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Motivation – multivariate data

Google vision: develop the “perfect search engine,” defined by
co-founder Larry Page as something that, “understands exactly
what you mean and gives you back exactly what you want.”
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Motivation – multivariate data

The random surfer

p(t) = Tp(t−1)
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Motivation – multivariate data

The Anatomy of a Large-Scale 
Hypertextual Web Search Engine

Sergey Brin and Lawrence Page 

Computer Science Department,
Stanford University, Stanford, CA 94305, USA

sergey@cs.stanford.edu and page@cs.stanford.edu 

Abstract 
In this paper, we present Google, a prototype of a large-scale search engine 
which makes heavy use of the structure present in hypertext. Google is 
designed to crawl and index the Web efficiently and produce much more 
satisfying search results than existing systems. The prototype with a full 
text and hyperlink database of at least 24 million pages is available at http://
google.stanford.edu/ To engineer a search engine is a challenging task. 
Search engines index tens to hundreds of millions of web pages involving a 
comparable number of distinct terms. They answer tens of millions of 
queries every day. Despite the importance of large-scale search engines on 
the web, very little academic research has been done on them. 
Furthermore, due to rapid advance in technology and web proliferation, 
creating a web search engine today is very different from three years ago. 
This paper provides an in-depth description of our large-scale web search 
engine -- the first such detailed public description we know of to date. 
Apart from the problems of scaling traditional search techniques to data of 
this magnitude, there are new technical challenges involved with using the 
additional information present in hypertext to produce better search 
results. This paper addresses this question of how to build a practical large-
scale system which can exploit the additional information present in 
hypertext. Also we look at the problem of how to effectively deal with 
uncontrolled hypertext collections where anyone can publish anything 
they want. 

Keywords 
World Wide Web, Search Engines, Information Retrieval, PageRank, Google 

1. Introduction

(Note: There are two versions of this paper -- a longer full version and a shorter 
printed version. The full version is available on the web and the conference CD-
ROM.)  
The web creates new challenges for information retrieval. The amount of 
information on the web is growing rapidly, as well as the number of new users 
inexperienced in the art of web research. People are likely to surf the web using its 
link graph, often starting with high quality human maintained indices such as http://www7.scu.edu.au/programme/fullpapers/1921/com1921.htm 1

p(t) = Tp(t−1)

Ole Winther DTU
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Motivation – multivariate data

Machine
Learning

neuroinformatics

bioinformatics

user data

computation statistical modeling
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Introduction PCA ICA Factor modeling Physics SLIM Summary

Motivation – multivariate data

Statistical machine learning merges statistics, modeling and
computational sciences

• Learning can be
• Supervised p(y |x)

• classification
• regression

• Unsupervised p(x)

• clustering
• factor analysis

Ole Winther DTU
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Motivation – multivariate data

• Data is often (but not always) represented as a matrix of d
features and N samples:

size(X) = [d N]

• In stats d = p, N = n and data matrix transposed X → XT

• Collaborative filtering:

X = item-user matrix

• Gene expression:

X = gene-tissue matrix

• Text analysis:

X = term-document matrix

• Neuro-informatics: X = sensor-time series
Ole Winther DTU
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Continuous latent variable models

• vn : “taste” vector of viewer n, length(vn) = K .
• um : “profile” vector movie m.
• Rating model:

rmn = um · vn + �mn

• Learn U and V from rating matrix. Computation!
Ole Winther DTU
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Continuous latent variable models

• Functional magnetic resonance imaging (fMRI) data
• Decomposing data into independent sources

X =
�

k

ukvT
k + �

• uk is the brain-image of the k th process
• vk is the time-series of the k th process
• Play video

Ole Winther DTU
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Continuous latent variable models

Bag of words representation – term-document matrix

uk is the k th latent topic and vk is the usage of that topic across
documents.

Ole Winther DTU



Introduction PCA ICA Factor modeling Physics SLIM Summary

Continuous latent variable models

• Gene expression profiling – simultaneous measurement of
50k genes (mRNA levels).

• Use library of gene sets representing response to genetic
and chemical perturbations.

• Covariation (redundancy) – use factor model

X = WZ + E

200 patient samples

Ole Winther DTU
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Overview

Roadmap / (learning objectives)

• Principal component analysis (PCA)
• Independent component analysis (ICA) - identifiability
• Factor modeling - Bayesian formulation with sparsity
• Insights from physics - fundamental limitations for learning

covariance structure
• Sparse linear identifiable modeling (SLIM) - learning

models of genomic data
• + exercises and breaks!

Ole Winther DTU
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Overview

• Reading material:
• PCA: Bishop (Pattern Recogniyion and Machine Learning)

12-12.2.1, 12.1.2 and 12.2.1
• ICA: Bishop 12.4-12.4.1
• Factor analysis: 12.2.4 and in case story below
• Covariance learning: Hoyle and Rattray, 2003+2004;

Alexei Onatski, 2007
• Henao and Winther, 2011; Shimizu et. al., 2006; Carvalho

et. al., 2008. http://cogsys.imm.dtu.dk/slim

Ole Winther DTU
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Principal Component Analysis (PCA)

• Principal Component Analysis (PCA) is the number one
multivariate data analysis method.

• Play video from models.life.ku.dk

Ole Winther DTU
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Principal Component Analysis (PCA)

• Principal components (PCs):
orthogonal directions with
most variance.

• Empirical co-variance
(centered) data:

S =
1
N

XXT

• size(S) = [ d d ]

• PCs: eigen-vectors of S

Sui = λiui
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Principal Component Analysis (PCA)

• Database of N, d = 28 × 28 = 784 pixel values
• Mean and first four PCs

Mean

• Reconstruction

x̃n = x̄ +
M�

i=1

�
(xn − x̄)T ui

�
ui

• Projections and reconstruction can be computed efficiently
with singular value decomposition (SVD), see exercise.

Ole Winther DTU
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Principal Component Analysis (PCA)

Where is the signal?
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Probabilistic PCA

Probabilistic PCA

• Tipping and Bishop, 1999 proposed:

p(z) = Norm(z; 0, I)
p(�;σ2) = Norm(�; 0,σ2I)

• ⇒ x Gaussian with mean and covariance

x = Wz + � = 0
xxT = WzzT WT + ��T = WWT + σ2I

p(x;W,σ2) = Norm(x; 0,WWT + σ2I)

Ole Winther DTU
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Probabilistic PCA

• Log likelihood for W and σ2 is joint distribution of all data:

log L(θ;X) =
�

n
log p(xn|W,σ2)

= −N
2

�
log det 2πΣ+ Tr

�
Σ−1S

��

• Model covariance: Σ = WWT + σ2I
• Empirical covariance: S = 1

N XXT

• Maximum likelihood: WML is spanned by first M PCs
• The remaining variance is fitted by σ2I,

σ2
ML =

d�

i=M+1

λi/(d − M) .

• Example of structured covariance estimation.
Ole Winther DTU
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Probabilistic PCA

• We now have a probabilistic model for the data

p(x;µML,ΣML) = Norm(x;µML,ΣML)

• Projected distribution M = 2: UM = [u1 u2]:

p(UT
Mx;µML,ΣML) = Norm

�
UT

M x;UT
MµML,UT

MΣMLUM

�
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Probabilistic PCA

• We now have a probabilistic model for the data

p(x;µML,ΣML) = N (x;µML,ΣML)

• Projected distribution M = 2: UM = [u1u2]:

p(UT
Mx;µML,ΣML) = N

�
UT

M x;UT
MµML,UT

MΣMLUM

�
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Probabilistic PCA

• Let us try to solve the cocktail
party problem:

Recordings = Mixing × Speakers

or
x = Wz

• Use PCA to estimate W (and z).
• Ignore complications of room

acoustics.

Ole Winther DTU
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Probabilistic PCA

• Stop sign! Non-uniqueness of solution!
• Likelihood only depends upon W through Σ = WWT + σ2I
• Rotate W:

W ← �WU

• leave covariance unchanged

WWT = �WUUT �W = �W �WT .

Ole Winther DTU
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Independent component analysis (ICA)

Independent component analysis (ICA)

Ole Winther DTU
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Independent component analysis (ICA)

• Prior knowledge to the
rescue!

• Real signals are not
Gaussian

• Example x = w1z1 + w2z2

• with z1 and z2 independent
and heavy tailed.

• Include this prior
information in our
modeling!
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Bell and Sejnowski algorithm

• Bell and Sejnowski Algorithm aka InfoMax
• Assumption square mixing and no noise

x = Wz W : d × d

• Likelihood - one sample

p(x|W) =

�
dz P(x|W, z)P(z) =

�
dz δ(x − Wz)P(z)

• Make change of variables y = Wz and dy = |W|dz:

p(x|W) =
1
|W|

�
dyδ(x − y)P(W−1y)

=
1
|W|P(W−1x)

• Maximize log likelihood:
�

n log P(xn|W).

Ole Winther DTU
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Identifiability

• If a statistical model p(x; θ) has the property that

p(x; θ) = p(x; θ�) ⇒ θ = θ� for all θ, θ� ∈ Θ.

• then the model is said to be identifiability.
• The pPCA model is not identifiable since W and WU give

same model.
• Many variants of ICA can be proven to be identifiable,

Kagan et. al., 1973 and Comon, 1994.
• up to arbitrary permutation P and sign Sign:

z → Sign P z W → −W P−1 Sign

• PCA not strictly a statistical model, but PC projections
identifiable up to sign.

Ole Winther DTU
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Identifiability

• Matlab exercises on these topics available from
http://www.imm.dtu.dk/Forskning/ISP/

Undervisning/02901_2012.aspx

• (For offline use)
• Student Exercise 1

• PCA and ICA on cocktail party problem - identifiability
• Student Exercise 2

• Singular value decomposition (SVD) for PCA

Ole Winther DTU
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Factor modeling

Factor modeling

• A bit of history
• Invented by Spearman 1904. A single underlying g-factor

can explain most of variation in cognitive tests.
• Raymond Cattell expanded on Spearman’s idea of a

two-factor theory of intelligence and developed 16
Personality Factors.

• Widely used in any field working with multivariate data:
Psychology, Economy, Bioinformatics,...

• Vanilla Bayes - Gaussian factors and Gaussian weights.
• Non-identifiable and identifiable models
• Sparsity and model selection

Ole Winther DTU
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Bayesian formulation

• We will only consider iid observations with Gaussian noise:

xn =Wzn + �n

X|W,Z,Ψ ∼
N�

n=1

Norm(xn|Wzn,Ψ) ,

where X = [x1 . . . xN ] and Z = [z1 . . . zN ].
• Priors:

ψ−1
i |ss, sr ∼ Gamma(ψ−1

i , ss, sr )

zn ∼ Norm(zn|0, I) , wj ∼ Norm(wj |0,D)

• ψi = ψ is a (non-identifiable) Bayesian version of pPCA.

Ole Winther DTU
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Bayesian formulation

• Access significance of PCA findings in:
• Frequentist sense - how different PCs for another dataset?
• Bayesian sense - posterior over W and Ψ - how much does

subspace vary?
• Bayesian answer depends upon the prior!
• Depending upon whom you ask this is big weakness, or
• an advantage as our assumptions are explicit.

Ole Winther DTU
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Bayesian formulation

• Closer look at the distribution for the (inverse) noise
variance

ψ−1
i |ss, sr ∼ Gamma(ψ−1

i , ss, sr )

• ss shape and sr rate:

< ψi >=
sr

ss − 1
, < ψ2

i > − < ψi >
2=

s2
r

(ss − 1)2(ss − 2)

• Shape ss needs to be ss > 1 and ss > 2 for mean and
variance to be defined.

• Rate sr scales mean and standard deviation of variance

Ole Winther DTU
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Posterior inference - an example

• MCMC: draw samples, W(r),Ψ(r) from posterior p(W,Ψ|X)
• Plot contours of covariance samples and expected value

�Σ�W|X ≈ 1
R

R�

r

�
W(r)(W(r))T +Ψ(r)

�

• Prior ss = 2 and sr = 1: var(ψi) =
s2

r
(ss−1)2(ss−2) = ∞.
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Posterior inference - an example

• Bayesian sparsity - slab and spike!
• Two component mixture of a continuous component and a

point-mass at zero:

Wij |ηij ∼ (1 − ηij)δ(Wij) + ηijN (Wij |0, τij)

• Parsimoneous two-level model, Carvalho et. al., JASA,
2008.

ηij |νj ∼ (1 − νj)δ(ηij) + νjBeta(ηij |αpαm,αp(1 − αm))
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Posterior inference - an example

• Matlab exercises on these topics available from
http://www.imm.dtu.dk/Forskning/ISP/

Undervisning/02901_2012.aspx

• (For offline use)
• Student Exercise 3:

• Bayesian factor analysis using MCMC inference on some
simple datasets.

• Inference summaries
• Identifiable quantities and multivariate data.

• Student Exercise 4:
• Model interpretation - slab and spike
• Sparsity
• Model selection - how many factors?

• Break!

Ole Winther DTU
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Marcenko-Pastur distribution

• Factor model x = Wz + �, true covariance

C = xxT = (Wz + �)(Wz + �)T = WWT +Ψ

• Empirical covariance:

S =
1
N

N�

n=1

xnxT
n

• Marcenko-Pastur - eigenvalue spectrum of S: p(λ)
• for d → ∞ and α ≡ d/N finite, example C = σ2I
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Learning factors - symmetry breaking

• How much data do we need to learn direction w?
• Hoyle and Rattray, 2003+2004; Alexei Onatski, 2007;

(Halkjær and Winther, 1997).
• Bulk spectrum - contribution from C = σ2I

p(λ) = (1 − α)Θ(1 − α)δ(λ) + α

�
(λ− λ−)(λ+ − λ)

2πλσ2

with λ± = σ2(1 ±
√
α)2/α

• Single direction wmwT
m only visible in spectrum when

α ≥ αc as δ(λ− λu) with

λu = (σ2 + |wm|2)
�

1 +
σ2

α|wm|2

�

• Learning transition at λu(αc) = λ+(αc): αc =
�

σ2

|wm|2

�2

Ole Winther DTU
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Learning factors - symmetry breaking

α < αc α = αc α > αc
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Infinite factor model w Indian Buffet Process

• The number of factors should adapt to data.
• Knowles and Ghahramani, 2004+2011 model the sparsity

pattern in W with an Indian Buffet Process.
• Model has an infinite number of factors but only a finite

number is active.
• Number of active factors adapt approximately to the

number of orthogonal directions with

|w2
m| ≥

d
N
σ2

Ole Winther DTU
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Sparse linear identifiable modeling (SLIM)

Protein signalling network textbook – Sachs et. al. Science,
2005.

Ole Winther DTU
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Sparse linear identifiable modeling (SLIM)

• Sparse linear identifiable modeling (SLIM)
• Use connection between factor model and Bayes network
• to learn structure of both and do model comparison
• Henao and Winther, JMLR, 2011. http://cogsys.imm.dtu.dk/slim

Ole Winther DTU
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Sparse linear identifiable modeling (SLIM)

• Factor model (FM)
x = Az + �

• Linear Bayes network (LBN)

x = Cx + z

• C = P−1BP with P permutation matrix
• B upper triangular ⇔ C defines a directed acyclic graph

(DAG)
• Sparse A and B (parsimonious)
• Identifiable - z must be non-Gaussian – no rotation

ambiguity
• Learn both FM and LBN and perform quantitative test

likelihood model comparison
• Models complementary and aid in scientific discovery
• Sparsity and non-Gaussianty often justifiable assumptions

Ole Winther DTU
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Sparse linear identifiable modeling (SLIM)
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x2 z2
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Sparse linear identifiable modeling (SLIM)

• Factor model
x = Wz + �

• Bayesian network (BN)

x = Cx + z

• Rewriting BN as factor model:

x = (I − C)−1z

• Inspired by LiNGAM, Shimizu et. al., JMLR, 2006.
• Novelty here: explicit model of sparsity, stochastic order

search and quantitative model comparison.
• Stochastic ˘ search P−1WPf should be approximately

triangular.

Ole Winther DTU



Introduction PCA ICA Factor modeling Physics SLIM Summary

Sparse linear identifiable modeling (SLIM)

• Model comparison, parameter shorthand θ
• Marginal likelihood

p(X|M) =

�
p(X|θ,M)p(θ|M)dθ

• Test likelihood

p(Xtest|X) =
�

p(Xtest|θ,M)p(θ|X,M)dθ

• Test likelihood relatively easy to compute!
• Extensions, see http://cogsys.imm.dtu.dk/slim,

• Non-linear DAGS
• Latent variables - raises new identifiability problems
• time-series data - temporal smoothness with Gaussian

process factors

Ole Winther DTU
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Single cell flow cytometry data
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Single cell flow cytometry data

• Single cell flow cytometry measurements of 11
phosphorylated proteins and phospholipids.

• Data was generated from a series of stimulatory cues and
inhibitory interventions.

• Observational data: 1755 general stimulatory conditions,
• Experimental data ∼ 80% not used in our approach.
• Not “small n large p”!

Ole Winther DTU
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Single cell flow cytometry data

log�LFM� = −3.46e3

10
0

10
2

10
4

raf

mek

plcy

pip2

pip3

erk

akt

pka

pkc

p38

jnk

xx fac

va
r

1 2 3 4 5 6 7 8 9 10 11

raf

mek

plcy

pip2

pip3

erk

akt

pka

pkc

p38

jnk

4400 4200 4000 3800 3600 3400 3200
0

1

2

3

4

5

6

7
x 10

3

lik

de
n

 

 

FM
DAG

−1 0 1 2 3 4

−3

−2

−1

0

1

2

x

y

 

 

pip3_
plc_

Ole Winther DTU



Introduction PCA ICA Factor modeling Physics SLIM Summary

Single cell flow cytometry data

log�LDAG� = −4.30e3
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Single cell flow cytometry data

log�LDAG� = −4.10e3
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Single cell flow cytometry data

log�LDAG� = −3.4e3
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Single cell flow cytometry data

log�LDAG� = −3.70e3
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Summary

• Factor models - from PCA to
• identifiable models (ICA) and
• sparsity (model selection)

• We can learn learn model structure
when N � d

• Markov chain Monte Carlo - used as
standard inference tool.

• Thank you!

Ole Winther DTU
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