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1 Super-Gaussian Bounding for Laplace Potentials

(b): If πj = γ−1
j , then
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(c):
γj ← τ−1

�
EQ[s2

j ]

(d): The equation in (c) is really coupled, since EQ[s2
j ] depends on γj as well, but appears on

the right hand side only. The complete minimization can be done by iterating the fixed point
equation. The marginal Q(sj |y) does not have to be recomputed during this minimization,
since we can always write

Q(sj |y)� ∝ Q(sj |y)e−
1
2 (∆πj)s2

j , ∆πj = π�
j − πj .

2 Gaussian KL Minimization and Super-Gaussian Bounding

Obviously,
φKL(γ∗,0) ≤ φSG(γ∗)

implies the statement. By definition of super-Gaussianity,

− log tj(sj) ≤ s2
j/(2γ∗j) + hj(γ∗j)/2,

so that
2EQ

�
− log tj(sj)− s2

j/(2γ∗j)
�
≤ hj(γ∗j).



3 Efficient Parameterization of Gaussian KL Minimization

(a) Immediate, given that
νj = 2EQ[− log tj(sj)]

and EQ[uuT ] = Σ + µµT .

(b):

∇Σφ = −Σ−1 + E +
q�

j=1

πjbjb
T
j .

Setting this equal to zero:
Σ−1

∗ = E + BT (diag π)B .

4 Coordinate Update Algorithm for Gaussian KL Minimiza-

tion

(a): Using the hint:

∆πj =
1
ρ�j
− 1

ρj
.

(b):

−p�j + Ejj +
∂ν �j
∂ρ�j

= 0.

(c): This is just (a) in reverse. First, (b) implies that

π�
j =

∂ν �j
∂ρ�j

.

Then,
1
ρ�j

= ∆πj +
1
ρj

⇒ ρ�j =
ρj

1 + (∆πj)ρj
.

5 Spectral Analysis of Conjugate Gradients Algorithm

First,

P (A) = P (QΛQT ) =
k−1�

j=0

αj(QΛQT )j =
k−1�

j=0

αjQΛjQT = QP (Λ)QT ,

because QT Q = I. Then,

q(x) = (1/2)xT QΛQT x − bT QQT x = (1/2)yTΛy − b̄
T
y.

Since A−1 = QΛ−1QT , we have that q∗ = −(1/2)bT QΛ−1QT b = −(1/2)b̄TΛ−1b̄.



Next, xk ∈ Kk, which is spanned by Ajb for j < k. This means that xk = Pk(A)b for some
polynomial with deg(Pk) < k. Therefore,

yk = QT Pk(A)b = Pk(Λ)QT b = Pk(Λ)b̄.

Using the solutions from above,

q(xk)− q∗ = (1/2) min
Pk

n�

i=1

(λiy
2
k,i − b̄iyk,i + b̄2

i /λi) = (1/2) min
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i=1

b̄2
i (λiPk(λi)2 − Pk(λi) + 1/λi)

= (1/2) min
Pk

n�

i=1

(b̄2
i /λi)(λiPk(λi)− 1)2.

Let Qk(t) := tPk(t)−1. As Pk runs over polynomials of degree < k, Qk runs over polynomials
of degree ≤ k with Qk(0) = −1. The bound is nondecreasing in the Qk(λi)2 (which is why
we can also use −Qk for the argument). Without assumptions on b, we have to strive for
small |Qk(λi)|, especially for the smaller λi.

If {λ1, . . . ,λn} = {κ1, . . . ,κk}, pick the polynomial Qk(t) = [
�k

j=1(t − κj)]/[
�

j κj ]. Here,�
j κj > 0 because all κj > 0 (A is positive definite). Then, |Qk(0)| = 1 and Qk(λi) = 0 for

all i, so that q(xk) = q∗. Since q is strictly convex, it has a unique minimum, so xk = x∗.

6 Super-Gaussian Bounding for Bernoulli Potentials

(a):
1

1 + e−ys
=

eys/2

eys/2 + e−ys/2
,

so that
b = y/2, t̃(s) =

1
2 cosh(bs)

.

t̃(s) is even. Using the hint, log t̃(s) = − log cosh(bs)− log 2 is a convex function of x = s2.
This means that t̃(s), and therefore t(s), are super-Gaussian.

(b): It suffices to show that f(x) = log(1 + ex) is convex.

f �(x) =
ex

1 + ex
=

1
1 + e−x

, f ��(x) =
e−x

(1 + e−x)2
= f �(x)f �(−x) > 0,

so that f(x) is strictly convex. This means that t(s) is log-concave, and so is t̃(s), since
log t̃(s) = log t(s)− bs.

(c): We follow the argument given in the course. The MAP problem for the setup here would
be

min
u∗

σ−2�u∗�2 − 2
q�

j=1

log t(s∗j), s∗ = Bu∗.

Now, t(s∗j) = ebs∗j t̃(s∗j). In the course, we showed that for an even potential, the IL problem
differs from MAP in that t̃(s∗j) is replaced by t̃((zj + s∗j)1/2). Here,

log t(s∗j) = bs∗j + log t̃(s∗j)→ bs∗j + log t̃((zj + s2
∗j)

1/2),



so the IL problem is

min
u∗

σ−2�u∗�2 − 2
q�

j=1

�
bs∗j + log t̃((zj + s2

∗j)
1/2)

�
.

From (b), log t̃(s∗j) is log-concave, which implies the convexity of h(γj) and therefore of
t̃((zj + s2

∗j)
1/2) (this result is quoted in the course and proved in [1]), and bs∗j is linear,

therefore convex.

7 Proximal Map for Inner Loop Optimization Problem

(a): If
s� = prox(r) = argmin

s
f(s; r),

then f(s;−r) = f(−s; r), so that prox(−r) = −prox(r). If r > 0 and s < 0, then f(−s; r) <
f(s; r), since (−s− r)2 < (s− r)2. Therefore, prox(r) ≥ 0.

(b): Recall that s ≥ 0. Define y = (1 + s2)1/2, so that

f(s; r) = κy +
1
2
(s− r)2.

The stationary equation is df/ds = 0:
κs�

y�
= r − s�.

s� ≤ r follows from s�/y� ≥ 0. Also, r > 0 implies s� > 0. Moreover, r = s�(1 + κ/y�) <
s�(1 + κ), since y� > 1, so that s� > r/(1 + κ). Finally, y� > |s�|, so that s�/y� < 1 and
r − s� < κ. These inequalities can be used to bracket a solution for s�.

(c): Squaring both sides of the stationary equation gives

κ2s2 = (1 + s2)(r − s)2 ⇔ s4 − 2rs3 + (r2 + 1− κ2)s2 − 2rs + r2 = 0.

8 Bound on Marginal Variances

First,
A = σ−2XT X + BTΓ−1B .

We have that VarQ[sj |y] = bT
j A−1bj , where bj = BT δj is the j-th row of B . Then,

bT
j A−1bj = max

x
2bT

j x − xT Ax = max
x

2δT
j Bx − σ−2�Xx�2 − (Bx)TΓ−1(Bx)

≤ max
x

2δT
j (Bx)− (Bx)TΓ−1(Bx) ≤ max

w
2δT

j w −wTΓ−1w = δT
j Γδj = γj .

The first ≤ is due to �Xx�2 ≥ 0, the second due to the fact that Bx runs over a subspace
of w ∈ Rq. The first and last = are applications of the identity provided in the hint.
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