

2361-5

School on Large Scale Problems in Machine Learning and Workshop on Common Concepts in Machine Learning and Statistical Physics

20 - 31 August 2012

Large Scale Variational Bayesian Inference for Continuous Variable Models -Lecture Notes

Matthias SEEGER

Laboratory for Probabilistic Machine Learning, EPFL, CH-1015 Lausanne Switzerland

Large Scale Variational Bayesian Inference for Continuous Variable Models

Matthias Seeger

Laboratory for Probabilistic Machine Learning Ecole Polytechnique Fédérale de Lausanne

http://lapmal.epfl.ch/

A D b 4 A b

8/2012 1 / 77

Outline

Motivation

Variational Inference Relaxations

- Super-Gaussian Bounding
- Expectation Propagation
- Gaussian KL Minimization
- Conjugate Gradients Algorithm

Scalable Variational Inference

- Scaling up Super-Gaussian Bounding
- Penalized Least Squares
- Gaussian Variances

Application Example

Outline

Motivation

Gaussian KL Minimization Conjugate Gradients Algorithm Scaling up Super-Gaussian Bounding

- Beyond point estimation: Bayesian inference for non-Gaussian continuous variable models
- Beyond message passing: Computational structure of variational inference relaxations
- The layer below: Scalability through reductions to convex optimization and numerical mathematics

Image Reconstruction

8/2012 5 / 77

Image Statistics

Whatever images are ...

they are not Gaussian!

Sparsity Priors

courtesy Florian Steinke

Posterior Distribution

• Likelihood *P*(*y*|*u*): Data fit

 $P(\boldsymbol{y}|\boldsymbol{u})$

Posterior Distribution

- Likelihood *P*(*y*|*u*): Data fit
- Prior *P*(*u*): Signal properties

 $P(\boldsymbol{y}|\boldsymbol{u}) \times P(\boldsymbol{u})$

4 A N

Posterior Distribution

- Likelihood *P*(**y**|**u**): Data fit
- Prior *P*(*u*): Signal properties
- Posterior distribution P(u|y): Consistent information summary

 $P(\mathbf{u}|\mathbf{y}) = rac{P(\mathbf{y}|\mathbf{u}) \times P(\mathbf{u})}{P(\mathbf{y})}$

MAP Estimation

Maximum a Posteriori (MAP) Estimation

$$\boldsymbol{u}_* = \operatorname{argmax}_{\boldsymbol{u}} P(\boldsymbol{y}|\boldsymbol{u}) P(\boldsymbol{u})$$

Seeger (EPFL)

টা> ≣ ∽িএে 8/2012 9/77

イロト イヨト イヨト イヨト

Why Move Beyond MAP?

Maximum a Posteriori (MAP) Estimation

$$\boldsymbol{u}_* = \operatorname{argmax}_{\boldsymbol{u}} P(\boldsymbol{y}|\boldsymbol{u}) P(\boldsymbol{u})$$

Seeger (EPFL)

Large Scale Bayesian Inference

■ ▶ ■ つへの 8/2012 10/77

Bayesian Calibration

 $\mathbf{y} \approx \mathbf{k} \otimes \mathbf{u}$

Computer vision

- Blind deconvolution
- Calibrating camera parameters
- Magnetic resonance imaging
 - Autocalibrating parallel MRI

8/2012 11 / 77

Bayesian Calibration

$$P(\mathbf{y}|\mathbf{ heta}) = \int P(\mathbf{y}|\mathbf{u},\mathbf{ heta}) P(\mathbf{u}|\mathbf{ heta}) \, d\mathbf{u}$$

Given raw data y, no ground truth u. Estimate model parameters θ .

- Blind deconvolution (θ blur kernel)
- Multi-frame super-resolution (θ camera parameters, PSF)
- Image coding (θ codebook)
- Learning image priors $(P(\boldsymbol{u}) = P(\boldsymbol{u}|\boldsymbol{\theta}))$

Bayesian Experimental Design

8/2012 13 / 77

4 A N

- A 🖻 🕨

Bayesian Experimental Design

< ロ > < 回 > < 回 > < 回 > < 回</p>

Sparse Linear Model

- X, B? Fast operators of your choice (X dictated by application)
 - Denoising:X diagoDeconvolution:X u = kMRI reconstruction: $X = I_{J,J}$

Sparse Linear Model

X, *B*? Fast operators of your choice (*X* dictated by application)
 t_i(*s_i*) Laplace here, but many other options

8/2012 15 / 77

Outline

Motivation

Variational Inference Relaxations

- Super-Gaussian Bounding
- Expectation Propagation
- Gaussian KL Minimization
- Conjugate Gradients Algorithm

Scalable Variational Inference

- Scaling up Super-Gaussian Bounding
- Penalized Least Squares
- Gaussian Variances

Application Example

Variational Approximations

$$P(\boldsymbol{u}|\boldsymbol{y}) = Z^{-1}P(\boldsymbol{y}|\boldsymbol{u})\prod_{i}t_{i}(s_{i}), \ \boldsymbol{Z} = \int P(\boldsymbol{y}|\boldsymbol{u})\prod_{i}t_{i}(s_{i})\,d\boldsymbol{u}$$

- Bayesian integration over P(u|y) intractable
- Integration tractable for Gaussians Q(u|y)
 ⇒ Approximate P(u|y) by Q(u|y)!

Variational approximation

Apply variational principle to fit master function $\log Z$

The Log Partition Function

$$P(\boldsymbol{u}|\boldsymbol{y}) = Z^{-1}P(\boldsymbol{y}|\boldsymbol{u})\prod_{i}t_{i}(s_{i}), \ Z = \int P(\boldsymbol{y}|\boldsymbol{u})\prod_{i}t_{i}(s_{i})\,d\boldsymbol{u}$$

Master function log *Z*? Why this target?

- Physicist: Of course, it's the (negative) free energy!
- Probabilist: It generates posterior moments (cumulants)
- Variational definition of posterior distribution

$$E_{Q(\boldsymbol{u}|\boldsymbol{y})} \left[\log \frac{P(\boldsymbol{y}|\boldsymbol{u}) \prod_{i} t_{i}(\boldsymbol{s}_{i})}{Q(\boldsymbol{u}|\boldsymbol{y})} \right] \quad \begin{cases} \operatorname{argmax}_{Q(\boldsymbol{u}|\boldsymbol{y})}? \qquad P(\boldsymbol{u}|\boldsymbol{y}) \\ \\ \max_{Q(\boldsymbol{u}|\boldsymbol{y})}? \qquad \log Z \end{cases}$$

Bayesian inference: Optimization over distributions
 Wainwright, Jordan,
 FTML 2008

8/2012 18 / 77

Variational Approximations

$$P(\boldsymbol{u}|\boldsymbol{y}) = Z^{-1}P(\boldsymbol{y}|\boldsymbol{u})\prod_{i}t_{i}(s_{i}), \ Z = \int P(\boldsymbol{y}|\boldsymbol{u})\prod_{i}t_{i}(s_{i})\,d\boldsymbol{u}$$

Variational approximation

Apply variational principle to fit master function $\log Z$

- Super-Gaussian bounding
- Expectation propagation
- Gaussian KL minimization

Super-Gaussian Potentials

$$t(s) = \max_{\gamma \geq 0} e^{-s^2/(2\gamma)} e^{-h(\gamma)/2}$$

- t(s) even and positive: Let's look at $s^2 \mapsto 2 \log t(s)$
- What's that for a Gaussian $t(s) = N(s|0, \sigma^2)$? A linear (affine) function

Seeger (EPFL)

Variational Inference Relaxations

Super-Gaussian Bounding

Super-Gaussian Potentials

$$t(s) = \max_{\gamma \geq 0} e^{-s^2/(2\gamma)} e^{-h(\gamma)/2}$$

$$s^2 \mapsto 2 \log t(s)$$
 is convex

 Affine → convex: Shift mass to center and tails

Super-Gaussian: t(s) even, $s^2 \mapsto 2 \log t(s)$ convex.

Convex function: Maximum of its affine lower bounds Super-Gaussian function: Maximum of its Gaussian lower bounds

Super-Gaussian: t(s) even, $\{x = s^2\} \mapsto \{f(x) = 2 \log t(s)\}$ convex.

Super-Gaussian: t(s) even, $\{x = s^2\} \mapsto \{f(x) = 2 \log t(s)\}$ convex.

→ ∃ →

8/2012 22 / 77

Super-Gaussian: t(s) even, $\{x = s^2\} \mapsto \{f(x) = 2 \log t(s)\}$ convex.

Super-Gaussian: t(s) even, $\{x = s^2\} \mapsto \{f(x) = 2 \log t(s)\}$ convex.

Super-Gaussian: t(s) even, $\{x = s^2\} \mapsto \{f(x) = 2 \log t(s)\}$ convex.

Super-Gaussian Bounding

Convex (Fenchel) Duality

8/2012 22 / 77

Variational Inference Relaxations

Super-Gaussian Bounding

Super-Gaussian Potentials

$$P(\boldsymbol{u}|\boldsymbol{y}) = rac{P(\boldsymbol{y}|\boldsymbol{u}) \times P(\boldsymbol{u})}{P(\boldsymbol{y})}$$

Sparsity potentials are super-Gaussian

 $s_i^2 \mapsto 2 \log t_i(s_i)$ is convex

Convex (Fenchel) duality

$$2\log t_i(s_i) = \max_{\pi_i} s_i^2 \pi_i - f^*(\pi_i)$$

Variational Inference Relaxations

Super-Gaussian Bounding

Super-Gaussian Bounding

$$P(\boldsymbol{u}|\boldsymbol{y}) = rac{P(\boldsymbol{y}|\boldsymbol{u}) imes P(\boldsymbol{u})}{P(\boldsymbol{y})}$$

Sparsity potentials are super-Gaussian

$$t_i(s_i) = \max_{\gamma_i \ge 0} e^{-s_i^2/(2\gamma_i) - h_i(\gamma_i)/2},$$

 $h(\gamma) := \sum_i h_i(\gamma_i), \ \ \Gamma = \operatorname{diag} \gamma$

Super-Gaussian Bounding

Super-Gaussian Bounding

$$P(\boldsymbol{u}|\boldsymbol{y}) = rac{P(\boldsymbol{y}|\boldsymbol{u}) \times P(\boldsymbol{u})}{P(\boldsymbol{y})}$$

Exact representation

$$\log Z = \log \int P(\mathbf{y}|\mathbf{u}) \max_{\gamma} e^{-(\mathbf{s}^T \mathbf{\Gamma}^{-1} \mathbf{s} + h(\gamma))/2} d\mathbf{u}$$

 $t_i(s_i) = \ \max_{\gamma_i \ge 0} e^{-s_i^2/(2\gamma_i) - h_i(\gamma_i)/2}$

< 17 ▶

-

Super-Gaussian Bounding

Super-Gaussian Bounding

$$P(\boldsymbol{u}|\boldsymbol{y}) = rac{P(\boldsymbol{y}|\boldsymbol{u}) \times P(\boldsymbol{u})}{P(\boldsymbol{y})}$$

Lower bound

$$\log Z$$

$$= \log \int P(\boldsymbol{y}|\boldsymbol{u}) \max_{\gamma} e^{-(\boldsymbol{s}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{s}+\boldsymbol{h}(\gamma))/2} d\boldsymbol{u}$$

$$\geq \max_{\gamma} \log \int P(\boldsymbol{y}|\boldsymbol{u}) e^{-(\boldsymbol{s}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{s}+\boldsymbol{h}(\gamma))/2} d\boldsymbol{u}$$

 $t_i(s_i) =$ $\max_{\gamma_i \geq 0} e^{-s_i^2/(2\gamma_i) - h_i(\gamma_i)/2}$

ъ

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Super-Gaussian Bounding

Super-Gaussian Bounding

$$P(\boldsymbol{u}|\boldsymbol{y}) = rac{P(\boldsymbol{y}|\boldsymbol{u}) imes P(\boldsymbol{u})}{P(\boldsymbol{y})}$$

Lower bound

$$\log Z$$

$$\geq \max_{\gamma} \log \int P(\mathbf{y} | \mathbf{u}) e^{-(\mathbf{s}^{T} \mathbf{r}^{-1} \mathbf{s} + h(\gamma))/2} d\mathbf{u}$$

$$= \max_{\gamma} \log Z_{Q}(\gamma) - h(\gamma)/2$$

Gaussian approximation

$$Q(\boldsymbol{u}|\boldsymbol{y}) = Z_Q^{-1} P(\boldsymbol{y}|\boldsymbol{u}) e^{-\boldsymbol{s}^T \boldsymbol{\Gamma}^{-1} \boldsymbol{s}/2}, \ \boldsymbol{s} = \boldsymbol{B} \boldsymbol{u}$$

e-quilta

 $t_i(s_i) = \ \max_{\gamma_i \ge 0} e^{-s_i^2/(2\gamma_i) - h_i(\gamma_i)/2}$

< 17 ▶

Super-Gaussian Bounding

Super-Gaussian Bounding

$$P(\boldsymbol{u}|\boldsymbol{y}) = rac{P(\boldsymbol{y}|\boldsymbol{u}) \times P(\boldsymbol{u})}{P(\boldsymbol{y})}$$

Variational problem: $Q(\boldsymbol{u}|\boldsymbol{y}) \approx P(\boldsymbol{u}|\boldsymbol{y})$

$$\min_{\gamma} \left\{ \phi(\gamma) = -2 \log Z_Q + h(\gamma) \right\}$$

Gaussian approximation

$$\begin{aligned} Q(\boldsymbol{u}|\boldsymbol{y}) &= Z_Q^{-1} P(\boldsymbol{y}|\boldsymbol{u}) e^{-\boldsymbol{s}^T \boldsymbol{\Gamma}^{-1} \boldsymbol{s}/2}, \ \boldsymbol{s} = \boldsymbol{B} \boldsymbol{u}, \\ Z_Q &= \int P(\boldsymbol{y}|\boldsymbol{u}) e^{-\boldsymbol{s}^T \boldsymbol{\Gamma}^{-1} \boldsymbol{s}/2} \, d\boldsymbol{u} \end{aligned}$$

 $t_i(s_i) = \ \max_{\gamma_i \ge 0} e^{-s_i^2/(2\gamma_i) - h_i(\gamma_i)/2}$

Super-Gaussian Bounding

What did we do?

- Start with tight single potential bounds: t_i(s_i) = max_{γi≥0}...
 ⇒ Auxiliary variables γ ≿ 0
- Plug into target function log Z. Interchange $\int \dots d\mathbf{u} \leftrightarrow \max_{\gamma} \Rightarrow$ Global lower bound on log Z
- Lower bounds are log partition functions of Gaussians Q(u|y)
 ⇒ Approximation family Q = {Q(u|y)}
- Divergence $Q(\boldsymbol{u}|\boldsymbol{y}) \leftrightarrow P(\boldsymbol{u}|\boldsymbol{y})$? Maximize lower bound! $\Rightarrow \phi(\boldsymbol{\gamma}) = -2 \log Z_Q + h(\boldsymbol{\gamma})$

Variational Inference Relaxations S

Super-Gaussian Bounding

MAP Estimation and Variational Inference

8/2012 26 / 77

Coordinate Update Algorithm

• Simple algorithm: Update single variables γ_j

repeat

for $j \in \{1, \ldots, q\}$ do

Update γ_j , based on marginal $Q(s_j | \mathbf{y})$

Gaussian propagation of pseudo-evidence change

end for

Refresh representation

until convergence

- Needs mean and variance of $Q(s_j | \mathbf{y})$ for each update
- Representation of Q(u|y): Backbone for Gaussian propagation.
 Moderate size problems: Cholesky representation Seeger, JMLR 2008

Variational Approximations

$$P(\boldsymbol{u}|\boldsymbol{y}) = Z^{-1}P(\boldsymbol{y}|\boldsymbol{u})\prod_{i}t_{i}(s_{i}), \ Z = \int P(\boldsymbol{y}|\boldsymbol{u})\prod_{i}t_{i}(s_{i})\,d\boldsymbol{u}$$

Variational approximation

Apply variational principle to fit master function $\log Z$

- Super-Gaussian bounding
- Expectation propagation
- Gaussian KL minimization

Opper, Winther, Phys. Rev. E 2001 Minka, UAI 2001

-

$$P(\boldsymbol{u}|\boldsymbol{y}) \approx Q(\boldsymbol{u}|\boldsymbol{y};\boldsymbol{\gamma},\boldsymbol{b}) = Z_Q^{-1} P(\boldsymbol{y}|\boldsymbol{u}) \prod_i e^{\boldsymbol{b}_i \boldsymbol{s}_i - \boldsymbol{s}_i^2/(2\gamma_i)}$$

• Best Gaussian approximation?

Expectation Propagation

Opper, Winther, Phys. Rev. E 2001 Minka, UAI 2001

$$Q(\boldsymbol{u}|\boldsymbol{y}) \stackrel{\text{MM}}{\leftarrow} P(\boldsymbol{u}|\boldsymbol{y}) \quad \Leftrightarrow \quad Q(\boldsymbol{u}|\boldsymbol{y}) = N(\mathrm{E}[\boldsymbol{u}|\boldsymbol{y}], \mathrm{Cov}[\boldsymbol{u}|\boldsymbol{y}])$$

Best Gaussian approximation? Moment matching of P(u|y)

Intractable conditions for $Q(\boldsymbol{u}|\boldsymbol{y})$

Expectation Propagation

Opper, Winther, Phys. Rev. E 2001 Minka, UAI 2001

$$Q(\boldsymbol{u}|\boldsymbol{y}) \stackrel{\text{MM}}{\leftarrow} P(\boldsymbol{u}|\boldsymbol{y}) \quad \Leftrightarrow \quad Q(\boldsymbol{u}|\boldsymbol{y}) = N(\mathrm{E}[\boldsymbol{u}|\boldsymbol{y}], \mathrm{Cov}[\boldsymbol{u}|\boldsymbol{y}])$$

Best Gaussian approximation? Moment matching of P(u|y)

Intractable conditions for $Q(\boldsymbol{u}|\boldsymbol{y})$

$$egin{aligned} & Q(oldsymbol{u}|oldsymbol{y}) \propto e^{b_i s_i - s_i^2/(2\gamma_i)} imes P(oldsymbol{y}|oldsymbol{u}) \prod_{j
eq i} e^{b_j s_j - s_j^2/(2\gamma_j)} \ & \uparrow \mathsf{MM} \ & P(oldsymbol{u}|oldsymbol{y}) \propto t_i(oldsymbol{s}_i) & imes P(oldsymbol{y}|oldsymbol{u}) \prod_{j
eq i} oldsymbol{t}_j(oldsymbol{s}_j) \end{aligned}$$

Opper, Winther, Phys. Rev. E 2001 Minka, UAI 2001

$$Q(\boldsymbol{u}|\boldsymbol{y}) \stackrel{\text{MM}}{\leftarrow} \hat{P}_i(\boldsymbol{u}) \quad \Leftrightarrow \quad Q(\boldsymbol{u}|\boldsymbol{y}) = N(\mathrm{E}_{\hat{P}_i}[\boldsymbol{u}], \mathrm{Cov}_{\hat{P}_i}[\boldsymbol{u}])$$

- Best Gaussian approximation? Moment matching of P(u|y)
- Tractable surrogate: Moment matching for single potentials

Self-consistency conditions for $Q(\boldsymbol{u}|\boldsymbol{y})$

Variational Inference Relaxations

Expectation Propagation

Expectation Propagation

$$Q(oldsymbol{u}|oldsymbol{y}) \propto P(oldsymbol{y}|oldsymbol{u}) \prod_j e^{b_j s_j - s_j^2/(2\gamma_j)}$$

- - E

Expectation Propagation

$$\mathcal{Q}(m{s}_i|m{y}) \propto \int \mathcal{P}(m{y}|m{u}) \prod_j e^{b_j m{s}_j - m{s}_j^2/(2\gamma_j)} \, d\{m{u} \setminus m{s}_i\}$$

• Marginal distribution: $Q(s_i | \mathbf{y})$

$$\mathcal{Q}_{-i}(oldsymbol{s}_i) \propto \int \mathcal{P}(oldsymbol{y} |oldsymbol{u}) \prod_{j
eq i} e^{b_j oldsymbol{s}_j - oldsymbol{s}_j^2/(2\gamma_j)} \, d\{oldsymbol{u} \setminus oldsymbol{s}_i\}$$

< A

$$\hat{\mathcal{P}}_i(m{s}_i) \propto t_i(m{s}_i) \int \mathcal{P}(m{y}|m{u}) \prod_{j
eq i} e^{b_j m{s}_j - m{s}_j^2/(2\gamma_j)} \, d\{m{u} \setminus m{s}_i\}$$

0.1

0 15

0.05

0 S.

< A

$$Q(s_i|oldsymbol{y})' \propto e^{b_i's_i - s_i^2/(2\gamma_i')} \int P(oldsymbol{y}|oldsymbol{u}) \prod_{j
eq i} e^{b_j s_j - s_j^2/(2\gamma_j)} d\{oldsymbol{u} \setminus s_i\}$$

8/2012 30 / 77

$$Q(s_i|oldsymbol{y})' \stackrel{\mathsf{MM}}{\longleftarrow} Z_i^{-1}(Q(s_i|oldsymbol{y})/e^{b_i s_i - s_i^2/(2\gamma_i)})t_i(s_i)$$

Variational problem

$$\phi_{\mathsf{EP}}(\boldsymbol{\gamma}) = -2\log Z_Q + \sum_i h_i^{\mathsf{EP}}(\gamma_i, Q(\boldsymbol{s}_i|\boldsymbol{y}))$$
$$h_i^{\mathsf{EP}}(\gamma_i, Q(\boldsymbol{s}_i|\boldsymbol{y})) = -2\left(\log \mathbb{E}_{Q_{-i}}[t_i(\boldsymbol{s}_i)] - \log \mathbb{E}_{Q_{-i}}[e^{b_i s_i - s_i^2/(2\gamma_i)}]\right)$$

- Arbitrary potentials
- Empirically very accurate
- Algorithmically difficult
 - Saddlepoint, not optimum of $\phi_{\mathsf{EP}}(\gamma)$
 - EP coordinate update algorithm lacks convergence proof
 - Difficult to scale up
- Robust for log-concave potentials

Large Scale Bayesian Inference

Seeger, Nickisch, AISTATS 2011

Seeger, JMLR 2008

8/2012 31 / 77

$$Q(s_i|\boldsymbol{y})' \stackrel{\text{MM}}{\longleftarrow} Z_i^{-1}(Q(s_i|\boldsymbol{y})/e^{b_is_i-s_i^2/(2\gamma_i)})t_i(s_i)$$

Expectation propagation much more general

- Related to cavity methods (adaptive TAP)
- Discrete graphical models (generalizes loopy belief propagation). Tree expectation propagation Minka, Qi, NIPS 2004
- Dynamical systems: Natural generalization of moment matching (assumed density) filtering Zoeter, Heskes, UAI 2002
- Inference in hybrid models (discrete and continuous)

research.microsoft.com/en-us/um/people/minka/papers/ep/roadmap.html

Opper, Winther, JMLR 2005

Variational Approximations

$$P(\boldsymbol{u}|\boldsymbol{y}) = Z^{-1}P(\boldsymbol{y}|\boldsymbol{u})\prod_{i}t_{i}(s_{i}), \ Z = \int P(\boldsymbol{y}|\boldsymbol{u})\prod_{i}t_{i}(s_{i})\,d\boldsymbol{u}$$

Variational approximation

Apply variational principle to fit master function $\log Z$

- Super-Gaussian bounding
- Expectation propagation
- Gaussian KL minimization

Variational Inference Relaxations

Gaussian KL Minimization

Gaussian KL Minimization

Seeger, Dipl. 1999 Opper, Archambeau, N. Comp. 2009

Variational inference

$$\log Z = \max_{Q(\boldsymbol{u}|\boldsymbol{y})} E_Q \left[\log \frac{P(\boldsymbol{y}|\boldsymbol{u}) \prod_j t_j(s_j)}{Q(\boldsymbol{u}|\boldsymbol{y})} \right]$$

Seeger, Dipl. 1999 Opper, Archambeau, N. Comp. 2009

Why not use Gaussians directly?

$$egin{aligned} \log Z &\geq \max_{\mathcal{Q}(oldsymbol{u}|oldsymbol{y})\in\mathcal{Q}_{ ext{tract}}} \mathbb{E}_{Q}\left[\lograc{P(oldsymbol{y}|oldsymbol{u})\prod_{j}t_{j}(s_{j})}{Q(oldsymbol{u}|oldsymbol{y})}
ight], \ \mathcal{Q}_{ ext{tract}} &= \left\{Q(oldsymbol{u}|oldsymbol{y}) = Z_{Q}^{-1}P(oldsymbol{y}|oldsymbol{u})e^{oldsymbol{b}^{T}oldsymbol{s}-rac{1}{2}oldsymbol{s}^{T}\Gamma^{-1}oldsymbol{s}}
ight\}, \end{aligned}$$

Equivalent to

$$\min_{Q(\boldsymbol{u}|\boldsymbol{y})\in\mathcal{Q}_{\text{tract}}} D[Q(\boldsymbol{u}|\boldsymbol{y}) \parallel P(\boldsymbol{u}|\boldsymbol{y})]$$

Seeger (EPFL)

8/2012 34 / 77

Variational Inference Relaxations

Seeger, Dipl. 1999 Opper, Archambeau, N. Comp. 2009

Why not use Gaussians directly?

$$egin{aligned} \log Z &\geq \max_{\mathcal{Q}(oldsymbol{u}|oldsymbol{y}) \in \mathcal{Q}_{ ext{tract}}} \mathbb{E}_{Q}\left[\log rac{P(oldsymbol{y}|oldsymbol{u})\prod_{j}t_{j}(s_{j})}{Q(oldsymbol{u}|oldsymbol{y})}
ight], \ \mathcal{Q}_{ ext{tract}} &= \left\{Q(oldsymbol{u}|oldsymbol{y}) = Z_{Q}^{-1}P(oldsymbol{y}|oldsymbol{u})e^{oldsymbol{b}^{T}oldsymbol{s}-rac{1}{2}oldsymbol{s}^{T}\Gamma^{-1}oldsymbol{s}}
ight\}, \end{aligned}$$

$$-2\log Z \leq \min_{oldsymbol{\gamma},oldsymbol{b}} 2 ext{E}_{oldsymbol{Q}}\left[\lograc{Q(oldsymbol{u}|oldsymbol{y})}{P(oldsymbol{y}|oldsymbol{u})\prod_j t_j(oldsymbol{s}_j)}
ight]$$

Variational Inference Relaxations

Seeger, Dipl. 1999 Opper, Archambeau, N. Comp. 2009

Why not use Gaussians directly?

$$egin{aligned} \log Z &\geq \max_{\mathcal{Q}(oldsymbol{u}|oldsymbol{y})\in\mathcal{Q}_{ ext{tract}}} \mathbb{E}_{Q}\left[\lograc{P(oldsymbol{y}|oldsymbol{u})\prod_{j}t_{j}(s_{j})}{Q(oldsymbol{u}|oldsymbol{y})}
ight], \ \mathcal{Q}_{ ext{tract}} &= \left\{Q(oldsymbol{u}|oldsymbol{y}) = Z_{Q}^{-1}P(oldsymbol{y}|oldsymbol{u})e^{oldsymbol{b}^{T}oldsymbol{s}-rac{1}{2}oldsymbol{s}^{T}\Gamma^{-1}oldsymbol{s}}
ight\}, \end{aligned}$$

$$-2\log Z \leq \min_{\boldsymbol{\gamma},\boldsymbol{b}} 2 \mathbb{E}_{Q} \left[\log Z_{Q}^{-1} \prod_{j} \frac{e^{b_{j} s_{j} - s_{j}^{2}/(2\gamma_{j})}}{t_{j}(s_{j})} \right]$$

Variational Inference Relaxations Gaus

Gaussian KL Minimization

Gaussian KL Minimization Seeger, Dipl. 1999 Opper, Archambeau, N. Comp. 2009

Why not use Gaussians directly?

$$\begin{split} \log Z &\geq \max_{\mathcal{Q}(\boldsymbol{u}|\boldsymbol{y})\in\mathcal{Q}_{\text{tract}}} \mathbb{E}_{Q}\left[\log\frac{P(\boldsymbol{y}|\boldsymbol{u})\prod_{j}t_{j}(s_{j})}{Q(\boldsymbol{u}|\boldsymbol{y})}\right],\\ \mathcal{Q}_{\text{tract}} &= \left\{Q(\boldsymbol{u}|\boldsymbol{y}) = Z_{Q}^{-1}P(\boldsymbol{y}|\boldsymbol{u})e^{\boldsymbol{b}^{T}\boldsymbol{s} - \frac{1}{2}\boldsymbol{s}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{s}}\right\}\end{split}$$

$$-2\log Z \leq \min_{\boldsymbol{\gamma}, \boldsymbol{b}} -2\log Z_Q + \sum_j 2\mathbb{E}_Q[-\log t_j(s_j) - s_j^2/(2\gamma_j) + b_j s_j]$$

Seeger, Dipl. 1999 Opper, Archambeau, N. Comp. 2009

Why not use Gaussians directly?

$$egin{aligned} \log Z &\geq \max_{\mathcal{Q}(oldsymbol{u}|oldsymbol{y})\in\mathcal{Q}_{ ext{tract}}} \mathbb{E}_{Q}\left[\lograc{P(oldsymbol{y}|oldsymbol{u})\prod_{j}t_{j}(s_{j})}{Q(oldsymbol{u}|oldsymbol{y})}
ight], \ \mathcal{Q}_{ ext{tract}} &= \left\{Q(oldsymbol{u}|oldsymbol{y}) = Z_{Q}^{-1}P(oldsymbol{y}|oldsymbol{u})e^{oldsymbol{b}^{T}oldsymbol{s}-rac{1}{2}oldsymbol{s}^{T}\Gamma^{-1}oldsymbol{s}}
ight\}, \end{aligned}$$

$$-2\log Z \leq \min_{\gamma, \boldsymbol{b}} -2\log Z_Q + \sum_j h_j^{\mathsf{KL}}(\gamma_j, b_j; Q(\boldsymbol{s}_j | \boldsymbol{y}))$$

$$\min_{\boldsymbol{\gamma},\boldsymbol{b}} - 2\log Z_Q + \sum_j h_j^{\mathsf{KL}}(\gamma_j, \boldsymbol{b}_j; \boldsymbol{Q}(\boldsymbol{s}_j | \boldsymbol{y}))$$

Comparison to super-Gaussian bounding:

- More general (*t_i* need not be super-Gaussian; **b** parameters)
- More difficult to solve
 - h_i^{KL} depends on $Q(s_i | \mathbf{y})$, so on all of γ , **b**
 - Non-convex in general
 - No large scale algorithm so far
- Tighter bound on log partition function log Z

Exercise

$$egin{aligned} \log Z &\geq \max_{Q(oldsymbol{u}|oldsymbol{y}) \in \mathcal{Q}_{ ext{tract}}} \operatorname{E}_Q\left[\log rac{P(oldsymbol{y}|oldsymbol{u}) \prod_j t_j(oldsymbol{s}_j)}{Q(oldsymbol{u}|oldsymbol{y})}
ight], \ \mathcal{Q}_{ ext{tract}} &= \left\{Q(oldsymbol{u}|oldsymbol{y}) \propto P(oldsymbol{y}|oldsymbol{u}) e^{oldsymbol{b}^Toldsymbol{s} - rac{1}{2}oldsymbol{s}^Toldsymbol{\Gamma}^{-1}oldsymbol{s}}
ight\}, \end{aligned}$$

• Why this form? Why not any Gaussian $Q(\boldsymbol{u}|\boldsymbol{y}) = N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$?

• Any Gaussian maximizer lies in \mathcal{Q}_{tract}

Seeger, Dipl. 1999; Exercise

$$Q^{*}(\boldsymbol{u}|\boldsymbol{y}) \in \underset{\text{Gaussian}}{\operatorname{argmin}} \operatorname{D}[Q(\boldsymbol{u}|\boldsymbol{y}) \parallel P(\boldsymbol{u}|\boldsymbol{y})]$$

$$\Rightarrow \operatorname{Cov}_{Q^{*}}[\boldsymbol{u}|\boldsymbol{y}]^{-1} = \sigma^{-2}\boldsymbol{X}^{T}\boldsymbol{X} + \boldsymbol{B}^{T}(\operatorname{diag}\gamma_{*})^{-1}\boldsymbol{B}$$

$$\log Z \geq \max_{Q(\boldsymbol{u}|\boldsymbol{y})=N(\boldsymbol{\mu},\boldsymbol{\Sigma})} \mathbb{E}_{Q}\left[\log \frac{P(\boldsymbol{y}|\boldsymbol{u})\prod_{j} t_{j}(s_{j})}{Q(\boldsymbol{u}|\boldsymbol{y})}\right]$$

• Log-concave potentials $t_j(s_j)$:

Problem jointly convex in μ and $\Sigma^{\frac{1}{2}}$

- Reduced Cholesky parameterizations
- Factorization assumptions
- Coordinate update algorithm
- Open problem:

Scalable algorithm for \mathcal{Q}_{tract} parameterization (γ , **b**)

Challis, Barber, AISTATS 2011

Seeger, Dipl. 1999

What About Large Models?

repeat

for $j \in \{1, ..., q\}$ do

Update γ_j , based on marginal $Q(s_j | \mathbf{y})$

Gaussian propagation of pseudo-evidence change

end for

Refresh representation

until convergence

- Needs mean and variance of $Q(s_i | \mathbf{y})$ for each update
- Moderate size problems: Cholesky representation
- Moderate-sized high-resolution image: n = 65536 pixels. Storage: 32G (single matrix) Time for Cholesky decomposition: \approx 3h (if enough memory)

Out of the question

Conjugate Gradients Algorithm

Gaussian Computations

$$Q(\boldsymbol{u}|\boldsymbol{y}) = Z_Q^{-1} P(\boldsymbol{y}|\boldsymbol{u}) e^{-\frac{1}{2}\boldsymbol{s}^T \boldsymbol{\Gamma}^{-1} \boldsymbol{s}} d\boldsymbol{u}, \quad \boldsymbol{s} = \boldsymbol{B} \boldsymbol{u}$$

Cov_Q[\boldsymbol{u}|\boldsymbol{y}] =?

 $Q(\boldsymbol{u}|\boldsymbol{y}) \propto P(\boldsymbol{y}|\boldsymbol{u})e^{-rac{1}{2}\boldsymbol{s}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{s}}$

Seeger (EPFL)

8/2012 39 / 77

< 47 ▶

-

Conjugate Gradients Algorithm

Gaussian Computations

$$Q(\boldsymbol{u}|\boldsymbol{y}) = Z_Q^{-1} P(\boldsymbol{y}|\boldsymbol{u}) e^{-\frac{1}{2}\boldsymbol{s}^T \boldsymbol{\Gamma}^{-1} \boldsymbol{s}} d\boldsymbol{u}, \quad \boldsymbol{s} = \boldsymbol{B} \boldsymbol{u}$$

Cov_Q[\boldsymbol{u}|\boldsymbol{y}] =?

 $Q(oldsymbol{u}|oldsymbol{y}) \propto P(oldsymbol{y}|oldsymbol{u}) e^{-rac{1}{2}oldsymbol{u}^Toldsymbol{B}^Toldsymbol{\Gamma}^{-1}oldsymbol{B}oldsymbol{u}}$

< 47 ▶

Conjugate Gradients Algorithm

Gaussian Computations

$$Q(\boldsymbol{u}|\boldsymbol{y}) = Z_Q^{-1} P(\boldsymbol{y}|\boldsymbol{u}) e^{-\frac{1}{2}\boldsymbol{s}^T \boldsymbol{\Gamma}^{-1} \boldsymbol{s}} d\boldsymbol{u}, \quad \boldsymbol{s} = \boldsymbol{B} \boldsymbol{u}$$

Cov_Q[\boldsymbol{u}|\boldsymbol{y}] =?

$$Q(\boldsymbol{u}|\boldsymbol{y}) \propto e^{-rac{1}{2}(\sigma^{-2}\|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{u}\|^2+\boldsymbol{u}^T\boldsymbol{B}^T\boldsymbol{\Gamma}^{-1}\boldsymbol{B}\boldsymbol{u})}$$

Gaussian Computations

$$Q(\boldsymbol{u}|\boldsymbol{y}) = Z_Q^{-1} P(\boldsymbol{y}|\boldsymbol{u}) e^{-\frac{1}{2}\boldsymbol{s}^T \boldsymbol{\Gamma}^{-1} \boldsymbol{s}} d\boldsymbol{u}, \quad \boldsymbol{s} = \boldsymbol{B} \boldsymbol{u}$$

Cov_Q[\boldsymbol{u}|\boldsymbol{y}] =?

$$Q(\boldsymbol{u}|\boldsymbol{y}) \propto e^{-\frac{1}{2}\boldsymbol{u}^{T}(\sigma^{-2}\boldsymbol{X}^{T}\boldsymbol{X}+\boldsymbol{B}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{B})\boldsymbol{u}+...}$$
$$\operatorname{Cov}_{Q}[\boldsymbol{u}|\boldsymbol{y}] = \boldsymbol{A}^{-1}, \quad \boldsymbol{A} = \sigma^{-2}\boldsymbol{X}^{T}\boldsymbol{X} + \boldsymbol{B}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{B}$$
$$f \, \boldsymbol{v} = \boldsymbol{A}^{-1}(\boldsymbol{B}^{T}\delta_{j}):$$
$$\operatorname{E}_{Q}[\boldsymbol{s}_{j}|\boldsymbol{y}] = \boldsymbol{v}^{T}(\sigma^{-1}\boldsymbol{X}^{T}\boldsymbol{y}), \quad \operatorname{Var}_{Q}[\boldsymbol{s}_{j}|\boldsymbol{y}] = \boldsymbol{v}^{T}(\boldsymbol{B}^{T}\delta_{j})$$

Iterative Solvers

$$E_Q[\boldsymbol{u}|\boldsymbol{y}] = \boldsymbol{A}^{-1}(\sigma^{-2}\boldsymbol{X}^T\boldsymbol{y}), \quad \boldsymbol{A} = \sigma^{-2}\boldsymbol{X}^T\boldsymbol{X} + \boldsymbol{B}^T\boldsymbol{\Gamma}^{-1}\boldsymbol{B}$$

- Can multiply with *A* rapidly:
 X, *X^T*: FFT. *B*, *B^T*: Simple filters
- Solve systems by iterating over matrix-vector multiplications
- Equivalent to linear least squares estimation

$$E_Q[\boldsymbol{u}|\boldsymbol{y}] = \operatorname*{argmin}_{\boldsymbol{u}} \sigma^{-2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{u}\|^2 + \boldsymbol{s}^T \boldsymbol{\Gamma}^{-1} \boldsymbol{s}$$

Minimizing Quadratic Functions

Positive definite A:

Minimizing Quadratic Functions

$$q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} - \mathbf{b}^T \mathbf{x}, \quad \mathbf{g}(\mathbf{x}) = \nabla q(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$$

Require: Operator **A**. Initial \mathbf{x}_0 for k = 1, 2, ... do Pick search direction \mathbf{d}_k , based on $\mathbf{g}_{k-1} = \mathbf{g}(\mathbf{x}_{k-1}), \{\mathbf{d}_l : l < k\}$ Line minimization:

$$\boldsymbol{x}_k = \boldsymbol{x}_{k-1} + \alpha_k \boldsymbol{d}_k, \quad \alpha_k = \operatorname{argmin}_{\alpha} \boldsymbol{q}(\boldsymbol{x}_{k-1} + \alpha \boldsymbol{d}_k)$$

end for

Conjugate Directions

• Why, of course down as steep as possible

$$q(\boldsymbol{x}_{k-1} + d\boldsymbol{x}) = q(\boldsymbol{x}_{k-1}) + \underbrace{\boldsymbol{g}_{k-1}^{\mathsf{T}}(d\boldsymbol{x})}_{\text{Smallest:}d\boldsymbol{x} \propto -\boldsymbol{g}_{k-1}} + O(\|d\boldsymbol{x}\|^2)$$

Steepest descent: $\boldsymbol{d}_k = -\boldsymbol{g}_{k-1}$

Wrong: For steepest descent: *d*^T_{k+1}*d*_k = 0
 ⇒ Improvements from previous iterations rapidly tempered with

Towards Conjugate Gradients

Details: Handout

- Directions conjugate: Gradient $\boldsymbol{g}_k \perp$ all previous directions: $\boldsymbol{g}_k^T \boldsymbol{d}_j = 0$ for all $j \leq k$
- **2** After *n* steps we are done: $\boldsymbol{g}_n = \boldsymbol{0}$
- Onstruct conjugate directions by recurrence:

$$\boldsymbol{d}_{k} = -\boldsymbol{g}_{k-1} + \beta_{k-1} \boldsymbol{d}_{k-1}$$

- All gradients are orthogonal: $\boldsymbol{g}_k^T \boldsymbol{g}_j = 0, j < k$ [Bit of misnomer: Directions are conjugate]
- Solution: What is α_k ? From line minimization:

$$\alpha_k = \frac{\|\boldsymbol{g}_{k-1}\|^2}{\boldsymbol{d}_k^T \boldsymbol{A} \boldsymbol{d}_k}$$

• What is β_k ? The great synthesis!

$$\beta_k = \frac{\|\boldsymbol{g}_k\|^2}{\|\boldsymbol{g}_{k-1}\|^2}$$

Conjugate Gradients Algorithm

Require: Operator **A**. Initial \mathbf{x}_0 . $\mathbf{g}_0 = \mathbf{A}\mathbf{x}_0 - \mathbf{b}$ for $k = 1, 2, \ldots$ (no more than *n*) do $\rho_{k-1} = \|\boldsymbol{g}_{k-1}\|^2$ if k = 1 then $d_1 = -q_0$ else $\beta_{k-1} = \rho_{k-1}/\rho_{k-2}; \boldsymbol{d}_k = -\boldsymbol{g}_{k-1} + \beta_{k-1}\boldsymbol{d}_{k-1}$ end if $\boldsymbol{q}_{k} = \boldsymbol{A}\boldsymbol{d}_{k}; \alpha_{k} = \rho_{k-1}/(\boldsymbol{d}_{k}^{T}\boldsymbol{a}_{k})$ $\mathbf{x}_{k} = \mathbf{x}_{k-1} + \alpha_{k} \mathbf{d}_{k}; \mathbf{q}_{k} = \mathbf{q}_{k-1} + \alpha_{k} \mathbf{q}_{k}$ Check for convergence (say $\|\boldsymbol{q}_{\boldsymbol{\mu}}\| < \varepsilon \|\boldsymbol{b}\|$) end for

8/2012 45 / 77

Conjugate Gradients Algorithm

Let
$$\mathcal{K}_k = \boldsymbol{x}_0 + \operatorname{span}\{\boldsymbol{d}_1, \dots, \boldsymbol{d}_k\}$$
. Then:

$$\boldsymbol{g}_k^T \boldsymbol{d}_j = 0, \ j \leq k \quad \Rightarrow \quad \boldsymbol{x}_k = \operatorname{argmin}_{\boldsymbol{x} \in \mathcal{K}_k} q(\boldsymbol{x})$$

But $\mathcal{K}_k = \mathbf{x}_0 + \operatorname{span}\{\mathbf{A}^j \mathbf{g}_0 | j < k\}$ \Rightarrow Optimal with k (\mathbf{A}) multiplications!

- $\mathcal{K}_k \subset \mathcal{K}_{k+1} \subset \dots$, $\boldsymbol{x}_* \in \mathcal{K}_n$ (Cayley/Hamilton)
- What about $k \ll n$ for huge *n*? Depends on eigenspectrum of **A**. $\mathbf{x}_k \approx \mathbf{x}_*$ in surprisingly many cases in practice \Rightarrow Krylov subspace view key to convergence analysis Exercise
- Preconditioning: $\boldsymbol{M} = \boldsymbol{C}\boldsymbol{C}^T \approx \boldsymbol{A}$, but easy to solve systems with
 - Work on $(\boldsymbol{C}^{-T}\boldsymbol{A}\boldsymbol{C}^{-1})\boldsymbol{C}\boldsymbol{x} = \boldsymbol{C}^{-T}\boldsymbol{b}$
 - $\Rightarrow \textit{Better spectral properties} \rightarrow \textit{Faster convergence}$
 - CG as before, with one (M^{-1}) per iteration
 - Art of iterative linear solvers

Outline

Motivation

- 2 Variational Inference Relaxations
 - Super-Gaussian Bounding
 - Expectation Propagation
 - Gaussian KL Minimization
 - Conjugate Gradients Algorithm

Scalable Variational Inference

- Scaling up Super-Gaussian Bounding
- Penalized Least Squares
- Gaussian Variances

4 Application Example

- Sparse linear models: Inverse problems, Bayesian calibration and sampling optimization
- Super-Gaussian bounding: From local max-of-Gaussian representations to global bound
- Expectation propagation: Tractable self-consistency by local moment matching
- Gaussian KL minimization: Tighter, but more difficult than super-Gaussian bounding
- Conjugate gradients: Large scale linear solvers by iterated matrix-vector multiplications

Scalable Variational Inference

Need for Scalability

Bayesian inference over full images (256 \times 256)? $\Rightarrow \boldsymbol{u} \in \mathbb{C}^{65536}, \gamma \in \mathbb{R}^{196096}$

8/2012 49 / 77

Need for Scalability

repeat

for $j \in \{1, \ldots, q\}$ do

Update γ_i , based on marginal $Q(s_i | \mathbf{y})$

Gaussian propagation of pseudo-evidence change

end for

Refresh representation

until convergence

• Needs mean and variance of $Q(s_i | \mathbf{y})$ for each update

Scalable Variational Inference

Need for Scalability

Bayesian inference over full images (256 \times 256)? \Rightarrow $\boldsymbol{u} \in \mathbb{C}^{65536}$, $\boldsymbol{\gamma} \in \mathbb{R}^{196096}$

- Coordinate update algorithm
 - Linear system $\mathbf{A}^{-1}\mathbf{r}$ for each update
 - At least 196096 systems (visit each γ_i once)

(most previous methods)

(needs conjugate gradients)

Out of the question

Scalable Variational Inference Scaling up Super-Gaussian Bounding

Properties of Super-Gaussian Bounding

$$\min_{\gamma} -2\log \int P(\boldsymbol{y}|\boldsymbol{u}) e^{-\frac{1}{2}\boldsymbol{s}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{s}} d\boldsymbol{u} + h(\gamma)$$

Super-Gaussian bounding stands out

Seeger, Nickisch, SIAM IS 2011

- Convex problem iff MAP estimation is convex
- Can be solved at much larger scales than others

Scalable Variational Inference Scaling up Super-Gaussian Bounding

Properties of Super-Gaussian Bounding

$$\min_{\gamma} -2\log \int P(\boldsymbol{y}|\boldsymbol{u}) e^{-\frac{1}{2}\boldsymbol{s}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{s}} d\boldsymbol{u} + h(\gamma)$$

Super-Gaussian bounding stands out

Seeger, Nickisch, SIAM IS 2011

• Convex problem iff MAP estimation is convex

• Can be solved at much larger scales than others

Why is that?

MAP estimation will help solving it!

8/2012 52 / 77

Scalable Variational Inference Scaling up Super-Gaussian Bounding

Towards Scalable Variational Inference

Towards Scalable Variational Inference

$$\begin{split} \min_{\gamma} -2 \log \int P(\boldsymbol{y} | \boldsymbol{u}) e^{-\frac{1}{2} \boldsymbol{s}^{T} \boldsymbol{\Gamma}^{-1} \boldsymbol{s}} \, d\boldsymbol{u} + h(\gamma) \\ \operatorname{Cov}_{Q}[\boldsymbol{u} | \boldsymbol{y}] = \boldsymbol{A}^{-1}, \quad \boldsymbol{A} = \sigma^{-2} \boldsymbol{X}^{T} \boldsymbol{X} + \boldsymbol{B}^{T} \boldsymbol{\Gamma}^{-1} \boldsymbol{B} \end{split}$$

- Harder than MAP estimation. But why?
- Convert integration to optimization

$$\int P(\boldsymbol{y}|\boldsymbol{u}) e^{-\frac{1}{2}\boldsymbol{s}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{s}} \, d\boldsymbol{u} \stackrel{!}{=} |2\pi\boldsymbol{A}^{-1}|^{1/2} \max_{\boldsymbol{u}_{*}} P(\boldsymbol{y}|\boldsymbol{u}_{*}) e^{-\frac{1}{2}\boldsymbol{s}_{*}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{s}_{*}}$$

٠

F4

Towards Scalable Variational Inference

$$\begin{split} \min_{\gamma} -2 \log \int P(\boldsymbol{y} | \boldsymbol{u}) e^{-\frac{1}{2} \boldsymbol{s}^{T} \boldsymbol{\Gamma}^{-1} \boldsymbol{s}} \, d\boldsymbol{u} + h(\gamma) \\ \operatorname{Cov}_{Q}[\boldsymbol{u} | \boldsymbol{y}] = \boldsymbol{A}^{-1}, \quad \boldsymbol{A} = \sigma^{-2} \boldsymbol{X}^{T} \boldsymbol{X} + \boldsymbol{B}^{T} \boldsymbol{\Gamma}^{-1} \boldsymbol{B} \end{split}$$

• Harder than MAP estimation. Because of log |A|.

Super-Gaussian bounding

$$\min_{\boldsymbol{\gamma},\boldsymbol{u}_{*}}\left\{\phi(\boldsymbol{u}_{*},\boldsymbol{\gamma}) = \underbrace{\sigma^{-2}\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{u}_{*}\|^{2} + \boldsymbol{s}_{*}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{s}_{*} + h(\boldsymbol{\gamma})}_{\text{MAP criterion }\phi_{\cup}(\boldsymbol{u}_{*},\boldsymbol{\gamma})} + \log|\boldsymbol{A}|\right\}$$

$$-2\log Z \leq \min_{oldsymbol{\gamma},oldsymbol{u}_*} \log |oldsymbol{A}(oldsymbol{\gamma})| + \phi_\cup(oldsymbol{u}_*,oldsymbol{\gamma})$$

Dependencies in posterior P(u|y)
 ⇒ Difficult coupling term log |A| in criterion φ

 $\boldsymbol{A} = \sigma^{-2} \boldsymbol{X}^T \boldsymbol{X} + \boldsymbol{B}^T \boldsymbol{\Gamma}^{-1} \boldsymbol{B}$

• $\boldsymbol{A} \mapsto \log |\boldsymbol{A}|$ concave • $\gamma^{-1} \mapsto \log |\boldsymbol{A}|$ concave

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\min_{\boldsymbol{\gamma},\boldsymbol{u}_{*}} \phi(\boldsymbol{u}_{*},\boldsymbol{\gamma}) = \min_{\boldsymbol{\gamma},\boldsymbol{u}_{*}} \underbrace{\log |\boldsymbol{A}(\boldsymbol{\gamma}^{-1})|}_{\text{concave}} + \underbrace{\phi_{\cup}(\boldsymbol{u}_{*},\boldsymbol{\gamma})}_{\text{convex}}$$

Convex (Fenchel) duality

$$\log |\boldsymbol{A}(\gamma^{-1})| = \min_{\boldsymbol{z}} \boldsymbol{z}^{T}(\gamma^{-1}) - g^{*}(\boldsymbol{z})$$

< 17 ▶

$$\log |\boldsymbol{A}(\gamma^{-1})| + \phi_{\cup}(\boldsymbol{u}_{*}, \gamma) = \min_{\boldsymbol{z}} \underbrace{\boldsymbol{z}^{T}(\gamma^{-1}) + \phi_{\cup}(\boldsymbol{u}_{*}, \gamma) - \boldsymbol{g}^{*}(\boldsymbol{z})}_{\phi_{\tau}(\boldsymbol{u}_{*}, \gamma) \text{ (convex, decoupled)}}$$

Convex (Fenchel) duality

$$\log |\boldsymbol{A}(\gamma^{-1})| = \min_{\boldsymbol{z}} \boldsymbol{z}^{T}(\gamma^{-1}) - g^{*}(\boldsymbol{z})$$

< 47 ▶

-

Double loop algorithm

Seeger et.al., NIPS 2009; insp. by Wipf et.al., NIPS 2008

< 47 ▶

• Inner loop optimization: $\min_{\gamma} \min_{\boldsymbol{u}_*} \phi_{\boldsymbol{z}}(\boldsymbol{u}_*, \gamma) + g^*(\boldsymbol{z})$ [fixed \boldsymbol{z}]

F5

$$\min_{\boldsymbol{u}_*} \min_{\boldsymbol{\gamma}} \sigma^{-2} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{u}_*\|^2 + \boldsymbol{z}^T (\boldsymbol{\gamma}^{-1}) + \boldsymbol{s}_*^T \boldsymbol{\Gamma}^{-1} \boldsymbol{s}_* + h(\boldsymbol{\gamma})$$

Double loop algorithm

Seeger et.al., NIPS 2009; insp. by Wipf et.al., NIPS 2008

• Inner loop optimization: $\min_{\gamma} \min_{\boldsymbol{u}_*} \phi_{\boldsymbol{z}}(\boldsymbol{u}_*, \gamma) + g^*(\boldsymbol{z})$ [fixed \boldsymbol{z}] Smoothed MAP Reconstruction

$$\min_{\bm{u}_*} \sigma^{-2} \|\bm{y} - \bm{X} \bm{u}_*\|^2 - 2 \sum_{i=1}^q \log t_i \left(\sqrt{z_i + s_{*i}^2} \right), \quad z_i > 0$$

[fixed ($\boldsymbol{u}_*, \boldsymbol{\gamma}$)]

Seeger et.al., NIPS 2009; insp. by Wipf et.al., NIPS 2008

- Inner loop optimization: $\min_{\gamma} \min_{\boldsymbol{u}_*} \phi_{\boldsymbol{z}}(\boldsymbol{u}_*, \gamma) + g^*(\boldsymbol{z})$ [fixed \boldsymbol{z}] Smoothed MAP Reconstruction
- Outer loop update: $\min_{\boldsymbol{z}} \phi_{\boldsymbol{z}}(\boldsymbol{u}_*, \boldsymbol{\gamma})$

Tangent : $\boldsymbol{z} \leftarrow \nabla_{\boldsymbol{\gamma}^{-1}} \log |\boldsymbol{A}|, \quad \boldsymbol{A} = \sigma^{-2} \boldsymbol{X}^T \boldsymbol{X} + \boldsymbol{B}^T \boldsymbol{\Gamma}^{-1} \boldsymbol{B}$

Seeger et.al., NIPS 2009; insp. by Wipf et.al., NIPS 2008

- Inner loop optimization: $\min_{\gamma} \min_{\boldsymbol{u}_*} \phi_{\boldsymbol{z}}(\boldsymbol{u}_*, \gamma) + g^*(\boldsymbol{z})$ [fixed \boldsymbol{z}] Smoothed MAP Reconstruction
- Outer loop update: $\min_{\boldsymbol{z}} \phi_{\boldsymbol{z}}(\boldsymbol{u}_*, \gamma)$ [fixed $(\boldsymbol{u}_*, \gamma)$] Gaussian (Co)Variances

$$\boldsymbol{z} \leftarrow \nabla_{\boldsymbol{\gamma}^{-1}} \log |\boldsymbol{A}| = \operatorname{diag}(\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{B}^{T}) = (\operatorname{Var}_{Q}[\boldsymbol{s}_{i}|\boldsymbol{y}])$$

Reductions

Computational primitives driving large scale inference

O Penalized least squares (\approx MAP estimation)

$$\min_{\boldsymbol{u}_*} \sigma^{-2} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{u}_*\|^2 - 2 \sum_{i=1}^q \log t_i \left(\sqrt{z_i + s_{*i}^2} \right)$$

• MAP special case: $z_i = 0$

Scalable algorithms en masse (thanks to MAP "gold rush")

② Gaussian variances

diag⁻¹(
$$\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{B}^{T}$$
), $\boldsymbol{A} = \sigma^{-2}\boldsymbol{X}^{T}\boldsymbol{X} + \boldsymbol{B}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{B}$

- More difficult
- Methods from numerical maths, spatial statistics, solid state physics

Variational problem:
$$\min_{\gamma} -2 \log Z_Q + h(\gamma)$$

Summary

Variational representation of Gaussian log partition function

$$-2\log Z_Q \doteq \min_{\boldsymbol{u}_*} \sigma^{-2} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{u}_*\|^2 + (\boldsymbol{s}_*^{-2})^T (\gamma^{-1}) + \log |\boldsymbol{A}|$$

Variational problem:
$$\min_{\gamma} -2 \log Z_Q + h(\gamma)$$

Summary

Variational representation of Gaussian log partition function

$$-2\log Z_Q \doteq \min_{\boldsymbol{z}, \boldsymbol{u}_*} \sigma^{-2} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{u}_*\|^2 + (\boldsymbol{z} + \boldsymbol{s}_*^{-2})^T (\gamma^{-1}) - g^*(\boldsymbol{z})$$

Choose computationally favourable ordering of updates

$$\min_{\boldsymbol{z}} \left(\min_{\boldsymbol{u}_*, \boldsymbol{\gamma}} \sigma^{-2} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{u}_* \|^2 + (\boldsymbol{z} + \boldsymbol{s}_*^2)^T (\boldsymbol{\gamma}^{-1}) + h(\boldsymbol{\gamma}) \right) - g^*(\boldsymbol{z})$$

Variances z expensive: Fix them as long as sensible

Convergence guarantee: Tangential bound to log |A| 3 Wipf et.al., NIPS 2008

$$\min_{\boldsymbol{z}} \left(\min_{\boldsymbol{u}_*} \min_{\boldsymbol{\gamma}} \phi_{\boldsymbol{z}}(\boldsymbol{u}_*, \boldsymbol{\gamma}) \right), \quad \boldsymbol{z} \leftarrow \operatorname{diag}^{-1}(\boldsymbol{B} \boldsymbol{A}^{-1} \boldsymbol{B}^T)$$

 Real time? As fast as MAP estimation? Gaussian variances can be a real problem

$$\min_{\boldsymbol{z}} \left(\min_{\boldsymbol{u}_{*}} \min_{\boldsymbol{\gamma}} \phi_{\boldsymbol{z}}(\boldsymbol{u}_{*}, \boldsymbol{\gamma}) \right)$$

- Real time? As fast as MAP estimation? Gaussian variances can be a real problem
- Factorization assumptions:

$$Q(\boldsymbol{u}|\boldsymbol{y}) = \prod_{i=1}^{n} Q(u_i|\boldsymbol{y}) \quad \Rightarrow \quad Z_Q = \prod_{i=1}^{n} Z_{Q(u_i|\boldsymbol{y})}$$

 \Rightarrow Update *z* in O(q) = O(n)

$$\min_{\boldsymbol{u}_*} \left(\min_{\boldsymbol{z}} \min_{\boldsymbol{\gamma}} \phi_{\boldsymbol{z}}(\boldsymbol{u}_*, \boldsymbol{\gamma}) \right)$$

- Real time? As fast as MAP estimation?
 Gaussian variances can be a real problem
- Factorization assumptions:

$$Q(\boldsymbol{u}|\boldsymbol{y}) = \prod_{i=1}^{n} Q(u_i|\boldsymbol{y}) \quad \Rightarrow \quad Z_Q = \prod_{i=1}^{n} Z_{Q(u_i|\boldsymbol{y})}$$

$$\Rightarrow$$
 Update **z** in $O(q) = O(n)$

One penalized least squares problem (coupled regularizer)

$$\min_{\boldsymbol{u}_*} \sigma^{-2} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{u}_*\|^2 + \left(\min_{\boldsymbol{z}} \min_{\boldsymbol{\gamma}} \mathcal{R}_{\boldsymbol{z}}(\boldsymbol{u}_*, \boldsymbol{\gamma})\right)$$

- Real time? As fast as MAP estimation? Gaussian variances can be a real problem
- Factorization assumptions:

$$Q(\boldsymbol{u}|\boldsymbol{y}) = \prod_{i=1}^{n} Q(u_i|\boldsymbol{y}) \quad \Rightarrow \quad Z_Q = \prod_{i=1}^{n} Z_{Q(u_i|\boldsymbol{y})}$$

 \Rightarrow Update **z** in O(q) = O(n)

- One penalized least squares problem (coupled regularizer)
- Convexity properties are retained

 $Q(\boldsymbol{u}|\boldsymbol{y}) = \prod_{i=1}^{n} Q(u_i|\boldsymbol{y})$

- Advantages
 - Essentially as fast as MAP estimation
 - Gaussian KL minimization convex
 - It might just work ...
- Drawbacks
 - True posterior tightly and strongly coupled: Expect better results without factorizations
 - Bayesian experimental design (active sampling) relies on covariances

Challis, Barber, AISTATS 2011

Penalized Least Squares

Computational primitives driving large scale inference

1 Penalized least squares (\approx MAP estimation)

$$\min_{\boldsymbol{u}_{*}} \sigma^{-2} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{u}_{*}\|^{2} - 2 \sum_{i=1}^{q} \log t_{i} \left(\sqrt{z_{i} + s_{*i}^{2}} \right)$$

Penalized Least Squares

Computational primitives driving large scale inference

1 Penalized least squares (\approx MAP estimation)

$$\min_{\boldsymbol{u}_{*}} \sigma^{-2} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{u}_{*}\|^{2} + \sum_{i=1}^{q} \psi_{i}(\boldsymbol{s}_{*i}), \quad \boldsymbol{s}_{*} = \boldsymbol{B} \boldsymbol{u}_{*}$$

Iteratively Reweighted Least Squares

$$\min_{\boldsymbol{u}_{*}} \left\{ \phi_{\boldsymbol{z}}(\boldsymbol{u}_{*}) = \sigma^{-2} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{u}_{*} \|^{2} + \sum_{i=1}^{q} \psi_{i}(\boldsymbol{s}_{*i}) \right\}, \quad \boldsymbol{s}_{*} = \boldsymbol{B} \boldsymbol{u}_{*}$$

- ψ_i twice differentiable: Newton-Raphson optimization
- Taylor approximation at $u_* = u_k$:

$$\phi_{\boldsymbol{z}}(\boldsymbol{u}_*) \approx \sigma^{-2} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{u}_* \|^2 + \boldsymbol{s}_*^T (\text{diag } \boldsymbol{h}_k) \boldsymbol{s}_* - 2 \boldsymbol{g}_k^T \boldsymbol{s}_* + C_k$$

• Newton search direction by conjugate gradients:

$$oldsymbol{d}_k = oldsymbol{A}_k^{-1} \left(\sigma^{-2} oldsymbol{X}^T oldsymbol{y} + oldsymbol{B}^T oldsymbol{g}_k
ight), \quad oldsymbol{A}_k = \sigma^{-2} oldsymbol{X}^T oldsymbol{X} + oldsymbol{B}^T (ext{diag} oldsymbol{h}_k) oldsymbol{B}$$

• Line search in O(q):

$$\boldsymbol{u}_{k+1} = \boldsymbol{u}_k + \alpha_* \boldsymbol{d}_k, \quad \alpha_* = \operatorname*{argmin}_{\alpha > 0} \phi_{\boldsymbol{z}}(\boldsymbol{u}_k + \alpha \boldsymbol{d}_k)$$

Iteratively Reweighted Least Squares

- Advantages
 - Rapid (quadratic) convergence
 - Reuse code for conjugate gradients algorithm
- Drawbacks
 - Two nested loops: Difficult to fine-tune
 - MAP estimation: ψ_i may not be twice differentiable
 - For our setup: Systems

$$\boldsymbol{u} = \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \rho \boldsymbol{B}^{\mathsf{T}} \boldsymbol{B} \right)^{-1} \boldsymbol{r}, \quad \rho > 0$$

can be solved analytically.

Augmented Lagrangian Solvers

$$\min_{\boldsymbol{u}} \frac{1}{2\sigma^2} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{u}\|^2 - \sum_j \log e^{-\tau |\boldsymbol{s}_j|}, \quad \boldsymbol{s} = \boldsymbol{B} \boldsymbol{u}$$

• Consider MAP estimation problem: Not differentiable

Augmented Lagrangian Solvers

$$\min_{\boldsymbol{u}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{u}\|^2 + \kappa \|\boldsymbol{B}\boldsymbol{u}\|_1, \quad \kappa = \tau \sigma^2$$

Consider MAP estimation problem: Not differentiable

Augmented Lagrangian Solvers

$$\min_{\boldsymbol{u},\boldsymbol{s}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{u}\|^2 + \kappa \|\boldsymbol{s}\|_1 \qquad \text{s.t. } \boldsymbol{s} = \boldsymbol{B}\boldsymbol{u}$$

- Consider MAP estimation problem: Not differentiable
- Rewrite: Operator splitting.
 - \Rightarrow Would be simple without constraint
Augmented Lagrangian Solvers

$$\max_{\boldsymbol{b}} \min_{\boldsymbol{u},\boldsymbol{s}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{u}\|^2 + \kappa \|\boldsymbol{s}\|_1 + \lambda \boldsymbol{b}^T (\boldsymbol{B}\boldsymbol{u} - \boldsymbol{s})$$

- Consider MAP estimation problem: Not differentiable
- Rewrite: Operator splitting.
 ⇒ Would be simple without constraint
- Dualize constraint (Lagrange multipliers b)

Augmented Lagrangian Solvers

$$\max_{\boldsymbol{b}} \min_{\boldsymbol{u},\boldsymbol{s}} \underbrace{\frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{u}\|^2 + \kappa \|\boldsymbol{s}\|_1 + \lambda \boldsymbol{b}^T (\boldsymbol{B}\boldsymbol{u} - \boldsymbol{s}) + \frac{\lambda}{2} \|\boldsymbol{B}\boldsymbol{u} - \boldsymbol{s}\|^2}_{\text{saddle function}}$$

- Consider MAP estimation problem: Not differentiable
- Rewrite: Operator splitting.
 ⇒ Would be simple without constraint
- Dualize constraint (Lagrange multipliers b)
- Augmented Lagrangian technique (additional smoothing)

(PA) ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Alternating Direction Method of Multipliers

$$\max_{\boldsymbol{b}} \min_{\boldsymbol{u},\boldsymbol{s}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{u}\|^2 + \kappa \|\boldsymbol{s}\|_1 + \lambda \boldsymbol{b}^T (\boldsymbol{B}\boldsymbol{u} - \boldsymbol{s}) + \frac{\lambda}{2} \|\boldsymbol{B}\boldsymbol{u} - \boldsymbol{s}\|^2$$

Alternating Direction Method of Multipliers

Iterate:

Linear least squares (fixed s, b)

$$\boldsymbol{u} \leftarrow \operatorname{argmin} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{u} \|^2 + \frac{\lambda}{2} \| \boldsymbol{B} \boldsymbol{u} - \boldsymbol{s} + \boldsymbol{b} \|^2$$

• Proximal map (fixed **u**, **b**)

$$\boldsymbol{s} \leftarrow \operatorname{argmin} \kappa \|\boldsymbol{s}\|_1 + \frac{\lambda}{2} \|\boldsymbol{B}\boldsymbol{u} - \boldsymbol{s} + \boldsymbol{b}\|^2$$

• Lagrange multiplier update (fixed *u*, *s*)

$$m{b} \leftarrow m{b} + m{B}m{u} - m{s}$$

The Proximal Map

Moreau

$$\operatorname{prox}_{f}(\mathbf{r}) := \operatorname{argmin}_{\mathbf{s}} f(\mathbf{s}) + \frac{1}{2} \|\mathbf{s} - \mathbf{r}\|^{2}$$

• Recall: $\boldsymbol{s} \leftarrow \operatorname{prox}_{(\kappa/\lambda) \| \cdot \|_1} (\boldsymbol{B} \boldsymbol{u} + \boldsymbol{b})$

The Proximal Map

Moreau

$$\operatorname{prox}_{f}(\boldsymbol{r}) := \operatorname{argmin}_{\boldsymbol{s}} f(\boldsymbol{s}) + \frac{1}{2} \|\boldsymbol{s} - \boldsymbol{r}\|^{2}$$

- Recall: $\boldsymbol{s} \leftarrow \operatorname{prox}_{(\kappa/\lambda) \parallel \cdot \parallel_1} (\boldsymbol{B}\boldsymbol{u} + \boldsymbol{b})$ • Simple for decoupling $f(\boldsymbol{s}) = \sum_i f_i(\boldsymbol{s}_i)$: $\operatorname{prox}_f(\boldsymbol{r}) = [\operatorname{prox}_{f_i}(\boldsymbol{r}_i)]$
- For Laplace (ℓ_1) : Soft thresholding:

$$\operatorname{prox}_{\alpha|\cdot|}(r) = \frac{\max\{|r| - \alpha, \mathbf{0}\}}{|r|}r$$

 \Rightarrow Sparsity in s

Penalized Least Squares

MRI Reconstruction

$$\min_{\boldsymbol{u}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{u}\|^2 + \kappa \|\boldsymbol{B}\boldsymbol{u}\|_1$$

$$\min_{\boldsymbol{u}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{u}\|^2 + \kappa \|\boldsymbol{B}\boldsymbol{u}\|_1$$

- $\boldsymbol{X} = \boldsymbol{I}_{J,\cdot}\boldsymbol{F}, \, \boldsymbol{F} \, \text{DFT} \text{ of size } n, \, J \subset \{1, \dots, n\}$
- Blocks of **B**:

Orthonormal (wavelets), FIR filters (Δ_x , Δ_y)

$$\min_{\bm{u}} \frac{1}{2} \|\bm{y} - \bm{X}\bm{u}\|^2 + \frac{\lambda}{2} \|\bm{B}\bm{u} - (\bm{s} - \bm{b})\|^2$$

- $X = I_{J, \cdot}F$, F DFT of size $n, J \subset \{1, \ldots, n\}$
- Blocks of **B**:

Orthonormal (wavelets), FIR filters (Δ_x, Δ_y)

• Linear least squares:

$$\left(\boldsymbol{X}^{H}\boldsymbol{X} + \lambda \boldsymbol{B}^{T}\boldsymbol{B} \right) \boldsymbol{u} = \boldsymbol{r} := \boldsymbol{X}^{H}\boldsymbol{y} + \lambda \boldsymbol{B}^{T}(\boldsymbol{s} - \boldsymbol{b})$$

$$\min_{\bm{u}} \frac{1}{2} \|\bm{y} - \bm{X}\bm{u}\|^2 + \frac{\lambda}{2} \|\bm{B}\bm{u} - (\bm{s} - \bm{b})\|^2$$

- $\boldsymbol{X} = \boldsymbol{I}_{J,\cdot} \boldsymbol{F}, \, \boldsymbol{F} \, \text{DFT} \text{ of size } n, \, J \subset \{1, \ldots, n\}$
- Blocks of **B**:

Orthonormal (wavelets), FIR filters (Δ_x , Δ_y)

• Linear least squares:

$$\left(\boldsymbol{F}^{H} \boldsymbol{I}_{\cdot,J} \boldsymbol{I}_{J,\cdot} \boldsymbol{F} + \lambda \boldsymbol{B}^{T} \boldsymbol{B} \right) \boldsymbol{u} = \boldsymbol{r}$$

$$\min_{\bm{u}} \frac{1}{2} \|\bm{y} - \bm{X}\bm{u}\|^2 + \frac{\lambda}{2} \|\bm{B}\bm{u} - (\bm{s} - \bm{b})\|^2$$

- $\boldsymbol{X} = \boldsymbol{I}_{J,\cdot}\boldsymbol{F}, \, \boldsymbol{F} \text{ DFT of size } n, \, J \subset \{1, \dots, n\}$
- Blocks of **B**:

Orthonormal (wavelets), FIR filters (Δ_x , Δ_y)

• Linear least squares:

$$F^{H}(I_{\cdot,J}I_{J,\cdot} + \underbrace{\lambda F B^{T} B F^{H}}_{diagonal})F u = r$$

$$\min_{\bm{u}} \frac{1}{2} \|\bm{y} - \bm{X}\bm{u}\|^2 + \frac{\lambda}{2} \|\bm{B}\bm{u} - (\bm{s} - \bm{b})\|^2$$

- $\boldsymbol{X} = \boldsymbol{I}_{J,\cdot} \boldsymbol{F}, \, \boldsymbol{F} \, \text{DFT} \text{ of size } n, \, J \subset \{1, \ldots, n\}$
- Blocks of B:

Orthonormal (wavelets), FIR filters (Δ_x , Δ_y)

• Linear least squares:

$$(\underline{I_{\cdot,J}I_{J,\cdot}+D})$$
Fu = Fr

 \Rightarrow Two fast Fourier transforms only!

Penalized Least Squares

MRI Reconstruction

courtesy Mateusz Malinowski

Seeger (EPFL)

Large Scale Bayesian Inference

Penalized Least Squares

MRI Reconstruction

courtesy Mateusz Malinowski

8/2012 69 / 77

Seeger (EPFL)

Large Scale Bayesian Inference

Penalized Least Squares

MRI Reconstruction

courtesy Mateusz Malinowski

Seeger (EPFL)

Penalized Least Squares

MRI Reconstruction

Seeger (EPFL)

Large Scale Bayesian Inference

Penalized Least Squares

MRI Reconstruction

courtesy Mateusz Malinowski

Seeger (EPFL)

Large Scale Bayesian Inference

Penalized Least Squares

MRI Reconstruction

courtesy Mateusz Malinowski

Seeger (EPFL)

Penalized Least Squares

MRI Reconstruction

courtesy Mateusz Malinowski

Seeger (EPFL)

Large Scale Bayesian Inference

Penalized Least Squares

MRI Reconstruction

courtesy Mateusz Malinowski

Seeger (EPFL)

Large Scale Bayesian Inference

ADMM versus IRLS

Inner loop problems are smooth (twice differentiable)

- Use ADMM only if linear least squares step has direct solution (e.g., two FFTs)
- ADMM simpler to code and run (no CG inside)
- With complex data terms (many parts): ADMM easier to parallelize
- IRLS has much better convergence rate

Gaussian Variances

Computational primitives driving large scale inference

② Gaussian variances

diag⁻¹(
$$\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{B}^{T}$$
), $\boldsymbol{A} = \sigma^{-2}\boldsymbol{X}^{T}\boldsymbol{X} + \boldsymbol{B}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{B}$

A Difficult Problem

diag⁻¹(
$$\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{B}^{T}$$
), $\boldsymbol{A} = \sigma^{-2}\boldsymbol{X}^{T}\boldsymbol{X} + \boldsymbol{B}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{B}$

Gaussian variances much more difficult than Gaussian means

- All means? One linear system
- All variances? n linear systems!
- Situation for Gaussian loopy belief propagation (LBP)
 - If LBP converges: Means are exact
 - Variances are wrong in general: Malioutov et.al., JMLR 2006 Major part of computation (typically) not done by LBP
- Some tractable cases
 - Tree-structured graphical model: Both means and variances in O(n)
 - A admits sparse Cholesky factorization: van Gerven *et.al.*, Neuroimage 2010 Variances by Takahashi equation
 - Our A is none of these (densely coupled)

8/2012 72 / 77

Weiss *et.al.*, JCOMP 2001

A Difficult Problem

diag⁻¹(
$$\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{B}^{T}$$
), $\boldsymbol{A} = \sigma^{-2}\boldsymbol{X}^{T}\boldsymbol{X} + \boldsymbol{B}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{B}$

Other fields need them as well

- Electronic structure calculations
- Uncertainty quantifications for PDEs
- Gaussian MRFs for remote sensing

Low Rank Approximations

diag⁻¹(
$$\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{B}^{T}$$
), $\boldsymbol{A} = \sigma^{-2}\boldsymbol{X}^{T}\boldsymbol{X} + \boldsymbol{B}^{T}\boldsymbol{\Gamma}^{-1}\boldsymbol{B}$

• Pick $\boldsymbol{V} \in \mathbb{R}^{n \times L}$, $L \ll n$:

diag⁻¹(
$$\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{B}^{T}$$
) \approx diag⁻¹($\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{V}\boldsymbol{V}^{T}\boldsymbol{B}^{T}$) = $\sum_{l=1}^{L} (\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{v}_{l}) \circ (\boldsymbol{B}\boldsymbol{v}_{l})$

- Solve L linear systems instead of n
- How to choose V?

Hadamard Vectors

Bekas et.al., App. Num. Math. 2007

$$\operatorname{diag}^{-1}(\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{B}^{T}) \approx \operatorname{diag}^{-1}(\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{V}\boldsymbol{V}^{T}\boldsymbol{B}^{T})$$

• Hadamard matrix:

$$\boldsymbol{H}_n \in \{-1,+1\}^{n \times n}, \quad \boldsymbol{H}_n^T \boldsymbol{H}_n = n \boldsymbol{I}$$

$$\boldsymbol{V} = \frac{1}{\sqrt{L}} (\boldsymbol{H}_n)_{\cdot,L}$$

Deterministic estimator.
 Intuition: Maximize smallest angle between any pair of rows of V

Perturb&MAP

Papandreou, Yuille, NIPS 2010

$$\operatorname{diag}^{-1}(\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{B}^{T}) \approx \operatorname{diag}^{-1}(\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{V}\boldsymbol{V}^{T}\boldsymbol{B}^{T})$$

• Draw *L* independent samples $\boldsymbol{q}_{I} \sim N(\boldsymbol{0}, \boldsymbol{A}^{-1})$:

diag⁻¹(
$$\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{B}^{T}$$
) = E[($\boldsymbol{B}\boldsymbol{q}_{1}$)²] $\approx \frac{1}{L}\sum_{l=1}^{L} (\boldsymbol{B}\boldsymbol{q}_{l})^{2}$

Optimal Monte Carlo estimator (no knowledge about A)

• One linear system per sample:

$$w_{l} \sim N(0, A), \quad q_{l} = A^{-1} w_{l}$$

Outline

Motivation

- Variational Inference Relaxations
 Super-Gaussian Bounding
 Expectation Propagation
 - Gaussian KL Minimization
 - Gaussian RE Minimization
 - Conjugate Gradients Algorithm

Scalable Variational Inference

- Scaling up Super-Gaussian Bounding
- Penalized Least Squares
- Gaussian Variances

Application Example

III-Posed Inverse Problems

Undersampled image reconstruction

U

- $y = Xu + \varepsilon$
- Resolve ambiguities from prior knowledge (transform sparsity, ...)

Model: Factorial vs. Structured

- Independent sparsity potentials
- No structure beyond componentwise sparsity
- Discrete tree-structured backbone
- Mixtures of sparsity potentials

Method: MAP vs. Inference

- Estimate single maximum point
- Many fast algorithms

- Bayesian inference over posterior distribution
- Integrate, don't just maximize

 $\hat{\boldsymbol{u}} = \operatorname*{argmax}_{\boldsymbol{u}} P(\boldsymbol{y}|\boldsymbol{u}) P(\boldsymbol{u})$

$$P(\boldsymbol{u}|\boldsymbol{y}) = \frac{P(\boldsymbol{y}|\boldsymbol{u})P(\boldsymbol{u})}{\int P(\boldsymbol{y}|\boldsymbol{u})P(\boldsymbol{u})d\boldsymbol{u}}$$

Example: Image Inpainting

• Problem: 75% of pixels randomly removed

Multi-Scale Wavelet Analysis

$$s = Wu$$
Image: Second sec

- Quad-tree: Correspondence between scales
- Energy percolates down the tree
- Better recovery where it really matters

Learning Structured Models

θ

- Rich parametrization
 - Transition probabilities (per level)
 - Potential widths (per level, per state)

- Parameters learned automatically from raw data
 - Simple closed form updates
 - No expensive cross validation

Application Example

Variational Bayesian Inference

F10

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\log P(\boldsymbol{y}) = \log \sum_{\boldsymbol{\delta}} \int P(\boldsymbol{y}|\boldsymbol{u}) \underbrace{P(\boldsymbol{u}|\boldsymbol{\delta})}_{\text{mixture}} \underbrace{P(\boldsymbol{\delta})}_{\text{tree}} d\boldsymbol{u}$$

$$\log P(\boldsymbol{y}) \geq \max_{\boldsymbol{\gamma}} \log \sum_{\boldsymbol{\delta}} \int P(\boldsymbol{y} | \boldsymbol{u}) \underbrace{Q(\boldsymbol{u} | \boldsymbol{\delta}; \boldsymbol{\gamma})}_{\text{Gaussian}} e^{-\frac{1}{2}h(\boldsymbol{\gamma}; \boldsymbol{\delta})} P(\boldsymbol{\delta}) \, d\boldsymbol{u}$$

* 王

Application Example

Variational Bayesian Inference

F11

$$\log P(oldsymbol{y}) = \log \sum_{oldsymbol{\delta}} \int P(oldsymbol{y} | oldsymbol{u}) \underbrace{P(oldsymbol{u} | oldsymbol{\delta})}_{ ext{mixture}} \underbrace{P(oldsymbol{\delta})}_{ ext{tree}} oldsymbol{d}oldsymbol{u}$$

- Super-Gaussian bounding
- **2** Factorize: $Q(\boldsymbol{u}, \delta | \boldsymbol{y}) = Q(\boldsymbol{u} | \boldsymbol{y})Q(\delta | \boldsymbol{y})$

$$\begin{split} \log P(\boldsymbol{y}) \geq \max_{\boldsymbol{\gamma}, \boldsymbol{Q}(\boldsymbol{\delta}|\boldsymbol{y})} \log \int \underbrace{P(\boldsymbol{y}|\boldsymbol{u}) \boldsymbol{Q}(\boldsymbol{u}|\langle \boldsymbol{\delta} \rangle_{\boldsymbol{Q}}; \boldsymbol{\gamma})}_{\text{Gaussian}} \, d\boldsymbol{u} \\ - \operatorname{D}[\boldsymbol{Q}(\boldsymbol{\delta}|\boldsymbol{y}) \, \| \, \boldsymbol{P}(\boldsymbol{\delta})] - \frac{1}{2} h(\boldsymbol{\gamma}; \langle \boldsymbol{\delta} \rangle_{\boldsymbol{Q}}) \end{split}$$

Application Example

Variational Bayesian Inference

< 17 ▶

$$\log P(\boldsymbol{y}) = \log \sum_{\boldsymbol{\delta}} \int P(\boldsymbol{y}|\boldsymbol{u}) \underbrace{P(\boldsymbol{u}|\boldsymbol{\delta})}_{\text{mixture}} \underbrace{P(\boldsymbol{\delta})}_{\text{tree}} d\boldsymbol{u}$$

- Super-Gaussian bounding
- **2** Factorize: $Q(\boldsymbol{u}, \delta | \boldsymbol{y}) = Q(\boldsymbol{u} | \boldsymbol{y})Q(\delta | \boldsymbol{y})$

$$egin{aligned} \log \mathcal{P}(oldsymbol{y}) \geq \log \mathcal{Z}_Q(\langle \delta
angle_Q, \gamma) \ &- \mathrm{D}[\mathcal{Q}(\delta | oldsymbol{y}) \, \| \, \mathcal{P}(\delta)] - rac{1}{2} h(\gamma; \langle \delta
angle_Q) \end{aligned}$$

Variational Bayesian Inference

$$\log P(\boldsymbol{y}) = \log \sum_{\boldsymbol{\delta}} \int P(\boldsymbol{y}|\boldsymbol{u}) \underbrace{P(\boldsymbol{u}|\boldsymbol{\delta})}_{\text{mixture}} \underbrace{P(\boldsymbol{\delta})}_{\text{tree}} d\boldsymbol{u}$$

- Super-Gaussian bounding
- **2** Factorize: $Q(\boldsymbol{u}, \delta | \boldsymbol{y}) = Q(\boldsymbol{u} | \boldsymbol{y})Q(\delta | \boldsymbol{y})$
- Variational representation of log Z_Q

 $-2\log P(\boldsymbol{y}) \leq \min_{\boldsymbol{\gamma}, \boldsymbol{Q}(\boldsymbol{\delta}|\boldsymbol{y})} \min_{\boldsymbol{z}, \boldsymbol{u}_{*}} \phi_{\boldsymbol{z}}(\boldsymbol{u}_{*}, \boldsymbol{\gamma}, \langle \boldsymbol{\delta} \rangle_{\boldsymbol{Q}}) + 2\mathrm{D}[\boldsymbol{Q}(\boldsymbol{\delta}|\boldsymbol{y}) \parallel \boldsymbol{P}(\boldsymbol{\delta})]$

Variational Bayesian Inference

$$\log P(\boldsymbol{y}) = \log \sum_{\boldsymbol{\delta}} \int P(\boldsymbol{y}|\boldsymbol{u}) \underbrace{P(\boldsymbol{u}|\boldsymbol{\delta})}_{\text{mixture}} \underbrace{P(\boldsymbol{\delta})}_{\text{tree}} d\boldsymbol{u}$$

- Super-Gaussian bounding
- 2 Factorize: $Q(\boldsymbol{u}, \delta | \boldsymbol{y}) = Q(\boldsymbol{u} | \boldsymbol{y})Q(\delta | \boldsymbol{y})$
- **③** Variational representation of $\log Z_Q$

$$-2\log P(\boldsymbol{y}) \leq \min_{\boldsymbol{z}} \left(\min_{Q(\boldsymbol{\delta}|\boldsymbol{y}), \boldsymbol{u}_*, \boldsymbol{\gamma}} \phi_{\boldsymbol{z}}(\boldsymbol{u}_*, \boldsymbol{\gamma}, \langle \boldsymbol{\delta} \rangle_Q) + 2\mathrm{D}[Q(\boldsymbol{\delta}|\boldsymbol{y}) \parallel P(\boldsymbol{\delta})] \right)$$

- Inner loop problem: Alternating minimization
 - Penalized least squares over u_* (eliminate γ) F12a

Variational Bayesian Inference

$$\log P(\boldsymbol{y}) = \log \sum_{\boldsymbol{\delta}} \int P(\boldsymbol{y}|\boldsymbol{u}) \underbrace{P(\boldsymbol{u}|\boldsymbol{\delta})}_{\text{mixture}} \underbrace{P(\boldsymbol{\delta})}_{\text{tree}} d\boldsymbol{u}$$

- Super-Gaussian bounding
- 2 Factorize: $Q(\boldsymbol{u}, \delta | \boldsymbol{y}) = Q(\boldsymbol{u} | \boldsymbol{y})Q(\delta | \boldsymbol{y})$
- Variational representation of log Z_Q

$$-2\log P(\boldsymbol{y}) \leq \min_{\boldsymbol{z}} \left(\min_{\boldsymbol{Q}(\boldsymbol{\delta}|\boldsymbol{y}), \boldsymbol{u}_{*}, \boldsymbol{\gamma}} \phi_{\boldsymbol{z}}(\boldsymbol{u}_{*}, \boldsymbol{\gamma}, \langle \boldsymbol{\delta} \rangle_{\boldsymbol{Q}}) + 2\mathrm{D}[\boldsymbol{Q}(\boldsymbol{\delta}|\boldsymbol{y}) \parallel \boldsymbol{P}(\boldsymbol{\delta})] \right)$$

- Inner loop problem: Alternating minimization
 - Penalized least squares over \boldsymbol{u}_* (eliminate γ)
 - Belief propagation on tree for $Q(\delta|\mathbf{y})$ (eliminate γ)

F12b

Application Example

No (Variational) Inference Without ...

Application Example

Why Inference Algorithms Can Be Slow

< 47 ▶

Attaining Scalability

Outer Loop

Large Scale Variational Inference

- Inference beyond MAP estimation
 - Robust solutions for ill-posed problems
 - Model calibration from raw data
 - Bilinear models (blind deconvolution, dictionary learning)
 - Decision making (experimental design)
- Algorithms beyond belief propagation
 - Exploit workhorses from computational mathematics
 - Reductions to convex optimization
 - Randomized techniques may be part of the solution
- What about expectation propagation?
 - More difficult to scale up
 - Talk at workshop

Seeger, Nickisch, AISTATS 2011

glm-ie: Toolbox by Hannes Nickisch

mloss.org/software/view/269/

- Generalized sparse linear models
- MAP reconstruction and variational Bayesian inference (double loop algorithm for super-Gaussian bounding)
- Matlab 7.x, GNU Octave 3.2.x

Physics and Bayesian Machine Learning

- You love physics?
 - Predictive models for real-world phenomena
 - Intuitive analysis of large complex systems
 - Statistical evaluation by clever experiments

You'll love Bayesian machine learning!

- Most Bayesian concepts come from (statistical) physics
- Challenges of our time
 - Huge, extremely complex datasets
 - Connectivity at all scales
 - Human-level recognition and decision-making

Needs physics thinking more than ever

Bayesian Machine Learning @ EPFL

Care for new vistas? Postdoc, PhD, Internship

Seeger (EPFL)

