School on Large Scale Problems in Machine Learning and Workshop on Common Concepts in Machine Learning and Statistical Physics

20-31 August 2012

Large Scale Variational Bayesian Inference for Continuous Variable Models Solutions to Exercises

Matthias SEEGER
Laboratory for Probabilistic Machine Learning, EPFL, CH-1015 Lausanne
Switzerland

ICTP School on Large Scale Problems in Machine Learning:
 Large Scale Variational Bayesian Inference for Continuous
 Variable Models - Solutions to Exercises

Matthias Seeger
Probabilistic Machine Learning Laboratory
Ecole Polytechnique Fédérale de Lausanne
INR 112, Station 14, CH-1015 Lausanne
matthias.seeger@epfl.ch

August 21, 2012

1 Super-Gaussian Bounding for Laplace Potentials

(b): If $\pi_{j}=\gamma_{j}^{-1}$, then

$$
\frac{\partial-2 \log Z_{Q}}{\partial \pi_{j}}=\frac{-2}{Z_{Q}} \int P(\boldsymbol{y} \mid \boldsymbol{u})\left(\prod_{i=1}^{q} e^{-\frac{1}{2} s_{i}^{2} / \gamma_{i}}\right)\left(-s_{j}^{2} / 2\right) d \boldsymbol{u}=\mathrm{E}_{Q}\left[s_{j}^{2}\right]
$$

(c):

$$
\gamma_{j} \leftarrow \tau^{-1} \sqrt{\mathrm{E}_{Q}\left[s_{j}^{2}\right]}
$$

(d): The equation in (c) is really coupled, since $\mathrm{E}_{Q}\left[s_{j}^{2}\right]$ depends on γ_{j} as well, but appears on the right hand side only. The complete minimization can be done by iterating the fixed point equation. The marginal $Q\left(s_{j} \mid \boldsymbol{y}\right)$ does not have to be recomputed during this minimization, since we can always write

$$
Q\left(s_{j} \mid \boldsymbol{y}\right)^{\prime} \propto Q\left(s_{j} \mid \boldsymbol{y}\right) e^{-\frac{1}{2}\left(\Delta \pi_{j}\right) s_{j}^{2}}, \quad \Delta \pi_{j}=\pi_{j}^{\prime}-\pi_{j}
$$

2 Gaussian KL Minimization and Super-Gaussian Bounding

Obviously,

$$
\phi_{\mathrm{KL}}\left(\boldsymbol{\gamma}_{*}, \mathbf{0}\right) \leq \phi_{\mathrm{SG}}\left(\boldsymbol{\gamma}_{*}\right)
$$

implies the statement. By definition of super-Gaussianity,

$$
-\log t_{j}\left(s_{j}\right) \leq s_{j}^{2} /\left(2 \gamma_{* j}\right)+h_{j}\left(\gamma_{* j}\right) / 2
$$

so that

$$
2 \mathrm{E}_{Q}\left[-\log t_{j}\left(s_{j}\right)-s_{j}^{2} /\left(2 \gamma_{* j}\right)\right] \leq h_{j}\left(\gamma_{* j}\right)
$$

3 Efficient Parameterization of Gaussian KL Minimization

(a) Immediate, given that

$$
\nu_{j}=2 \mathrm{E}_{Q}\left[-\log t_{j}\left(s_{j}\right)\right]
$$

and $\mathrm{E}_{Q}\left[\boldsymbol{u} \boldsymbol{u}^{T}\right]=\boldsymbol{\Sigma}+\boldsymbol{\mu} \boldsymbol{\mu}^{T}$.
(b):

$$
\nabla_{\boldsymbol{\Sigma}} \phi=-\boldsymbol{\Sigma}^{-1}+\boldsymbol{E}+\sum_{j=1}^{q} \pi_{j} \boldsymbol{b}_{j} \boldsymbol{b}_{j}^{T}
$$

Setting this equal to zero:

$$
\boldsymbol{\Sigma}_{*}^{-1}=\boldsymbol{E}+\boldsymbol{B}^{T}(\operatorname{diag} \boldsymbol{\pi}) \boldsymbol{B}
$$

4 Coordinate Update Algorithm for Gaussian KL Minimization

(a): Using the hint:

$$
\Delta \pi_{j}=\frac{1}{\rho_{j}^{\prime}}-\frac{1}{\rho_{j}}
$$

(b):

$$
-p_{j}^{\prime}+\boldsymbol{E}_{j j}+\frac{\partial \nu_{j}^{\prime}}{\partial \rho_{j}^{\prime}}=0
$$

(c): This is just (a) in reverse. First, (b) implies that

$$
\pi_{j}^{\prime}=\frac{\partial \nu_{j}^{\prime}}{\partial \rho_{j}^{\prime}}
$$

Then,

$$
\frac{1}{\rho_{j}^{\prime}}=\Delta \pi_{j}+\frac{1}{\rho_{j}} \quad \Rightarrow \quad \rho_{j}^{\prime}=\frac{\rho_{j}}{1+\left(\Delta \pi_{j}\right) \rho_{j}}
$$

5 Spectral Analysis of Conjugate Gradients Algorithm

First,

$$
P(\boldsymbol{A})=P\left(\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}\right)=\sum_{j=0}^{k-1} \alpha_{j}\left(\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}\right)^{j}=\sum_{j=0}^{k-1} \alpha_{j} \boldsymbol{Q} \boldsymbol{\Lambda}^{j} \boldsymbol{Q}^{T}=\boldsymbol{Q} P(\boldsymbol{\Lambda}) \boldsymbol{Q}^{T}
$$

because $\boldsymbol{Q}^{T} \boldsymbol{Q}=\boldsymbol{I}$. Then,

$$
q(\boldsymbol{x})=(1 / 2) \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T} \boldsymbol{x}-\boldsymbol{b}^{T} \boldsymbol{Q} \boldsymbol{Q}^{T} \boldsymbol{x}=(1 / 2) \boldsymbol{y}^{T} \boldsymbol{\Lambda} \boldsymbol{y}-\overline{\boldsymbol{b}}^{T} \boldsymbol{y}
$$

Since $\boldsymbol{A}^{-1}=\boldsymbol{Q} \boldsymbol{\Lambda}^{-1} \boldsymbol{Q}^{T}$, we have that $q_{*}=-(1 / 2) \boldsymbol{b}^{T} \boldsymbol{Q} \boldsymbol{\Lambda}^{-1} \boldsymbol{Q}^{T} \boldsymbol{b}=-(1 / 2) \overline{\boldsymbol{b}}^{T} \boldsymbol{\Lambda}^{-1} \overline{\boldsymbol{b}}$.

Next, $\boldsymbol{x}_{k} \in \mathcal{K}_{k}$, which is spanned by $\boldsymbol{A}^{j} \boldsymbol{b}$ for $j<k$. This means that $\boldsymbol{x}_{k}=P_{k}(\boldsymbol{A}) \boldsymbol{b}$ for some polynomial with $\operatorname{deg}\left(P_{k}\right)<k$. Therefore,

$$
\boldsymbol{y}_{k}=\boldsymbol{Q}^{T} P_{k}(\boldsymbol{A}) \boldsymbol{b}=P_{k}(\boldsymbol{\Lambda}) \boldsymbol{Q}^{T} \boldsymbol{b}=P_{k}(\boldsymbol{\Lambda}) \overline{\boldsymbol{b}}
$$

Using the solutions from above,

$$
\begin{aligned}
q\left(\boldsymbol{x}_{k}\right)-q_{*} & =(1 / 2) \min _{P_{k}} \sum_{i=1}^{n}\left(\lambda_{i} y_{k, i}^{2}-\bar{b}_{i} y_{k, i}+\bar{b}_{i}^{2} / \lambda_{i}\right)=(1 / 2) \min _{P_{k}} \sum_{i=1}^{n} \bar{b}_{i}^{2}\left(\lambda_{i} P_{k}\left(\lambda_{i}\right)^{2}-P_{k}\left(\lambda_{i}\right)+1 / \lambda_{i}\right) \\
& =(1 / 2) \min _{P_{k}} \sum_{i=1}^{n}\left(\bar{b}_{i}^{2} / \lambda_{i}\right)\left(\lambda_{i} P_{k}\left(\lambda_{i}\right)-1\right)^{2}
\end{aligned}
$$

Let $Q_{k}(t):=t P_{k}(t)-1$. As P_{k} runs over polynomials of degree $<k, Q_{k}$ runs over polynomials of degree $\leq k$ with $Q_{k}(0)=-1$. The bound is nondecreasing in the $Q_{k}\left(\lambda_{i}\right)^{2}$ (which is why we can also use $-Q_{k}$ for the argument). Without assumptions on \boldsymbol{b}, we have to strive for small $\left|Q_{k}\left(\lambda_{i}\right)\right|$, especially for the smaller λ_{i}.
If $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}=\left\{\kappa_{1}, \ldots, \kappa_{k}\right\}$, pick the polynomial $Q_{k}(t)=\left[\prod_{j=1}^{k}\left(t-\kappa_{j}\right)\right] /\left[\prod_{j} \kappa_{j}\right]$. Here, $\prod_{j} \kappa_{j}>0$ because all $\kappa_{j}>0$ (\boldsymbol{A} is positive definite). Then, $\left|Q_{k}(0)\right|=1$ and $Q_{k}\left(\lambda_{i}\right)=0$ for all i, so that $q\left(\boldsymbol{x}_{k}\right)=q_{*}$. Since q is strictly convex, it has a unique minimum, so $\boldsymbol{x}_{k}=\boldsymbol{x}_{*}$.

6 Super-Gaussian Bounding for Bernoulli Potentials

(a):

$$
\frac{1}{1+e^{-y s}}=\frac{e^{y s / 2}}{e^{y s / 2}+e^{-y s / 2}}
$$

so that

$$
b=y / 2, \quad \tilde{t}(s)=\frac{1}{2 \cosh (b s)}
$$

$\tilde{t}(s)$ is even. Using the hint, $\log \tilde{t}(s)=-\log \cosh (b s)-\log 2$ is a convex function of $x=s^{2}$. This means that $\tilde{t}(s)$, and therefore $t(s)$, are super-Gaussian.
(b): It suffices to show that $f(x)=\log \left(1+e^{x}\right)$ is convex.

$$
f^{\prime}(x)=\frac{e^{x}}{1+e^{x}}=\frac{1}{1+e^{-x}}, \quad f^{\prime \prime}(x)=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=f^{\prime}(x) f^{\prime}(-x)>0
$$

so that $f(x)$ is strictly convex. This means that $t(s)$ is log-concave, and so is $\tilde{t}(s)$, since $\log \tilde{t}(s)=\log t(s)-b s$.
(c): We follow the argument given in the course. The MAP problem for the setup here would be

$$
\min _{\boldsymbol{u}_{*}} \sigma^{-2}\left\|\boldsymbol{u}_{*}\right\|^{2}-2 \sum_{j=1}^{q} \log t\left(s_{* j}\right), \quad \boldsymbol{s}_{*}=\boldsymbol{B} \boldsymbol{u}_{*}
$$

Now, $t\left(s_{* j}\right)=e^{b s_{* j}} \tilde{t}\left(s_{* j}\right)$. In the course, we showed that for an even potential, the IL problem differs from MAP in that $\tilde{t}\left(s_{* j}\right)$ is replaced by $\tilde{t}\left(\left(z_{j}+s_{* j}\right)^{1 / 2}\right)$. Here,

$$
\log t\left(s_{* j}\right)=b s_{* j}+\log \tilde{t}\left(s_{* j}\right) \rightarrow b s_{* j}+\log \tilde{t}\left(\left(z_{j}+s_{* j}^{2}\right)^{1 / 2}\right)
$$

so the IL problem is

$$
\min _{\boldsymbol{u}_{*}} \sigma^{-2}\left\|\boldsymbol{u}_{*}\right\|^{2}-2 \sum_{j=1}^{q}\left(b s_{* j}+\log \tilde{t}\left(\left(z_{j}+s_{* j}^{2}\right)^{1 / 2}\right)\right)
$$

From (b), $\log \tilde{t}\left(s_{* j}\right)$ is log-concave, which implies the convexity of $h\left(\gamma_{j}\right)$ and therefore of $\tilde{t}\left(\left(z_{j}+s_{* j}^{2}\right)^{1 / 2}\right.$) (this result is quoted in the course and proved in [1]), and $b s_{* j}$ is linear, therefore convex.

7 Proximal Map for Inner Loop Optimization Problem

(a): If

$$
s^{\prime}=\operatorname{prox}(r)=\underset{s}{\operatorname{argmin}} f(s ; r),
$$

then $f(s ;-r)=f(-s ; r)$, so that $\operatorname{prox}(-r)=-\operatorname{prox}(r)$. If $r>0$ and $s<0$, then $f(-s ; r)<$ $f(s ; r)$, since $(-s-r)^{2}<(s-r)^{2}$. Therefore, $\operatorname{prox}(r) \geq 0$.
(b): Recall that $s \geq 0$. Define $y=\left(1+s^{2}\right)^{1 / 2}$, so that

$$
f(s ; r)=\kappa y+\frac{1}{2}(s-r)^{2} .
$$

The stationary equation is $d f / d s=0$:

$$
\frac{\kappa s^{\prime}}{y^{\prime}}=r-s^{\prime}
$$

$s^{\prime} \leq r$ follows from $s^{\prime} / y^{\prime} \geq 0$. Also, $r>0$ implies $s^{\prime}>0$. Moreover, $r=s^{\prime}\left(1+\kappa / y^{\prime}\right)<$ $s^{\prime}(1+\kappa)$, since $y^{\prime}>1$, so that $s^{\prime}>r /(1+\kappa)$. Finally, $y^{\prime}>\left|s^{\prime}\right|$, so that $s^{\prime} / y^{\prime}<1$ and $r-s^{\prime}<\kappa$. These inequalities can be used to bracket a solution for s^{\prime}.
(c): Squaring both sides of the stationary equation gives

$$
\kappa^{2} s^{2}=\left(1+s^{2}\right)(r-s)^{2} \quad \Leftrightarrow \quad s^{4}-2 r s^{3}+\left(r^{2}+1-\kappa^{2}\right) s^{2}-2 r s+r^{2}=0 .
$$

8 Bound on Marginal Variances

First,

$$
\boldsymbol{A}=\sigma^{-2} \boldsymbol{X}^{T} \boldsymbol{X}+\boldsymbol{B}^{T} \boldsymbol{\Gamma}^{-1} \boldsymbol{B}
$$

We have that $\operatorname{Var}_{Q}\left[s_{j} \mid \boldsymbol{y}\right]=\boldsymbol{b}_{j}^{T} \boldsymbol{A}^{-1} \boldsymbol{b}_{j}$, where $\boldsymbol{b}_{j}=\boldsymbol{B}^{T} \boldsymbol{\delta}_{j}$ is the j-th row of \boldsymbol{B}. Then,

$$
\begin{aligned}
\boldsymbol{b}_{j}^{T} \boldsymbol{A}^{-1} \boldsymbol{b}_{j} & =\max _{\boldsymbol{x}} 2 \boldsymbol{b}_{j}^{T} \boldsymbol{x}-\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\max _{\boldsymbol{x}} 2 \boldsymbol{\delta}_{j}^{T} \boldsymbol{B} \boldsymbol{x}-\sigma^{-2}\|\boldsymbol{X} \boldsymbol{x}\|^{2}-(\boldsymbol{B} \boldsymbol{x})^{T} \boldsymbol{\Gamma}^{-1}(\boldsymbol{B} \boldsymbol{x}) \\
& \leq \max _{\boldsymbol{x}} 2 \boldsymbol{\delta}_{j}^{T}(\boldsymbol{B} \boldsymbol{x})-(\boldsymbol{B} \boldsymbol{x})^{T} \boldsymbol{\Gamma}^{-1}(\boldsymbol{B} \boldsymbol{x}) \leq \max _{\boldsymbol{w}} 2 \boldsymbol{\delta}_{j}^{T} \boldsymbol{w}-\boldsymbol{w}^{T} \boldsymbol{\Gamma}^{-1} \boldsymbol{w}=\boldsymbol{\delta}_{j}^{T} \boldsymbol{\Gamma} \boldsymbol{\delta}_{j}=\gamma_{j} .
\end{aligned}
$$

The first \leq is due to $\|\boldsymbol{X} \boldsymbol{x}\|^{2} \geq 0$, the second due to the fact that $\boldsymbol{B} \boldsymbol{x}$ runs over a subspace of $\boldsymbol{w} \in \mathbb{R}^{q}$. The first and last $=$ are applications of the identity provided in the hint.

References

[1] M. Seeger and H. Nickisch. Large scale Bayesian inference and experimental design for sparse linear models. SIAM Journal of Imaging Sciences, 4(1):166-199, 2011.

