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1 Super-Gaussian Bounding for Laplace Potentials

Recall the super-Gaussian bounding variational relaxation of Bayesian inference and the
coordinate update algorithm from the course. In this exercise, you will work out the details
of a single update for a sparse linear model with Laplace potentials:

tj(sj) = e
τ |sj |, τ > 0. (1)

We omit the normalization constant τ/2 of the Laplace density, as it is not important in
the context here. The posterior distribution is

P (u|y) = Z
−1

P (y|u)
q�

j=1

tj(sj), s = Bu, P (y|u) = N(y|Xu, σ
2I). (2)

However, the detailed components of the model do not matter much in this exercise.

a) Recall that Laplace potentials are super-Gaussian:

tj(sj) = max
γj≥0

e
− 1

2 s2
j/γj− 1

2hj(γj), hj(γj) = τ
2
γj .

Review the material from the lecture slides and confirm the result for hj(γj), given
the definition

hj(γj) = max
x≥0

−x/γj − 2 log tj(
√

x)

b) The criterion to be minimized w.r.t. γ = [γj ] is

φ(γ) = −2 log ZQ +
q�

j=1

hj(γj), ZQ =
�

P (y|u)
q�

j=1

e
− 1

2 s2
j/γj du.



Here, the Gaussian approximation is

Q(u|y) = Z
−1
Q P (y|u)

q�

j=1

e
− 1

2 s2
j/γj . (3)

Prove that
∂

∂γ
−1
j

− 2 log ZQ = EQ[s2
j ],

where EQ[·] denotes expectation over Q(sj |y), a marginal of Q(u|y).

c) Derive an update equation for γj by setting the derivative ∂φ/∂γj equal to zero.

d) [advanced] Even though the update equation you derived in the previous part works
well and is commonly used, it does not necessarily minimize φ(γ) w.r.t. γj completely.
Why? How would you do the complete minimization, without having to recompute
the marginal Q(sj |y) during the iteration?

2 Gaussian KL Minimization and Super-Gaussian Bounding

In this exercise, we assume that the non-Gaussian potentials tj(sj) are even and super-
Gaussian. Recall the following two variational inference relaxations, applied to the posterior
distribution (2). First, super-Gaussian bounding, based on the bound

−2 log Z ≤ min
γ




φSG = −2 log ZQ +
q�

j=1

hj(γj)




 .

Here, log ZQ is the partition function for the Gaussian posterior approximation (3), and

tj(sj) = max
γj≥0

e
− 1

2 (s2
j/γj+hj(γj)). (4)

Second, Gaussian KL minimization, based on the bound

−2 log Z ≤ min
γ ,b




φKL = −2 log ZQ +
q�

j=1

2EQ
�
− log tj(sj)− s

2
j/(2γj) + bjsj

�



 .

Here, EQ[·] denotes expectation over Q(sj |y), the marginal of Q(u|y).

a) Prove that Gaussian KL minimization provides a tighter bound to −2 log Z than
super-Gaussian bounding (at their respective optimum points):

min
γ ,b

φKL(γ , b) ≤ min
γ

φSG(γ)

Hint: If γ∗ = argminφSG(γ), show that

φKL(γ∗,0) ≤ φSG(γ∗).



3 Efficient Parameterization of Gaussian KL Minimization

Recall Gaussian KL minimization from the course and from Exercise 2 above. Naturally,
one would run Gaussian KL minimization over all Gaussians Q(u|y) = N(µ,Σ). In this
exercise, you will show that it is sufficient to optimize over Gaussians with covariance
matrices which are parameterized in terms of O(q) parameters, since any local optimum
must have this particular form.

Consider a problem which gives rise to the posterior distribution

P (u|y) = Z
−1

e
− 1

2uT Eu+cT u
q�

j=1

tj(sj), s = Bu.

Here, E is positive semidefinite (meaning that vT Ev ≥ 0 for all v), but may be singular.
In our running example, E = σ−2XT X and c = σ−2XT y. Gaussian KL minimization over
general Gaussians is given by

log Z ≥ max
Q(u|y)=N(µ,Σ)

EQ

�
log

e
− 1

2uT Eu+cT u �
j tj(sj)

Q(u|y)

�
. (5)

a) Show that minus two times the lower bound in (5) can be written (up to an additive
constant) as

φ = − log |Σ| + tr E(Σ + µµT )− 2cT µ +
q�

j=1

νj . (6)

Here, νj is a function of Q(sj |y), the marginal of Q(u|y) = N(µ,Σ).
Hint: Use the definition of the differential entropy of a Gaussian Q(u|y) = N(µ,Σ):

EQ [− log Q(u|y)] =
1
2

log |2πeΣ| .

b) Denote Q(sj |y) = N(hj , ρj), where ρj = bT
j Σbj , bj the j-th row of B . Compactly:

ρ = diag−1(BΣBT ). We are not interested in the mean µ, consider it fixed. Suppose
that Σ∗ is a stationary point of φ:

∇Σ∗φ = 0.

Show that
Σ∗ =

�
E + BT (diag π)B

�−1
, πj =

∂νj

∂ρj
.

Hint: Use that ∇Σ log |Σ| = Σ−1 for a symmetric nonsingular matrix Σ with positive
determinant.

4 Coordinate Update Algorithm for Gaussian KL Minimiza-

tion

Recall Gaussian KL minimization from the course and from Exercises 2 and 3 above. In par-
ticular, we will use setup and notation from the latter. Here, you will work out a coordinate
update algorithm to solve this relaxation.



Throughout this exercise, we assume that B = I, so that s = u and q = n. We will use the
approximation family of Gaussians

Q(u|y) = N
�
µ, (E + Π)−1

� �� �
=:Σ

�
, Π = diag π,

with parameters µ,π (this is slightly different from the course, where parameters were
b,π). The algorithm iterates between updating the mean µ by conjugate gradients, and
updating π coordinate by coordinate. The former has been discussed in the course, we will
concentrate on the latter.

a) Suppose we are to update πj for j ∈ {1, . . . , n}. The marginal before the update is
Q(uj |y) = N(µj , ρj). The goal is to minimize the criterion φ = φKL w.r.t. πj . Denote
the marginal after the update by Q�(uj |y) = N(µ�j , ρ

�
j), with parameter π�j . Express

π�j in terms of ρj , ρ�j .

Hint: Write Q�(uj |y) ∝ Q(uj |y)e−
1
2 (∆πj)u2

j , where ∆πj = π�j − πj .
Given this fact, we see that the problem of updating πj is equivalent to minimizing φ

w.r.t. the marginal variance ρj , the j-th diagonal entry of the covariance Σ.

b) Denote the inverse covariance matrix by P = Σ−1 = E + Π. In order to update
ρj → ρ�j , you will use an iterative method cycling between p�j = P �

jj (j-th diagonal
entry of P �) and ρ�j . Give an update equation for p�j .
Hint: Use the criterion form (6) (and your results from Exercise 3), setting the deriva-
tive w.r.t. ρ�j equal to zero.

c) Given the new value for p�j , what is the new value for ρ�j?

It remains to update the marginal variances ρ, given that πj → π�j . A simple idea is to
maintain the covariance matrix Σ, and to update it using the Sherman-Morrison-Woodbury
formula. However, this is numerically instable. A better idea is to maintain a Cholesky
factorization P = E + Π = LLT , and to update L given πj → π�j . Details can be found in
[2, 3], software for low rank Cholesky updates is available from my homepage. Each update
costs O(n2).

5 Spectral Analysis of Conjugate Gradients Algorithm

Recall the conjugate gradients (CG) algorithm for approximately solving Ax = b, where
A ∈ Rn×n is positive definite. The algorithm minimizes the quadratic q(x) = (1/2)xT Ax−
bT x iteratively, constructing a sequence x1, x2, . . . , requiring a single matrix-vector mul-
tiplication with A per iteration. After at most n steps, neglecting numerical errors (which,
in practice, you cannot!), the exact solution x∗ = A−1b is reached, in that xn = x∗. De-
pending on A, this can also happen earlier (you can use the Cayley-Hamilton theorem from
linear algebra to understand this point). However, the main rationale for CG today is to
approximate x∗ by xk with k � n. Whether xk is close to x∗ or not, depends on properties
of A and b (it depends on numerical errors as well, but we ignore these in the present
exercise, assuming that all computations are exact). In this exercise, we will analyze the
convergence behaviour in terms of the eigenspectrum of A.



Let x∗ = A−1b and q∗ = q(x∗) = −(1/2)bT A−1b. Then, q(xk) is nonincreasing and
≥ q∗. We’ll try to bound q(xk) − q∗. The eigendecomposition is A = QΛQT , Q ∈ Rn×n

orthonormal (QT Q = I), Λ diagonal (positive elements).

a) Assume that we start from x0 = 0. The Krylov subspace Kk is spanned by
{Ajb | j = 0, . . . , k − 1}. We saw that xk = argminx∈Kk

q(x). For a polynomial
P (t) =

�k−1
j=0 αjt

j , αj ∈ R, define

P (B) :=
k−1�

j=0

αjB
j
, B ∈ Rn×n

.

Take care that P (B)P (C) �= P (C)P (B) in general if B , C do not commute, and
recall that B0 := I. Show that

P (A) = QP (Λ)QT
.

Defining y = QT x, b̄ = QT b, show that q(x) and q∗ can be written in terms of y, b̄,
and {λi}.
Hint: What is the eigendecomposition of A−1?

b) Let yk = QT xk. Show that xk = Pk(A)b for some polynomial Pk(t) of degree < k,
and that yk = Pk(Λ)b̄. In other words, yk,i = Pk(λi)b̄i. By writing q(xk) in terms of
yk, prove that

q(xk)− q∗ = min
Pk | deg(Pk)<k

(1/2)
n�

i=1

(b̄2
i /λi)(λiPk(λi)− 1)2.

Here, deg(Pk) is the degree of Pk, the largest j such that tj features with a nonzero
coefficient.

c) Argue that this means that the error q(xk)− q∗ is bounded in terms of a polynomial
P of degree ≤ k, such that P (0) = −1 (equivalent: such that P (0) = 1). The existence
of such a polynomial which is small on all λi, implies that the error is small. Prove
that if {λ1, . . . ,λn} = {κ1, . . . ,κk}, i.e. if A has no more than k different eigenvalues,
then xk = x∗.
Remark: Using Chebishev polynomials, minPk maxt∈[λmin,λmax] Pk(t) can be determined
for 0 < λmin ≤ λmax, which leads to the worst-case error bound

q(xk)− q∗ ≤
�

ρ− 1
ρ + 1

�k

, ρ =
�

λmax/λmin.

Therefore, we should aim for well-conditioned matrices A (λmax/λmin small), which
is what many preconditioning stategies try to do. On the other hand, if the spectrum
of A comes in separate clusters, this bound is overly pessimistic.



6 Super-Gaussian Bounding for Bernoulli Potentials

In the course, we have discussed the super-Gaussian bounding inference approximation for
even potentials only: t(−s) = t(s). The Bernoulli likelihood potential violates this assump-
tion:

t(s) =
1

1 + e−ys
, y ∈ {−1,+1}. (7)

Super-Gaussian bounding applies to this potential, even though it is not even. Details can
be found in [1, 4]. The generalized definition of a super-Gaussian t(s) requires that

t(s) = max
γ≥0

e
bs− 1

2 (s2/(2γ)+h(γ)) = e
bs

t̃(s).

Here, b is a constant. Different from γ, it is not optimized over. t̃(s) is even and super-
Gaussian.

Bernoulli potentials are used to model the likelihood P (y|s) in binary classification models,
where yj ∈ {−1,+1} is the class label, sj = log(P (yj = +1|bj)/P (yj = −1|bj)) is the log
odds ratio. For this exercise, will use a linear classification model with input points bj , class
labels yj , and classifier weights u. Here, sj = bT

j u (or s = Bu). There are n weights, q

training datapoints. Likelihood P (y|u) and prior P (u) are

P (y|u) =
q�

j=1

t(sj), P (u) = N(0, σ
2I).

In contrast to our sparse linear model example, the likelihood is non-Gaussian here, the
prior is Gaussian.

a) Show that the Bernoulli potential (7) is super-Gaussian. What is b, what is t̃(s)?
Hint: Use the fact that x �→ log cosh(bx1/2) is a concave function for x ≥ 0.

b) Show that both the Bernoulli potential t(s) and t̃(s) are log-concave (meaning that
− log t(s) is convex).

c) How does the inner loop penalized least squares optimization problem look like for
the binary classification model with Bernoulli likelihood? Show that this problem is
convex.
Hint: It is not necessary to work out h(γj). Instead, follow the derivation given in the
course for the Laplace potential, replacing |sj | by (zj + s2

j )
1/2 in t̃(s).

7 Proximal Map for Inner Loop Optimization Problem

Recall the double loop algorithm for super-Gaussian bounding from the course. For the
sparse linear model with Laplace potentials (1), we need to solve inner loop problems of the
form

min
u∗

σ
−2�y −Xu∗�2 + 2τ

q�

j=1

�
zj + s2

∗j .



Also, recall the alternating direction method of multipliers (ADMM), an augmented La-
grangian solver for penalized least squares problems of this form. In the course, we applied
it to the MAP estimation problem, where the penalizer was 2τ

�
j |s∗,j |, which corresponds

to zj = 0 above. However, for variational inference, we have that zj > 0 for all j (see [4] for
a proof).

In this exercise, you will work out how to solve the proximal map problem

s
� = prox(r) = argmin

s
κ

�
z + s2 +

1
2
(s− r)2, z > 0.

We then obtain an algorithm to solve the inner loop problem by configuring the ADMM
method discussed in the course with this primitive.

a) If r < 0, show that
prox(r) = −prox(−r),

and that s� ≥ 0 for r > 0. We can restrict ourselves to r > 0 and optimize over s ≥ 0
only.

b) Convince yourself that the reparameterization s → s/z1/2, r → r/z1/2, κ → κ/z1/2

can be used to attain z = 1. The problem to be solved is

s
� = argmin

s≥0
κ

�
1 + s2 +

1
2
(s− r)2, r > 0. (8)

Prove that s� ≤ r (which means that the value r is shrunk). Also prove that

s
�
> max{r/(1 + κ), r − κ}.

This means that s� > 0 for r > 0, in contrast to the situation for MAP estimation.
Hint: Work out the stationary equation for the optimization problem. The definition
y = (1 + s2)1/2 may be helpful.

c) Show that the solution s� of (8) is obtained as root of a quartic equation (polynomial
equation of degree 4) with real coefficients. Determine the quartic.
There is an algorithm to analytically solve for the roots of a quartic equation (see
http://en.wikipedia.org/wiki/Quartic equation), even though it is a bit com-
plicated.

8 Bound on Marginal Variances

Consider the Gaussian distribution Q(u|y) from (3). We assume that all γj > 0.

a) Prove the bound
VarQ[sj |y] ≤ γj

on the variance of the marginal Q(sj |y).
Hint: Use the identity

vT A−1v = max
x

2vT x − xT Ax

for any symmetric positive definite matrix A.
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