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Outline

° Motivation

@ Variational Inference Relaxations
@ Super-Gaussian Bounding
@ Expectation Propagation
@ Gaussian KL Minimization
@ Conjugate Gradients Algorithm

e Scalable Variational Inference
@ Scaling up Super-Gaussian Bounding
@ Penalized Least Squares
@ Gaussian Variances

e Application Example
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Motivation
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Motivation

Goals of Lecture

@ Beyond point estimation:
Bayesian inference for non-Gaussian continuous variable models
@ Beyond message passing:
Computational structure of variational inference relaxations
@ The layer below:
Scalability through reductions to convex optimization and
numerical mathematics
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Motivation

Image Reconstruction

Measurement ¢

Data y

=3
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Motivation

Image Statistics

Whatever images are . ..
they are not Gaussian!
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Motivation

SparSIty P rl O rS courtesy Florian Steinke
Gaussian Laplace Very Sparse
e~ lsl? e lsl e~ Tlsl%!

0. <
~ -
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Motivation

Posterior Distribution

@ Likelihood P(y|u): Data fit
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Motivation

Posterior Distribution

@ Likelihood P(y|u): Data fit
@ Prior P(u): Signal properties
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Motivation

Posterior Distribution

@ Likelihood P(y|u): Data fit

@ Prior P(u): Signal properties

@ Posterior distribution P(uly):
Consistent information summary
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Motivation

MAP Estimation

Maximum a Posteriori (MAP) Estimation

u, = argmax, P(y|u)P(u)
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Motivation

Why Move Beyond MAP?

Maximum a Posteriori (MAP) Estimation

u, = argmax, P(y|u)P(u)
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Motivation

Bayesian Calibration

y~k®u
@ Computer vision

e Blind deconvolution
o Calibrating camera parameters

@ Magnetic resonance imaging
o Autocalibrating parallel MRI
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Motivation

Bayesian Calibration

P(y|0) = / P(y|u,0)P(ul6) du

Given raw data y, no ground truth u. Estimate model parameters 6.
@ Blind deconvolution (@ blur kernel)
@ Multi-frame super-resolution (8 camera parameters, PSF)
@ Image coding (6 codebook)
@ Learning image priors (P(u) = P(u|@))
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Motivation

Bayesian Experimental Design

scan time o
# phase encodes y~Xu

X 7 —
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Motivation

Bayesian Experimental Design

Prior P(u)

Data P(y|u)

. Il

Posterior P(uly)

Inference

Design

Decision

Estimation

Seeger (EPFL)
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Motivation

Sparse Linear Model

- %,ﬁ\:\ P(u) x HZ:I ti(si) = e~ TwlBwull; x e_Ttv“Btuulll,

WP(yIU) = N(yXu, %)

gradient

| Ply) o P@Plw)  WAVElet

@ X, B? Fast operators of your choice (X dictated by application)

Denoising: X diagonal
Deconvolution: Xu=kou
MRI reconstruction: X =1, F, F DFT
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Motivation

Sparse Linear Model

Gl (7 P Tl ti(s) = emlBpull

—Tto || B
x  e—TeolBgul,

WP(yIU) = N(yXu, %)

gradient

{ P(uly) < P(u)P(y|u) wavelet

@ X, B? Fast operators of your choice (X dictated by application)
@ ti(s;) Laplace here, but many other options Nickisch, Seeger, ICML 2009
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Variational Inference Relaxations

Outline

@ Variational Inference Relaxations
@ Super-Gaussian Bounding
@ Expectation Propagation
@ Gaussian KL Minimization
@ Conjugate Gradients Algorithm
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Variational Inference Relaxations

Variational Approximations

Puly) = 2 Pyl [T (). 2= [ Pyl [T (s du

@ Bayesian integration over P(u|y) intractable

@ Integration tractable for Gaussians Q(uly)
= Approximate P(uly) by Q(uly)!

Variational approximation

Apply variational principle to fit master function log Z

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 17177



Variational Inference Relaxations

The Log Partition Function

Puly) = 2 ' Pyl) [T (). Z= [ Pyiu) ] t(s) o

Master function log Z? Why this target?
@ Physicist: Of course, it’s the (negative) free energy!
@ Probabilist: It generates posterior moments (cumulants)
@ Variational definition of posterior distribution

P(ylu)I1; ti(Si)] { argmaxoqu|y)?  P(uly)

Eq(uyy) |log
Q(uly) maxgo(uly)”’ log Z

@ Bayesian inference: Optimization over distributions s Jodan

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 18/77



Variational Inference Relaxations Super-Gaussian Bounding

Variational Approximations

Puly) = 2 ' Pyl) [T (). Z= [ Pyiu) ] t(s) o

Variational approximation
Apply variational principle to fit master function log Z

@ Super-Gaussian bounding
@ Expectation propagation
@ Gaussian KL minimization
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Variational Inference Relaxations Super-Gaussian Bounding

Super-Gaussian Potentials

t(s) — max e—SZ/(Z"y) e_h('Y)/2
v=>0

@ (s) even and positive: Let’s look at 82 — 2log #(s)

@ What's that for a Gaussian t(s) = N(s|0, 02)?
A linear (affine) function

2.4 0
—— Gaussian —— Gaussian
35F -2
2.3f 4
25F
-6
2.2F
-8
51
21 10
05f 12
9 = 0 B 4 Y B 4 6 8 10 12
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Variational Inference Relaxations Super-Gaussian Bounding

Super-Gaussian Potentials

t(s) = max e—SZ/(Z"y) e_h('Y)/2

v=>0
Sparsity potentials are super-Gaussian o e
s? — 2log t(s) is convex
@ Affine — convex: 5 :
Shift mass to center and tails 2 e
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Variational Inference Relaxations Super-Gaussian Bounding

Convex (Fenchel) Duality

Super-Gaussian:
t(s) even, s? — 2log t(s) convex.

Convex function: Maximum of its affine lower bounds
Super-Gaussian function: Maximum of its Gaussian lower bounds
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Variational Inference Relaxations Super-Gaussian Bounding

Convex (Fenchel) Duality

Super-Gaussian:
t(s) even, {x = §?} — {f(x) = 2log t(s)} convex.

075

0 S P N DA 0.35
f(x) = max, xm — f*() f*(m) = maxy 7x — f(x)
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Variational Inference Relaxations Super-Gaussian Bounding

Convex (Fenchel) Duality

Super-Gaussian:
t(s) even, {x = §?} — {f(x) = 2log t(s)} convex.

075

0.1 0.65
0.25 0.5
03 ,’/ 0.45
0.4 /.‘/ 0.35
f(x) = max, xm — f*() f*(m) = maxy 7x — f(x)
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Variational Inference Relaxations

Convex (Fenchel) Duality

Super-Gaussian:

Super-Gaussian Bounding

t(s) even, {x = §?} — {f(x) = 2log t(s)} convex.
03 2 045
o ~~~:~-‘;/-_i:: ---------------- 0.35F

f(x) = max, xm — f*()
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Variational Inference Relaxations

Convex (Fenchel) Duality

Super-Gaussian:

Super-Gaussian Bounding

t(s) even, {x = s?} — {f(x) = 2log

t(s)} convex.

075

0051 o7k
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f(x) = max, xm — f*()
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Variational Inference Relaxations

Convex (Fenchel) Duality

Super-Gaussian:

Super-Gaussian Bounding

t(s) even, {x = s?} — {f(x) = 2log

t(s)} convex.
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f(x) = max, xm — f*()
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Variational Inference Relaxations Super-Gaussian Bounding

Convex (Fenchel) Duality

Super-Gaussian: F1
t(s) even, {x = §?} — {f(x) = 2log t(s)} convex.

f(x) = max, xm — f*(m) f*(m) = maxy 7x — f(x)

t(s) = max, e(—5*/7=h(7))/2 h(~) = maxs —s? /v — 2log t(s)
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Variational Inference Relaxations Super-Gaussian Bounding

Super-Gaussian Potentials

uo K ey

Sparsity potentials are super-Gaussian

s? - 2log ti(s;) is convex

Convex (Fenchel) duality

2log t(s;) = max simi — ()
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Variational Inference Relaxations Super-Gaussian Bounding

Super-Gaussian Bounding

wo K H+G
Sparsity potentials are super-Gaussian

ti(s;) = max e /(@n)—hi()/2
7i=0 !

h(v) =) hi(y), T =diagy
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Variational Inference Relaxations Super-Gaussian Bounding

Super-Gaussian Bounding

Exact representation
log Z
- Iog/P(y|u) max e (8'T'sHM)/2 gy
vy

ti(si) =
max e—S;Z/(Z'y;)—h,-(’y,-)/Z
7i>0
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Variational Inference Relaxations Super-Gaussian Bounding

Super-Gaussian Bounding

Lower bound
logZ
= log /P(y|u) max e~ (s'T ' s+h))/2 gy

> max Iog/P y|u)e= (ST IsHh)/2 gy

ti(si) =
max e—S;Z/(Z'y;)—h,-(’y,-)/Z
7i>0
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Variational Inference Relaxations Super-Gaussian Bounding

Super-Gaussian Bounding

Lower bound

logZ

max Iog|/P(y|u)e(STrqs”’(A’))/2 du
vy

v

= m$xlog Za(v) — h(v)/2

ti(si) =
max e—S;Z/(Z'y;)—h,-(’y,-)/Z
7i>0

Gaussian approximation

Quly) = Zo ' P(y|u)es'"'$/2, s = Bu
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Variational Inference Relaxations Super-Gaussian Bounding

Super-Gaussian Bounding

Variational problem: Q(u|y) =~ P(uly)

min, {¢(v) = —2log Zg + h(~)}

Gaussian approximation

Q(uly) = Z5'P(y|u)es'" '$/2, s = Bu,
Zg = /P(}'\U)e‘sT“S/2 du

ti(si) =
max e—S;Z/(Z'y;)—h,-(’y,-)/Z
7i>0
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Variational Inference Relaxations Super-Gaussian Bounding

Super-Gaussian Bounding

What did we do?

@ Start with tight single potential bounds: #(s;) = max,>o ...
= Auxiliary variables v = 0

@ Plug into target function log Z. Interchange [ ...du < maxy
= Global lower bound on log Z

@ Lower bounds are log partition functions of Gaussians Q(uly)
= Approximation family Q = {Q(uly)}

@ Divergence Q(uly) < P(ul|y)? Maximize lower bound!
= ¢(v) = —2log Zg + h(7)

Seeger (EPFL) Large Scale Bayesian Inference 8/2012
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Variational Inference Relaxations Super-Gaussian Bounding

MAP Estimation and Variational Inference

MAP Estimation Bayesian Inference

max log P(ul|y)Z log Z

= man.xlogN(y|Xu,,azI)ma.xe_(“TI‘_I""""('Y))/2 = log/N(y|X‘u,,021)ma.xe_("Tr_l"""'("’))/2 du
u ¥ ¥

] Vv

maxmaxlogN(y|Xu,021)6_(’TF_1"’+h('7))/2 ma:x{log/N(y|X1.l,,aZI)z's_(“Tr‘il“"'h(”)/2 du
7w v
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Variational Inference Relaxations Super-Gaussian Bounding

Coordinate Update Algorithm

@ Simple algorithm: Update single variables ~;

repeat
forjc{1,...,q} do
Update ~;, based on marginal Q(s;|y)
Gaussian propagation of pseudo-evidence change
end for
Refresh representation
until convergence

@ Needs mean and variance of Q(s;|y) for each update

@ Representation of Q(u|y): Backbone for Gaussian propagation.
Moderate size problems: Cholesky representation Seeger, JMLR 2008

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 27177



Variational Inference Relaxations Expectation Propagation

Variational Approximations

Puly) = 2 ' Pyl) [T (). Z= [ Pyiu) ] t(s) o

Variational approximation
Apply variational principle to fit master function log Z

@ Super-Gaussian bounding
@ Expectation propagation
@ Gaussian KL minimization
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Variational Inference Relaxations Expectation Propagation

Expectat | on P ro pag at | on Opper, Winther, Phys. Rev. E 2001

Minka, UAI 2001

P(uly) ~ Q(uly;v,b) = Zg" P(y|u) [ &>~/

@ Best Gaussian approximation?

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 29/77



Variational Inference Relaxations Expectation Propagation

Expectat | on P ro pag at | on Opper, Winther, Phys. Rev. E 2001

Minka, UAI 2001

Q(uly) ** P(uly) <  Q(uly) = N(E[uly], Covluly])

@ Best Gaussian approximation? Moment matching of P(uly)

Intractable conditions for Q(uly)

Q(uly) x P(y|u) T, €%5~5/@0
T MM

P(uly) o< P(y|u) IT; ti(s))

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 29/77



Variational Inference Relaxations Expectation Propagation

Expectat | on P ro pag at | on Opper, Winther, Phys. Rev. E 2001

Minka, UAI 2001

Quly) & P(uly) &  Q(uly) = N(E[uly], Covluly])
@ Best Gaussian approximation? Moment matching of P(uly)

Intractable conditions for Q(uly)

Q(uly) o €255/ 5 P(y|u) [],; 755 /@0
T MM

P(uly) o< ti(s;) x P(y|u) [T ti(sy)

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 29/77



Variational Inference Relaxations Expectation Propagation

Expectation Propagation s inys. Fe. E 2001

Quly) == Pi(u) & Q(uly) = N(Ep,[u], Covp [u])

@ Best Gaussian approximation? Moment matching of P(uly)
@ Tractable surrogate: Moment matching for single potentials

Self-consistency conditions for Q(u|y)

Q(uly) o ePisi—st/@) x P(y|u )1 elisi—s7/(27)
1 MM

Pi(u) o« ti(s:) P(y|u)[1;,; €25~5/@»

Seeger (EPFL) Large Scale Bayesian Inference 8/2012
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Variational Inference Relaxations Expectation Propagation

Expectation Propagation

Quly) = Pyl ], bS5/ @)

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 30/77



Variational Inference Relaxations Expectation Propagation

Expectation Propagation

asly) = [ Pyl [,/ dfu s}

EP: Marginals at update

~
LA

‘ A M‘argina\Q
@ Marginal distribution: v
Q(sily)

0 "
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
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Variational Inference Relaxations Expectation Propagation

Expectation Propagation

i(si) /P y]u gbisi=sf/(@) d{u\ s;}
EP: Marginals at update
12 T T ~ T :
I' | ___Margina\Q
@ Marginal distribution: ol oo _T &y, |
Q(sily)
@ Cavity distribution: i
g, g2 .
Q- (s) x Qlsily) e/
A
ol
—%,2 -0.15 —04‘1 —0.65 (; 04<‘)5 0.1 0.15
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Variational Inference Relaxations Expectation Propagation

Expectation Propagation

IAD,-(S,-) x ti(s)) / P(y|u) Hj#i eb/srsjz/(Zw) d{u\ s;}

EP: Marginals at update

~

Marginal Q

@ Marginal distribution: J J Tl |
Q(S,’y) 1 Tilted P

@ Cauvity distribution: o
Q_i(s) o Q(sily)/ b5/
O Tilted distribution:
P,'(S,') XX Q_,'(S,')t,'(s,')

-

0 L
-0.2 -0.15 -0.1

L L L
-0.05 0 0.05 0.1 0.15
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Variational Inference Relaxations Expectation Propagation

Expectation Propagation

Q(sily) gbisi—s? /(7)) / P(y|u) H,- Qbisi—s7/(2%) d{u\ s}

i
EP: Marginals at update
@ Marginal distribution: ol J __j";i“mirgma.o;
Q(sily) ‘
@ Cavity distribution: , i
Q- (s) o Q(sily)/evs=/@)
© Tilted distribution: 7
P,'(S,') X Q_,'(S,')t,'(s,')
© Moment matching update: 2

Q(sily)" = N(Ep [s], Varp [si])
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Variational Inference Relaxations Expectation Propagation

Expectation Propagation

Qsily) = 7' (Qsily)/eo </ E)(s)

1

@ Variational problem
dep(v) = ~2log Zg + Y " (v, Q(sily))
AP (3, Q(sily)) = —2 (log Eq ,[t(s)] — log Eq ,[6" /(1)

@ Arbitrary potentials
@ Empirically very accurate Nickisch et.al, JMLR 2008

@ Algorithmically difficult

e Saddlepoint, not optimum of ¢gp(~)
e EP coordinate update algorithm lacks convergence proof
o Difficult to scale up Seeger, Nickisch, AISTATS 2011

@ Robust for log-concave potentials Seeger, JMLR 2008
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Variational Inference Relaxations Expectation Propagation

Expectation Propagation

Qsilyy 2Lz (Q(sily)/e?o /@) (sy)

1

Expectation propagation much more general

@ Related to cavity methods (adaptive TAP) Opper, Winther, JMLR 2005

@ Discrete graphical models (generalizes loopy belief propagation).
Tree expectation propagation Minka, Qi, NIPS 2004

@ Dynamical systems: Natural generalization of moment matching
(assumed density) filtering Zoeter, Heskes, UAI 2002

@ Inference in hybrid models (discrete and continuous)

research.microsoft.com/en-us/um/people/minka/papers/ep/roadmap.html
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Variational Inference Relaxations Gaussian KL Minimization

Variational Approximations

Puly) = 2 ' Pyl) [T (). Z= [ Pyiu) ] t(s) o

Variational approximation
Apply variational principle to fit master function log Z

@ Super-Gaussian bounding
@ Expectation propagation
@ Gaussian KL minimization

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 33/77



Variational Inference Relaxations Gaussian KL Minimization

Gaussian KL Minimization — Seeerpoiioe o e

Variational inference

Pylu)T1; 4(s))
Q(uly)

logZ = max Ep |lo
9= Q) @ |

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 34/77



Variational Inference Relaxations Gaussian KL Minimization

Gaussian KL Minimization — Seeerpoiioe o e

Why not use Gaussians directly?

logZ > max Ep |lo
g Q(uly)€Qtract O[ g

P(y|lu)11; t(s))
Q(uly) ’

Qract = { QulY) = Z5' P(y|u)e®’ s 2" ¢}
@ Equivalent to

MiNQuly)eQua PIAULY) || P(uly)]

Seeger (EPFL) Large Scale Bayesian Inference
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Variational Inference Relaxations Gaussian KL Minimization

Gaussian KL Minimization — Seeerpoiioe o e

Why not use Gaussians directly?

logZ > max Ep |lo
g Q(uly)€Qtract O[ g

P(y|lu)11; t(s))
Q(uly) ’

Quact = { Quly) = Zg'Pylu)e? =25 s |

@ Working out the variational problem:

—2logZ < min2Eq
~,b

Q(uly)
9 P(ylu) H/r,-(s,-)]

Seeger (EPFL) Large Scale Bayesian Inference
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Variational Inference Relaxations Gaussian KL Minimization

Gaussian KL Minimization — Seeerpoiioe o e

Why not use Gaussians directly?

logZ > max Ep |lo
g Q(uly)€Qtract O[ g

P(y|lu)11; t(s))
Q(uly) ’

Quact = { Quly) = Zg'Pylu)e? =25 s |

@ Working out the variational problem:

—2log Z < min2E,, |log Z5'
9 b a|99%a H/

ebjS/’—SI-z/(Z’yj)]

ti(s;)

Seeger (EPFL) Large Scale Bayesian Inference
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Variational Inference Relaxations Gaussian KL Minimization

Gaussian KL Minimization — Seeerpoiioe o e

Why not use Gaussians directly?

logZ > max Ep |lo
g Q(uly)€Qtract O[ g

P(y|lu)11; t(s))
Q(uly) ’

Quact = { Quly) = Zg'Pylu)e? =25 s |
@ Working out the variational problem:

—2logZ < ryvip —2log Zg + Z,- 2Eq[-log i(s)) — §7/(2v)) + bjs]]

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 34/77



Variational Inference Relaxations Gaussian KL Minimization

Gaussian KL Minimization — Seeerpoiioe o e

Why not use Gaussians directly?

logZ > max Ep |lo
g Q(uly)€Qtract O[ g

P(y|lu)11; t(s))
Q(uly) ’

Quact = { Quly) = Zg'Pylu)e? =25 s |
@ Working out the variational problem:

; KL :
—2logZ < T,Il? —2log Zq + Zj hi=(v;, by Q(sj]y))

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 34/77



Variational Inference Relaxations Gaussian KL Minimization

Gaussian KL Minimization

rI/]iE —2log Zg + Zj h (. by Q(sjly))

Comparison to super-Gaussian bounding:

@ More general (#; need not be super-Gaussian; b parameters)
@ More difficult to solve

o h" depends on Q(sjly), soonall of v, b
@ Non-convex in general
o No large scale algorithm so far

@ Tighter bound on log partition function log Z Exercise

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 35/77



Variational Inference Relaxations Gaussian KL Minimization

Gaussian KL Minimization

P(ylu) I ti(s;
logZ> max Eq|log i1 4 /)],

- Q(U|y)E Orract Q(u’y)
Qe = { Quly) x Ply|ue?'s 257

@ Why this form? Why not any Gaussian Q(uly) = N(u, X)?
@ Any Gaussian maximizer lies in Qyact Seeger, Dipl. 1999; Exercise
Q*(uly) € argminD[Q(uly) || P(uly)]
Gaussian

= Covg:[uly] " = 0 2X"X + B"(diag~,) " 'B
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Variational Inference Relaxations Gaussian KL Minimization

Gaussian KL Minimization

logZ > max Eq

lo
Q(uly)=N(p,x) 9

P(ylu)IT; 4(sy)
Q(uly)

@ Log-concave potentials #(s;):
- . 1
Problem Jomtly convex in p and X2 Challis, Barber, AISTATS 2011

e Reduced Cholesky parameterizations
e Factorization assumptions

@ Coordinate update algorithm Seeger, Dipl. 1999

@ Open problem:
Scalable algorithm for Qyact parameterization (v, b)
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Variational Inference Relaxations Conjugate Gradients Algorithm

What About Large Models?

repeat
forjc{1,...,q} do
Update ~;, based on marginal Q(s;|y)
Gaussian propagation of pseudo-evidence change

end for
Refresh representation
until convergence

@ Needs mean and variance of Q(s;|y) for each update
@ Moderate size problems: Cholesky representation
@ Moderate-sized high-resolution image: n = 65536 pixels.
Storage: 32G (single matrix)
Time for Cholesky decomposition: = 3h (if enough memory)
Out of the question
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Variational Inference Relaxations Conjugate Gradients Algorithm

Gaussian Computations

Q(uly) = Z5'P(y|lu)e 2°'" 'S du, s=Bu
Covoluly] =7

Q(uly) x P(y|u)e 25" "'

Seeger (EPFL) Large Scale Bayesian Inference
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Variational Inference Relaxations Conjugate Gradients Algorithm

Gaussian Computations

Q(uly) = Z5'P(y|lu)e 2°'" 'S du, s=Bu
Covoluly] =7

Q(uly) x P(y|u)e 24"B'r '8y
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Variational Inference Relaxations Conjugate Gradients Algorithm

Gaussian Computations

Q(uly) = Z5'P(y|lu)e 2°'" 'S du, s=Bu
Covoluly] =7

Q(uly) 6_%(‘7—2||Y—Xu||2+uTBTr_1Bu)
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Variational Inference Relaxations Conjugate Gradients Algorithm

Gaussian Computations

Q(uly) = Z5'P(y|lu)e 2°'" 'S du, s=Bu
Covoluly] =7

Q(u|y) o e—%UT(U_ZXTX+BTr_1B)U-I—...
Covoluly]=A"", A=02X"X+B'r'B
Ifv=A"(B7g)):

Eolsilyl = v/ (e 'XTy), Varglsjly] = v7(B'§))
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Variational Inference Relaxations Conjugate Gradients Algorithm

lterative Solvers

Eqluly]=A(c2X"y), A=02X"X+B'r'B

@ Can multiply with A rapidly:
X, X'": FFT. B, B”: Simple filters

@ Solve systems by iterating over matrix-vector multiplications
@ Equivalent to linear least squares estimation

Eqluly] = argmino 2|y — Xu|?+s'T's
u
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Variational Inference Relaxations Conjugate Gradients Algorithm

Minimizing Quadratic Functions

Positive definite A:

x. =argmin{q(x) = ;x"Ax - b'x} < Ax.=b
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Variational Inference Relaxations Conjugate Gradients Algorithm

Minimizing Quadratic Functions

q(x)=ix"Ax —b"x, g(x)=Vq(x)=Ax-b

Require: Operator A. Initial xq
fork=1,2,... do
Pick search direction d, based on g, = g(Xk_1), {d;: | < k}
Line minimization:

Xy = Xg_1+axdy, o= argmina Q(Xk,1 + Ozdk)

end for
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Variational Inference Relaxations Conjugate Gradients Algorithm

Conjugate Directions

@ Why, of course down as steep as possible

(X1 +dx) = q(Xk—1) +  gf_4(dx)  +O(|dx]?)
N——

Smallest:dxoc—gj_4

Steepest descent: dy = —g,_4

@ Wrong: For steepest descent: d,fHdk =0
= Improvements from previous iterations rapidly tempered with

New gradients L old directions?
= Retains previous efforts: x
g[dk:0—>g[+1dk:0... N

s P

Conjugate Directions

Taqg )
d,Ad; =0forallj < k g(xx +ady1)Tdy =0
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Variational Inference Relaxations Conjugate Gradients Algorithm

Towards Conjugate Gradients

Details: Handout

@ Directions conjugate: Gradient g, L all previous directions:
gldi=0forallj<k

@ After n steps we are done: g, =0

© Construct conjugate directions by recurrence:
dik = —gy_1 + Bk—1dk_1

© All gradients are orthogonal: g[gj =0,j<k
[Bit of misnomer: Directions are conjugate]

@ What is ax? From line minimization:

_ lgisl?
dl Ad,
© What is 5x? The great synthesis!
g1
Be= K
19k-1112
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Variational Inference Relaxations Conjugate Gradients Algorithm

Conjugate Gradients Algorithm

Require: Operator A. Initial xo. gy = Axo — b
for k =1,2,... (no more than n) do
pr—1 = [1G_1]12

if Kk =1 then

di = —gy
else

Bk—1 = pk—1/pk—2; Ak = —Gx_1 + Br—1dk_1
end if

Qi = Ady; ax = px_1/(d} qx)

Xk = Xk_1 + axdk; Gk = 91 + akqy

Check for convergence (say ||g,| < <||b]|)
end for

Seeger (EPFL) Large Scale Bayesian Inference
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Variational Inference Relaxations Conjugate Gradients Algorithm

Conjugate Gradients Algorithm
Let £x = xo + span{dy,...,dx}. Then:

gid;j=0,j<k = Xx=argmin,c, q(X)

But Kx = xo + span{A/g, |j < k}
= Optimal with k (A-) multiplications!
@ Kk C Kkiq1 C ..., Xi € Ky (Cayley/Hamilton)
@ What about k < n for huge n? Depends on eigenspectrum of A.
X, ~ X, in surprisingly many cases in practice
= Krylov subspace view key to convergence analysis Exercise
@ Preconditioning: M = CC' ~ A, but easy to solve systems with

e Workon (C"TAC \cx=C""b

= Better spectral properties — Faster convergence
e CG as before, with one (M~"-) per iteration
o Art of iterative linear solvers
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Scalable Variational Inference

Outline

e Scalable Variational Inference
@ Scaling up Super-Gaussian Bounding
@ Penalized Least Squares
@ Gaussian Variances
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Scalable Variational Inference

@ Sparse linear models:
Inverse problems, Bayesian calibration and sampling optimization

@ Super-Gaussian bounding:
From local max-of-Gaussian representations to global bound

@ Expectation propagation:
Tractable self-consistency by local moment matching

@ Gaussian KL minimization:
Tighter, but more difficult than super-Gaussian bounding

@ Conjugate gradients:
Large scale linear solvers by iterated matrix-vector multiplications
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Scalable Variational Inference

Need for Scalability

Bayesian inference over full images (256 x 256)7?
— U € (65536 ~ ¢ R196096
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Scalable Variational Inference

Need for Scalability

repeat
forje{1,...,q} do
Update ~;, based on marginal Q(s;|y)
Gaussian propagation of pseudo-evidence change
end for
Refresh representation
until convergence

@ Needs mean and variance of Q(s;|y) for each update
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Scalable Variational Inference

Need for Scalability

Bayesian inference over full images (256 x 256)7?
— U € (65536 ~ ¢ R196096

@ Coordinate Update algorithm (most previous methods)

e Linear SyStem Ai1 r for each update (needs conjugate gradients)
o At least 196096 systems (visit each ~; once)

Out of the question
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Properties of Super-Gaussian Bounding

m7in -2 Iog/P(y|u)e_;sTr1sdu+h(fy)

Super-Gaussian bounding stands out Seeger, Nickisch, SIAM IS 2011

@ Convex problem iff MAP estimation is convex
@ Can be solved at much larger scales than others
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Properties of Super-Gaussian Bounding

m7in -2 Iog/P(y|u)e_;sTr1sdu+h(fy)

Super-Gaussian bounding stands out Seeger, Nickisch, SIAM IS 2011

@ Convex problem iff MAP estimation is convex
@ Can be solved at much larger scales than others

Why is that?
MAP estimation will help solving it!

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 52 /77



Scalable Variational Inference Scaling up Super-Gaussian Bounding

Towards Scalable Variational Inference

MAP Estimation Bayesian Inference

max log P(ul|y)Z log Z

= man.xlogN(y|Xu,,azI)ma.xe_(“TI‘_I""""('Y))/2 = log/N(y|X‘u,,021)ma.xe_("Tr_l"""'("’))/2 du
u v P

] Vv

maxmaxlogN(y|Xu,021)6_(’TF_1"’+h('7))/2 ma:x{log/N(y|X1.l,,aZI)z's_(“Tr‘il“"'h(”)/2 du
7w v
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Towards Scalable Variational Inference

min —2 log / P(y|lu)e25'"'S du + h(v)
Y
Covoluly]=A"'", A=0c2X"X+B'r'B

@ Harder than MAP estimation. But why?
@ Convert integration to optimization F4

/P(y|u)e‘;srr—1s du + 2rA~|1/2 max P(y\u*)e—%SIl'“s*
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Towards Scalable Variational Inference

min —2 log / P(y|lu)e25'"'S du + h(v)
Y
Covoluly]=A"'", A=0c2X"X+B'r'B

@ Harder than MAP estimation. Because of log |A|.

Super-Gaussian bounding

minyu. { (e, 7) = o 2lly = Xu.|[? + sTT"s, + h(y) +log |A| |

MAP criterion ¢y (Ux,~)
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Decoupling by Convex Duality
—2log Z < min log |A(7)[ + ¢u(u, )

@ Dependencies in posterior P(uly)
= Difficult coupling term log |A| in criterion ¢

A=c2X"X+B'r'B

@ A~ log|A| concave

@ v '+ log|A| concave

Seeger (EPFL) Large Scale Bayesian Inference
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Decoupling by Convex Duality

min ¢(u.,y) = min log |A(y )| + ¢u(u., v)

U

concave convex

LS
LN

ZLETISSRN
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Decoupling by Convex Duality

min ¢(u.,y) = min log |A(y )| + ¢u(u., v)

U

concave convex

Convex (Fenchel) duality

log|A(y™ )| =minz"(v"") - g*(2)

Seeger (EPFL) Large Scale Bayesian Inference
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Decoupling by Convex Duality

log |A(v ")+ ¢u(us,y) = minz" (v ) + du(us,v) — g(2)

¢z(U+,y) (convex, decoupled)

Convex (Fenchel) duality

log|A(y™ )| =minz"(v"") - g*(2)

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 56 /77



Scalable Variational Inference Scaling up Super-Gaussian Bounding

Scalable Double Loop Algorithm

Double loop algorithm Seeger et.al., NIPS 2009; insp. by Wipf et.al., NIPS 2008
@ Inner loop optimization: min, ming, ¢z(Ux,v) + g*(2) [fixed Z]

F5

minmino 2y - Xu,[2+ 2 (v"") + sTT s, + h(y)
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Scalable Double Loop Algorithm

Double loop algorithm Seeger et.al., NIPS 2009; insp. by Wipf et.al., NIPS 2008

@ Inner loop optimization: min, ming, ¢z(Ux,v) + g*(2) [fixed z]
Smoothed MAP Reconstruction

. ) 2 q
mino ==y — Xu.| —22/_1Iogt,-<\/z,-+sf,), zi>0
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Scalable Double Loop Algorithm

Double loop algorithm Seeger et.al., NIPS 2009; insp. by Wipf et.al., NIPS 2008

@ Inner loop optimization: min, ming, ¢z(Ux,v) + g*(2) [fixed z]
Smoothed MAP Reconstruction

@ Outer loop update: minz ¢z (U.,~) [fixed (u,,~)]

Tangent: z < V_ 1log|A|, A=02X"X+B'T'B
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Scalable Double Loop Algorithm

Double loop algorithm Seeger et.al., NIPS 2009; insp. by Wipf et.al., NIPS 2008
@ Inner loop optimization: min, ming, ¢z(Ux,v) + g*(2) [fixed Z]
Smoothed MAP Reconstruction

@ Outer loop update: minz ¢z (U.,~) [fixed (u,,~)]
Gaussian (Co)Variances

z — V. 1log|A| = diag(BA™'BT) = (Varg][si|y])
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Reductions

Computational primitives driving large scale inference
@ Penalized least squares (~ MAP estimation)
R 2 _ qa , g2
mino~?|y — Xu,| 2 logt, <\/z, + s*,>

o MAP special case: z; =0
e Scalable algorithms en masse (thanks to MAP “gold rush”)

@ Gaussian variances
diag-'(BA'B"), A=02X"X+B'r'B

o More difficult
e Methods from numerical maths, spatial statistics, solid state physics
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Summary

Variational problem: min—2logZg + h(7y)
vy

@ Variational representation of Gaussian log partition function

~2log Zg =mino 2|y — Xu. |+ (s.2)"(v"") + log |A|
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Summary

Variational problem: min—2logZg + h(7y)
vy

@ Variational representation of Gaussian log partition function
~2log Zg =mino 2|y — Xu.|* + (2 + 8.5)"(v") - g*(2)
© Choose computationally favourable ordering of updates
min (in a2l Xu|? + (2 + 826 + b)) - (@)

Variances z expensive: Fix them as long as sensible
© Convergence guarantee: Tangential bound to log |A|  wipt etat, nips 2008
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Factorization Assumptions

min <rrlllin min qbz(u*,’y)> , z—diag ' (BA'B")
.

@ Real time? As fast as MAP estimation?
Gaussian variances can be a real problem

Seeger (EPFL) Large Scale Bayesian Inference
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Factorization Assumptions

min <ngl*n min ¢z(Us, 7)>

@ Real time? As fast as MAP estimation?
Gaussian variances can be a real problem

@ Factorization assumptions:

n n
Quly)=1lawly) = Za=]]Zowy
i=1

i=1

= Update z in O(q) = O(n)
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Scalable Variational Inference Scaling up Super-Gaussian Bounding

Factorization Assumptions

min <mzin mwin bz(Us, ’7)>

[V

@ Real time? As fast as MAP estimation?
Gaussian variances can be a real problem

@ Factorization assumptions:

n n
Quly)=1lawly) = Za=]]Zowy
i=1

i=1

= Update z in O(q) = O(n)
@ One penalized least squares problem (coupled regularizer)

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 60/77



Scalable Variational Inference Scaling up Super-Gaussian Bounding

Factorization Assumptions

min o 2|y — Xu.|?® + <mzin min Rz(u*,'y)>
* ’y

@ Real time? As fast as MAP estimation?
Gaussian variances can be a real problem

@ Factorization assumptions:

n n
Quly)=1lawly) = Za=]]Zowy
i=1

i=1

= Update z in O(q) = O(n)
@ One penalized least squares problem (coupled regularizer)
@ Convexity properties are retained

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 60/77



Scalable Variational Inference Scaling up Super-Gaussian Bounding

Factorization Assumptions

Q(uly) = H Q(ujly)

@ Advantages
o Essentially as fast as MAP estimation
@ Gaussian KL minimization convex Challis, Barber, AISTATS 2011
o It might just work . ..
@ Drawbacks
e True posterior tightly and strongly coupled:
Expect better results without factorizations
e Bayesian experimental design (active sampling) relies on
covariances
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Scalable Variational Inference Penalized Least Squares

Penalized Least Squares

Computational primitives driving large scale inference

@ Penalized least squares (~ MAP estimation)

20y 2 _ q , L2
mino 2|y — Xu.| 22/_1Iogt,<\/z,+s*,>
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Scalable Variational Inference Penalized Least Squares

Penalized Least Squares

Computational primitives driving large scale inference

@ Penalized least squares (~ MAP estimation)

. _ q
mino 2y — Xu.[? + 3" vi(s.). s.=Bu,
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Scalable Variational Inference Penalized Least Squares

lteratively Reweighted Least Squares

min {oz(u.) = o~y — Xu. P+ 37 i)}, s = Bu.
@ ¢; twice differentiable: Newton-Raphson optimization
@ Taylor approximation at u, = u:
z(u.) ~ o ?|ly — Xu.|? + s](diag hx)s. — 2gs. + Cx
@ Newton search direction by conjugate gradients:
dy= A (a—2x7y + BTgk) ., Aq=o0"2XTX + B"(diag h¢)B
@ Line search in O(q):

U1 = Ug -+ a*dk, Oy = argmin ¢Z(uk + adk)
a>0
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Scalable Variational Inference Penalized Least Squares

lteratively Reweighted Least Squares

@ Advantages

e Rapid (quadratic) convergence
e Reuse code for conjugate gradients algorithm

@ Drawbacks

e Two nested loops: Difficult to fine-tune
o MAP estimation: ; may not be twice differentiable
e For our setup: Systems

u= (XTX+pBTB>71 r, p>0

can be solved analytically.
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Scalable Variational Inference Penalized Least Squares

Augmented Lagrangian Solvers

min 5oz |y — Xulf* - Z loge ", s =Bu

@ Consider MAP estimation problem: Not differentiable

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 65/77



Scalable Variational Inference Penalized Least Squares

Augmented Lagrangian Solvers

min 3lly — Xu|? + x| Bull, = ro?

@ Consider MAP estimation problem: Not differentiable
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Scalable Variational Inference Penalized Least Squares

Augmented Lagrangian Solvers

- 2
rD]sn%Hy—XuH +x|/s|y  st.s=Bu

@ Consider MAP estimation problem: Not differentiable

@ Rewrite: Operator splitting.
= Would be simple without constraint

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 65/77



Scalable Variational Inference Penalized Least Squares

Augmented Lagrangian Solvers

max min Sy — Xu|? + k|s|s + AbT(Bu — s)

@ Consider MAP estimation problem: Not differentiable

@ Rewrite: Operator splitting.
= Would be simple without constraint

@ Dualize constraint (Lagrange multipliers b)
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Scalable Variational Inference Penalized Least Squares

Augmented Lagrangian Solvers

maxmin 5|y — Xu| + s s||; + AbT(Bu — s) + 3||Bu — s|?

saddle function
@ Consider MAP estimation problem: Not differentiable

@ Rewrite: Operator splitting.
= Would be simple without constraint

@ Dualize constraint (Lagrange multipliers b)
@ Augmented Lagrangian technique (additional smoothing) F6
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Scalable Variational Inference Penalized Least Squares

Alternating Direction Method of Multipliers

max min Sy — Xu|? +«|s|ls + A\b"(Bu — s) + 3||Bu — s|2

Alternating Direction Method of Multipliers
lterate:

@ Linear least squares (fixed s, b)
u « argmin 1|y — Xu|? + 3||Bu — s + b|?
@ Proximal map (fixed u, b)
s — argmin|/s|1 + 3||Bu — s + b|[?
@ Lagrange multiplier update (fixed u, s)

b—b+Bu-—s

v
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Scalable Variational Inference Penalized Least Squares

The Proximal Map Moreau

prox,(r) := argmin f(s) + %||s — r|?
)

@ Recall: s — pI'OX(H/A)”,”1 (Bu + b) F7
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Scalable Variational Inference Penalized Least Squares

The Proximal Map Moreau

prox,(r) := argmin f(s) + %||s — r|?
)

@ Recall: s — pI'OX(H/A)”,”1 (Bu + b)
@ Simple for decoupling f(s) = >, fi(s;):
prox(r) = [prox(r;)]

@ For Laplace (¢1): Soft thresholding:

o () = "0

= Sparsity in s
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Scalable Variational Inference Penalized Least Squares

MRI Reconstruction

; 2
min 31y — Xul? + || Bul;

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 68 /77



Scalable Variational Inference Penalized Least Squares

MRI Reconstruction

; 2
min §lly — Xu|? + || Bul|

@ X=1,F,FDFTofsizen, JC {1,...,n}

@ Blocks of B:
Orthonormal (wavelets), FIR filters (Ax, Ay)
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Scalable Variational Inference Penalized Least Squares

MRI Reconstruction

min 3lly — Xu|® + 3||Bu — (s - b)|?

@ X=1,F,FDFTofsizen, JC {1,...,n}

@ Blocks of B:
Orthonormal (wavelets), FIR filters (Ax, Ay)

@ Linear least squares:

(x”x + )\BTB) u=r:=X"y+)\B(s - b)

Seeger (EPFL) Large Scale Bayesian Inference
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Scalable Variational Inference Penalized Least Squares

MRI Reconstruction

min 3lly — Xu|® + 3||Bu — (s - b)|?

@ X=1,F,FDFTofsizen, JC {1,...,n}

@ Blocks of B:
Orthonormal (wavelets), FIR filters (Ax, Ay)

@ Linear least squares:

(FM1.uls. F+ \B"B)u=r
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Scalable Variational Inference Penalized Least Squares

MRI Reconstruction

min 3lly — Xu|® + 3||Bu — (s - b)|?

@ X=1,F,FDFTofsizen, JC {1,...,n}

@ Blocks of B:
Orthonormal (wavelets), FIR filters (Ax, Ay)

@ Linear least squares:

F(1oly, + \FBTBF™)Fu = r
diagonal
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Scalable Variational Inference Penalized Least Squares

MRI Reconstruction

min 3lly — Xu|® + 3||Bu — (s - b)|?

@ X=1,F,FDFTofsizen, JC {1,...,n}

@ Blocks of B:
Orthonormal (wavelets), FIR filters (Ax, Ay)

@ Linear least squares:

(I.yly.+D)Fu=Fr
7

diagonal
= Two fast Fourier transforms only!

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 68 /77



Scalable Variational Inference Penalized Least Squares

M RI ReCOHStFUCtion courtesy Mateusz Malinowski
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Scalable Variational Inference Penalized Least Squares

M RI ReCOHStFUCtion courtesy Mateusz Malinowski
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Scalable Variational Inference Penalized Least Squares

M RI ReCOHStFUCtion courtesy Mateusz Malinowski
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Scalable Variational Inference Penalized Least Squares

M RI ReCOHStFUCtion courtesy Mateusz Malinowski
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Scalable Variational Inference Penalized Least Squares

M RI ReCOHStFUCtion courtesy Mateusz Malinowski
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Scalable Variational Inference Penalized Least Squares

M RI ReCOHStFUCtion courtesy Mateusz Malinowski
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Scalable Variational Inference Penalized Least Squares

M RI ReCOHStFUCtion courtesy Mateusz Malinowski
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Scalable Variational Inference Penalized Least Squares

ADMM versus IRLS

Inner loop problems are smooth (twice differentiable)

@ Use ADMM only if linear least squares step has direct solution
(e.g., two FFTs)

@ ADMM simpler to code and run (no CG inside)
@ With complex data terms (many parts): ADMM easier to parallelize
@ IRLS has much better convergence rate
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Scalable Variational Inference [CENESERREUENES

Gaussian Variances

Computational primitives driving large scale inference

@ Gaussian variances
diag-'(BA'B"), A=02X"X+B'r'B
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Scalable Variational Inference [CENESERREUENES

A Difficult Problem

diag-'(BA'B"), A=02X"X+B'r'B

@ Gaussian variances much more difficult than Gaussian means
o All means? One linear system
o All variances? nlinear systems!
@ Situation for Gaussian loopy belief propagation (LBP)
o If LBP converges: Means are exact Weiss et.al., JCOMP 2001
e Variances are wrong in general: Malioutov et.al., JMLR 2006
Major part of computation (typically) not done by LBP
@ Some tractable cases
o Tree-structured graphical model: Both means and variances in O(n)

e A admits sparse ChOleSky factorization: van Gerven et.al., Neuroimage 2010
Variances by Takahashi equation

Our A is none of these (densely coupled)
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Scalable Variational Inference [CENESERREUENES

A Difficult Problem

diag-'(BA'B"), A=02X"X+B'r'B

@ Other fields need them as well

e Electronic structure calculations
e Uncertainty quantifications for PDEs
e Gaussian MRFs for remote sensing
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Scalable Variational Inference [CENESERREUENES

Low Rank Approximations

diag-'(BA'B"), A=02X"X+B'r'B

@ Pick Ve R™L | <« n:

L
diag~'(BA™'B”) ~ diag"(BA"'VV'B") = (BA "v))o(Bv))
=1

@ Solve L linear systems instead of n
@ How to choose V?
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Scalable Variational Inference [CENESERREUENES

Hadamard Vectors Bekas et.al., App. Num. Math. 2007

diag~"(BA~'B") ~ diag""(BA~'VV'B')

@ Hadamard matrix:
H,c {-1,+1}Y™"  HIH,=nl

@ Pick L columns:
V = ﬁ(Hn)7L

@ Deterministic estimator.
Intuition: Maximize smallest angle between any pair of rows of V
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Scalable Variational Inference [CENESERREUENES

Pertu rb&MAP Papandreou, Yuille, NIPS 2010

diag~"(BA~'B") ~ diag""(BA~'VV'B')
@ Draw L independent samples q, ~ N(0,A™"):

diag ™' (BA~'B") ~E[(Bq))| ~ 1 Y, ,(Ba)?

Optimal Monte Carlo estimator (no knowledge about A)
@ One linear system per sample: F9

wj~ N(Oa A)v q = A w
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Application Example

Outline

e Application Example
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lll-Posed Inverse Problems

 Undersampled image reconstruction

Linear
measurements

Reconstruction

U y=Xu-+e

* Resolve ambiguities from prior knowledge (transform sparsity, ...)

hist )

s=Wu 1




Model: Factorial vs. Structured

* Independent sparsity potentials e Discrete tree-structured backbone

* No structure beyond component- * Mixtures of sparsity potentials
wise sparsity

s =Wu




Method: MAP vs. Inference

« Estimate single maximum point « Bayesian inference over posterior

. distribution
« Many fast algorithms

* Integrate, don’t just maximize

u = argmax P(y|u)P(u)

u




Example: Image Inpainting

* Problem: 75% of pixels randomly removed




Factorial Structured

(O]
&)
c
]
| -
)
Y—
=




Multi-Scale Wavelet Analysis

 Quad-tree: Correspondence

s = Wu between scales

 Energy percolates down the
tree

e Better recovery where it

Spyap = Wupap really matters

Sine =WUurnNr




Learning Structured Models

* Rich parametrization

e Transition probabilities (per level) } 0
« Potential widths (per level, per state)

State Transitions
P(0;]0x3))

Widths of Potentials, e.g.

. _ TS . 1S5
tj(5530;) = 75,7 1]

» Parameters learned automatically from raw data

e Simple closed form updates
* NO expensive cross validation



Application Example

Variational Bayesian Inference Ko, Seeger, IGML 2012

log P(y IogZ/P y|u) P( u|6 P(6)
m|xture tree

@ Super-Gaussian bounding F10

log P(y) >
maxlogZ/P(yyu Q(u5: ) e~ 217%) P(5) du

Gaussian
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Application Example

Variational Bayesian Inference Ko, Seeger, IGML 2012

(u[d)
N — N~
mixture tree

log P(y) = IogZ/P(y|u)P P(8) du
5

@ Super-Gaussian bounding
@ Factorize: Q(u,dly) = Q(uly)Q(dly) Fi1

log P(y) > max log / P(y|u)Q(ul(8) g ) du
~¥,Q(d1y) ~

Gaussian

~D[Q(3ly) [ P(8)] = 3h(~: (d)a)
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Application Example

Variational Bayesian Inference Ko, Seeger, IGML 2012

og P(y) =log 3 / P(y|u) f:u:w) PT@ du

@ Super-Gaussian bounding
@ Factorize: Q(u,dly) = Q(uly)Q(d|y)

log P(y) > log Zo((d)q,7)
—D[Q(8]y) | P(6)] — 3h(~; (6)q)
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Application Example

Variational Bayesian Inference Ko, Seeger, IGML 2012

(u[d)
N — N~
mixture tree

log P(y) = IogZ/P(y|u)P P(8) du
5

@ Super-Gaussian bounding
@ Factorize: Q(u,d|y) = Q(uly)Q(dly)
© Variational representation of log Zg

—2log P(y) < min min¢z(u.,v,(d)q) + 2D[Q(3]y) || P(d)]
7.Q(3ly) 2.u-
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Application Example

Variational Bayesian Inference Ko, Seeger, IGML 2012

og P(y) =log 3 / P(y|u) f:u:w) PT@ du

@ Super-Gaussian bounding
@ Factorize: Q(u,d|y) = Q(uly)Q(dly)
© Variational representation of log Zg

~2logP(y) < min ( min _ox(u...(5)a) + 2D[Q(51Y) | P(6)])

@ Inner loop problem: Alternating minimization
o Penalized least squares over u, (eliminate ) Fi2a
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Application Example

Variational Bayesian Inference Ko, Seeger, IGML 2012

og P(y) =log 3 / P(y|u) f:u:w) PT@ du

@ Super-Gaussian bounding
@ Factorize: Q(u,d|y) = Q(uly)Q(dly)
© Variational representation of log Zg

~2logP(y) < min ( min _ox(u...(5)) + 2D(Q(51y) | P(6)])

@ Inner loop problem: Alternating minimization

o Penalized least squares over u, (eliminate )
o Belief propagation on tree for Q(d|y) (eliminate ~) Fi2b

Seeger (EPFL) Large Scale Bayesian Inference 8/2012 2/8



Application Example

No (Variational) Inference Without . ..

£

14 {

Gaussian Linear Peanuts
Variances Systems O(q)
Z — U, «— argmin

diag ' (BA™'B") ulAu, —2rTu,
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Application Example

Why Inference Algorithms Can Be Slow
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Attaining Scalability
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Inference

[eroloeH

p=ainlonns




Outlook

Large Scale Variational Inference

@ Inference beyond MAP estimation
@ Robust solutions for ill-posed problems
o Model calibration from raw data
o Bilinear models (blind deconvolution, dictionary learning)
e Decision making (experimental design)
@ Algorithms beyond belief propagation
o Exploit workhorses from computational mathematics
e Reductions to convex optimization
@ Randomized techniques may be part of the solution
@ What about expectation propagation?

o More difficult to scale up Seeger, Nickisch, AISTATS 2011
o Talk at workshop
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Outlook

Try This At Home

: Toolbox by Hannes Nickisch

mloss.org/software/view/269/

@ Generalized sparse linear models

@ MAP reconstruction and variational Bayesian inference (double
loop algorithm for super-Gaussian bounding)

@ Matlab 7.x, GNU Octave 3.2.x
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Outlook

Physics and Bayesian Machine Learning

@ You love physics?

e Predictive models for real-world phenomena
o Intuitive analysis of large complex systems
o Statistical evaluation by clever experiments

You'll love Bayesian machine learning!
@ Most Bayesian concepts come from (statistical) physics

@ Challenges of our time

e Huge, extremely complex datasets
o Connectivity at all scales
e Human-level recognition and decision-making

Needs physics thinking more than ever
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Outlook

Bayesian Machine Learning @ EPFL

Care for new vistas? Postdoc, PhD, Internship ...
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