slim,
 - Non-linear DAGS
 - Latent variables raises new identifiability problems
 - time-series data temporal smoothness with Gaussian process factors

Image: A matrix

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
000000 0000 00	0000	00 0 00	0 000 000		000000 000000			
Single cell flow cytometry data								

DTU

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary		
000000 0000 00	0000 000000	00 0 00	0 000 000		000000 0 00000 0			
Single cell flow cytometry data								

- Single cell flow cytometry measurements of 11 phosphorylated proteins and phospholipids.
- Data was generated from a series of stimulatory cues and inhibitory interventions.
- Observational data: 1755 general stimulatory conditions,
- Experimental data \sim 80% not used in our approach.
- Not "small n large p"!

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000	00 0 00	0 000 000		000000 0000000	
Single cell flow cytometry data						

▲□▶▲□▶▲目▶▲目▶ 目 のQ@

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary	
000000 0000 00	0000 000000	00 0 00	0 000 000		000000		
Single cell flow cytometry data							

DTU

Introduction	PCA	ICA	Factor modeling	Physics	SLIM	Summary
000000 0000 00	0000 000000	00 0 00	0 000 000		000000 0000000	
Single cell flow cy	tometry data					

DTU

Introduction	PCA 0000 0000000	ICA 00	Factor modeling o	Physics	SLIM ○○○○○○ ○○○○○○	Summary o
Single cell flow cyt	ometry data					

Introduction 000000 0000	PCA 0000 000000	ICA oo o	Factor modeling o ooo	Physics o oo	SLIM ○○○○○○ ○○○○○○●	Summary o
00 Single cell flow cyte	ometry data	00	000			

Introduction 000000 0000 00	PCA 0000 000000	ICA 00 00	Factor modeling o ooo ooo	Physics o oo o	SLIM 000000 0000000	Summary ●
Summary						

- Factor models from PCA to
 - identifiable models (ICA) and
 - sparsity (model selection)
- We can learn learn model structure when N ≫ d
- Markov chain Monte Carlo used as standard inference tool.
- Thank you!

