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1 Super-Gaussian Bounding for Laplace Potentials

(b): If mj = ’yj_l, then

0—2logZg -2 1 12/ ) (.2 B 9
077]_ZQ/P(y|u) (Zl:[le (=57/2) du = Eqlsj].
(c):

v <7/ Eqls]]

(d): The equation in (c) is really coupled, since Eqg [sf} depends on ~; as well, but appears on
the right hand side only. The complete minimization can be done by iterating the fixed point
equation. The marginal Q(s;|y) does not have to be recomputed during this minimization,
since we can always write

2

QUsily) = Q(sjly)e > A% Amj =) — ;.

2 Gaussian KL Minimization and Super-Gaussian Bounding

Obviously,
d)KL(‘Y*v 0) S ¢)SG(7*)

implies the statement. By definition of super-Gaussianity,
—logt;(sj) < 57/ (25) + hj(75)/2,

so that
2Eq [—logt;(s;) — s7/(27x5)] < hj(yss)-



3 Efficient Parameterization of Gaussian KL Minimization

(a) Immediate, given that

vj = 2Eq[—logt;(s;)]
and Eg[uul] =2 + ppT.
(b):

q
Vs¢=-S""4+E+Y mbsb].
j=1

Setting this equal to zero:
¥ ! = E + BT (diag7)B.

4 Coordinate Update Algorithm for Gaussian KL Minimiza-
tion

(a): Using the hint:
1 1
Amj=— — —.

o pj
(b):

/

J
J

(c): This is just (a) in reverse. First, (b) implies that

/
J Bp;-
Then,
1 1 0i
—=Ami+— = p=—27"L
1 T b 7 1+ (Amj)p;

5 Spectral Analysis of Conjugate Gradients Algorithm

First,
k—1 ) k—1 )
P(A)=P(QAQ") =) 0;(QAQ"Y =) 0,QA Q" =QP(A)Q,
j=0 j=0

because QT Q = I. Then,
g(@) = (1/2)2"QAQ Tz — b QQ"x = (1/2)y" Ay — b' y.

Since A~' = QA~'QT, we have that ¢, = —(1/2)b"QA'QTb = —(1/2)b" A~ 'b.



Next, @}, € Ky, which is spanned by A7b for j < k. This means that x;, = P,(A)b for some
polynomial with deg(Py) < k. Therefore,

Y, = QT P,(A)b = P,(A)QTb = P,(A)b.

Using the solutions from above,
q(xy) — g = (1/2) min > Nk — by + 07 /N) = (1/2) H}}nz b} (NiPe(Ai)* = Pu(Ni) + 1/M)
k=1 b=l
= (1/2) min 62 )\7; )\zP )\i -1 2.
(/)Pk;(z/ J(AiPy(Ai) — 1)

Let Qi (t) := tPy(¢t)—1. As Py runs over polynomials of degree < k, Qj, runs over polynomials
of degree < k with Q;(0) = —1. The bound is nondecreasing in the Qx()\;)? (which is why
we can also use —@Q)y, for the argument). Without assumptions on b, we have to strive for
small |Qr(A;)], especially for the smaller A;.

If {A1,..., \n} = {K1,-.., Kk}, pick the polynomial Qx(t) = [H?ﬂ(t — r;)]/[I1; k;]- Here,
[I; x; > 0 because all k; > 0 (A is positive definite). Then, [Qx(0)| = 1 and Qx(\;) = 0 for
all 7, so that q(xg) = ¢.. Since q is strictly convex, it has a unique minimum, so Ty = ..

6 Super-Gaussian Bounding for Bernoulli Potentials

(a):

1 evs/?
1+e¥s - eys/2 + 6_95/2 ’
so that 1
b=y/2, t(s)=-—.
y/2, Hs) 2 cosh(bs)
t(s) is even. Using the hint, log#(s) = —log cosh(bs) —log2 is a convex function of z = s2.

This means that #(s), and therefore ¢(s), are super-Gaussian.
(b): It suffices to show that f(z) = log(1 + €%) is convex.

er 1 e ®

O e =N OF

- 0 = ! 1(_

e = @) () >0,

so that f(x) is strictly convex. This means that t(s) is log-concave, and so is £(s), since
logt(s) = logt(s) — bs.

(c): We follow the argument given in the course. The MAP problem for the setup here would

be
q

H&in0_2||u*‘|2 - 2210gt(s*j), sx = Bu,.
i=1

Now, t(s.j) = €***i{(s4;). In the course, we showed that for an even potential, the IL problem
differs from MAP in that #(s.;) is replaced by #((z; + s.;)'/?). Here,

log t(84;) = bsyj + log (s4j) — bsw; + logt((2; + sfj)l/Q),



so the IL problem is
q
min o2 fu. 2 =27 (s +log (2 + 53)7)) .
j=1

From (b), log#(s.;j) is log-concave, which implies the convexity of h(7;) and therefore of
t((z + sfj)l/Q) (this result is quoted in the course and proved in [1]), and bs,; is linear,
therefore convex.

7 Proximal Map for Inner Loop Optimization Problem

(a): If
s = prox(r) = argmin f(s;7),
then f(s; —r) = f(—s;7), so that prox(—r) = —prox(r). If r > 0 and s < 0, then f(—s;7) <
f(s;7), since (—s —r)? < (s — r)2. Therefore, prox(r) > 0.
(b): Recall that s > 0. Define y = (1 + s%)1/2, so that

1
f(s;m) = ky + 5(5 — )2

The stationary equation is df /ds = 0:
! _ /
? =r—s.
s’ < r follows from s'/y’ > 0. Also, r > 0 implies s’ > 0. Moreover, r = s'(1 + k/y') <
s'(1 + k), since y' > 1, so that ' > r/(1 + x). Finally, ¢/ > |¢/[, so that s'/y’ < 1 and
r — s’ < k. These inequalities can be used to bracket a solution for s’.

(¢): Squaring both sides of the stationary equation gives

K22 = (1+sY)(r—s)? & s'—283+ (2 +1—r%)s? —2rs+ 12 = 0.

8 Bound on Marginal Variances

First,
A=0X"X +B'T'B.
We have that Varg[s;|y] = b?A_lbj, where b; = B7§; is the j-th row of B. Then,
b]TAflbj = max 2b?w — 2T Ax = max 2531Ba: -0 ?|Xz|?> - (Bx)'T"}(Bx)
xT X
< max 26?(Ba:) — (Bz)IT7}(Bx) < max 2(§ij —w T lw = 5]TF5j = ;.

The first < is due to || X x||?> > 0, the second due to the fact that Bx runs over a subspace
of w € RY. The first and last = are applications of the identity provided in the hint.
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