

2361-8

School on Large Scale Problems in Machine Learning and Workshop on Common Concepts in Machine Learning and Statistical Physics

20 - 31 August 2012

Large Scale Variational Bayesian Inference for Continuous Variable Models -Solutions to Exercises

Matthias SEEGER Laboratory for Probabilistic Machine Learning, EPFL, CH-1015 Lausanne Switzerland

ICTP School on Large Scale Problems in Machine Learning: Large Scale Variational Bayesian Inference for Continuous Variable Models — Solutions to Exercises

Matthias Seeger Probabilistic Machine Learning Laboratory Ecole Polytechnique Fédérale de Lausanne INR 112, Station 14, CH-1015 Lausanne matthias.seeger@epfl.ch

August 21, 2012

1 Super-Gaussian Bounding for Laplace Potentials

(b): If $\pi_j = \gamma_j^{-1}$, then

$$\frac{\partial - 2\log Z_Q}{\partial \pi_j} = \frac{-2}{Z_Q} \int P(\boldsymbol{y}|\boldsymbol{u}) \left(\prod_{i=1}^q e^{-\frac{1}{2}s_i^2/\gamma_i}\right) (-s_j^2/2) d\boldsymbol{u} = \mathbb{E}_Q[s_j^2].$$

(c):

$$\gamma_j \leftarrow \tau^{-1} \sqrt{\mathbf{E}_Q[s_j^2]}$$

(d): The equation in (c) is really coupled, since $E_Q[s_j^2]$ depends on γ_j as well, but appears on the right hand side only. The complete minimization can be done by iterating the fixed point equation. The marginal $Q(s_j|\boldsymbol{y})$ does not have to be recomputed during this minimization, since we can always write

$$Q(s_j|\boldsymbol{y})' \propto Q(s_j|\boldsymbol{y})e^{-\frac{1}{2}(\Delta\pi_j)s_j^2}, \quad \Delta\pi_j = \pi'_j - \pi_j.$$

2 Gaussian KL Minimization and Super-Gaussian Bounding

Obviously,

$$\phi_{\mathrm{KL}}(\boldsymbol{\gamma}_*, \mathbf{0}) \leq \phi_{\mathrm{SG}}(\boldsymbol{\gamma}_*)$$

implies the statement. By definition of super-Gaussianity,

$$-\log t_j(s_j) \le s_j^2 / (2\gamma_{*j}) + h_j(\gamma_{*j})/2,$$

so that

$$2\mathbf{E}_Q\left[-\log t_j(s_j) - s_j^2/(2\gamma_{*j})\right] \le h_j(\gamma_{*j}).$$

3 Efficient Parameterization of Gaussian KL Minimization

(a) Immediate, given that

$$\nu_j = 2\mathbf{E}_Q[-\log t_j(s_j)]$$

and $\mathbf{E}_Q[\boldsymbol{u}\boldsymbol{u}^T] = \boldsymbol{\Sigma} + \boldsymbol{\mu}\boldsymbol{\mu}^T.$ (b):

$$abla_{\mathbf{\Sigma}} \phi = -\mathbf{\Sigma}^{-1} + \boldsymbol{E} + \sum_{j=1}^{q} \pi_j \boldsymbol{b}_j \boldsymbol{b}_j^T.$$

Setting this equal to zero:

$$\boldsymbol{\Sigma}_*^{-1} = \boldsymbol{E} + \boldsymbol{B}^T (\operatorname{diag} \boldsymbol{\pi}) \boldsymbol{B}.$$

4 Coordinate Update Algorithm for Gaussian KL Minimization

(a): Using the hint:

$$\Delta \pi_j = \frac{1}{\rho_j'} - \frac{1}{\rho_j}.$$

(b):

$$-p'_j + E_{jj} + \frac{\partial \nu'_j}{\partial \rho'_j} = 0.$$

(c): This is just (a) in reverse. First, (b) implies that

$$\pi'_j = \frac{\partial \nu'_j}{\partial \rho'_j}.$$

Then,

$$\frac{1}{\rho'_j} = \Delta \pi_j + \frac{1}{\rho_j} \quad \Rightarrow \quad \rho'_j = \frac{\rho_j}{1 + (\Delta \pi_j)\rho_j}.$$

5 Spectral Analysis of Conjugate Gradients Algorithm

First,

$$P(\boldsymbol{A}) = P(\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^T) = \sum_{j=0}^{k-1} \alpha_j (\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^T)^j = \sum_{j=0}^{k-1} \alpha_j \boldsymbol{Q}\boldsymbol{\Lambda}^j \boldsymbol{Q}^T = \boldsymbol{Q}P(\boldsymbol{\Lambda})\boldsymbol{Q}^T,$$

because $\boldsymbol{Q}^T \boldsymbol{Q} = \boldsymbol{I}$. Then,

$$q(\boldsymbol{x}) = (1/2)\boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^T \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{Q} \boldsymbol{Q}^T \boldsymbol{x} = (1/2)\boldsymbol{y}^T \boldsymbol{\Lambda} \boldsymbol{y} - \bar{\boldsymbol{b}}^T \boldsymbol{y}.$$

Since $\boldsymbol{A}^{-1} = \boldsymbol{Q} \boldsymbol{\Lambda}^{-1} \boldsymbol{Q}^{T}$, we have that $q_{*} = -(1/2) \boldsymbol{b}^{T} \boldsymbol{Q} \boldsymbol{\Lambda}^{-1} \boldsymbol{Q}^{T} \boldsymbol{b} = -(1/2) \bar{\boldsymbol{b}}^{T} \boldsymbol{\Lambda}^{-1} \bar{\boldsymbol{b}}$.

Next, $\boldsymbol{x}_k \in \mathcal{K}_k$, which is spanned by $\boldsymbol{A}^j \boldsymbol{b}$ for j < k. This means that $\boldsymbol{x}_k = P_k(\boldsymbol{A})\boldsymbol{b}$ for some polynomial with deg $(P_k) < k$. Therefore,

$$\boldsymbol{y}_k = \boldsymbol{Q}^T P_k(\boldsymbol{A}) \boldsymbol{b} = P_k(\boldsymbol{\Lambda}) \boldsymbol{Q}^T \boldsymbol{b} = P_k(\boldsymbol{\Lambda}) \bar{\boldsymbol{b}}.$$

Using the solutions from above,

$$q(\boldsymbol{x}_{k}) - q_{*} = (1/2) \min_{P_{k}} \sum_{i=1}^{n} (\lambda_{i} y_{k,i}^{2} - \bar{b}_{i} y_{k,i} + \bar{b}_{i}^{2} / \lambda_{i}) = (1/2) \min_{P_{k}} \sum_{i=1}^{n} \bar{b}_{i}^{2} (\lambda_{i} P_{k}(\lambda_{i})^{2} - P_{k}(\lambda_{i}) + 1/\lambda_{i})$$
$$= (1/2) \min_{P_{k}} \sum_{i=1}^{n} (\bar{b}_{i}^{2} / \lambda_{i}) (\lambda_{i} P_{k}(\lambda_{i}) - 1)^{2}.$$

Let $Q_k(t) := tP_k(t) - 1$. As P_k runs over polynomials of degree $\langle k, Q_k$ runs over polynomials of degree $\leq k$ with $Q_k(0) = -1$. The bound is nondecreasing in the $Q_k(\lambda_i)^2$ (which is why we can also use $-Q_k$ for the argument). Without assumptions on **b**, we have to strive for small $|Q_k(\lambda_i)|$, especially for the smaller λ_i .

If $\{\lambda_1, \ldots, \lambda_n\} = \{\kappa_1, \ldots, \kappa_k\}$, pick the polynomial $Q_k(t) = [\prod_{j=1}^k (t - \kappa_j)]/[\prod_j \kappa_j]$. Here, $\prod_j \kappa_j > 0$ because all $\kappa_j > 0$ (\boldsymbol{A} is positive definite). Then, $|Q_k(0)| = 1$ and $Q_k(\lambda_i) = 0$ for all i, so that $q(\boldsymbol{x}_k) = q_*$. Since q is strictly convex, it has a unique minimum, so $\boldsymbol{x}_k = \boldsymbol{x}_*$.

6 Super-Gaussian Bounding for Bernoulli Potentials

(a):

$$\frac{1}{1+e^{-ys}} = \frac{e^{ys/2}}{e^{ys/2} + e^{-ys/2}},$$

so that

$$b = y/2, \quad \tilde{t}(s) = \frac{1}{2\cosh(bs)}.$$

 $\tilde{t}(s)$ is even. Using the hint, $\log \tilde{t}(s) = -\log \cosh(bs) - \log 2$ is a convex function of $x = s^2$. This means that $\tilde{t}(s)$, and therefore t(s), are super-Gaussian.

(b): It suffices to show that $f(x) = \log(1 + e^x)$ is convex.

$$f'(x) = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}}, \quad f''(x) = \frac{e^{-x}}{(1+e^{-x})^2} = f'(x)f'(-x) > 0,$$

so that f(x) is strictly convex. This means that t(s) is log-concave, and so is $\tilde{t}(s)$, since $\log \tilde{t}(s) = \log t(s) - bs$.

(c): We follow the argument given in the course. The MAP problem for the setup here would be

$$\min_{\boldsymbol{u}_{*}} \sigma^{-2} \|\boldsymbol{u}_{*}\|^{2} - 2 \sum_{j=1}^{q} \log t(s_{*j}), \quad \boldsymbol{s}_{*} = \boldsymbol{B}\boldsymbol{u}_{*}.$$

Now, $t(s_{*j}) = e^{bs_{*j}}\tilde{t}(s_{*j})$. In the course, we showed that for an even potential, the IL problem differs from MAP in that $\tilde{t}(s_{*j})$ is replaced by $\tilde{t}((z_j + s_{*j})^{1/2})$. Here,

$$\log t(s_{*j}) = bs_{*j} + \log \tilde{t}(s_{*j}) \to bs_{*j} + \log \tilde{t}((z_j + s_{*j}^2)^{1/2}),$$

so the IL problem is

$$\min_{\boldsymbol{u}_*} \sigma^{-2} \|\boldsymbol{u}_*\|^2 - 2 \sum_{j=1}^q \left(bs_{*j} + \log \tilde{t}((z_j + s_{*j}^2)^{1/2}) \right).$$

From (b), $\log \tilde{t}(s_{*j})$ is log-concave, which implies the convexity of $h(\gamma_j)$ and therefore of $\tilde{t}((z_j + s_{*j}^2)^{1/2})$ (this result is quoted in the course and proved in [1]), and bs_{*j} is linear, therefore convex.

7 Proximal Map for Inner Loop Optimization Problem

(a): If

$$s' = \operatorname{prox}(r) = \operatorname{argmin}_{r} f(s; r),$$

then f(s; -r) = f(-s; r), so that $\operatorname{prox}(-r) = -\operatorname{prox}(r)$. If r > 0 and s < 0, then f(-s; r) < f(s; r), since $(-s - r)^2 < (s - r)^2$. Therefore, $\operatorname{prox}(r) \ge 0$. (b): Recall that $s \ge 0$. Define $y = (1 + s^2)^{1/2}$, so that

$$f(s;r) = \kappa y + \frac{1}{2}(s-r)^2.$$

The stationary equation is df/ds = 0:

$$\frac{\kappa s'}{y'} = r - s'.$$

 $s' \leq r$ follows from $s'/y' \geq 0$. Also, r > 0 implies s' > 0. Moreover, $r = s'(1 + \kappa/y') < s'(1 + \kappa)$, since y' > 1, so that $s' > r/(1 + \kappa)$. Finally, y' > |s'|, so that s'/y' < 1 and $r - s' < \kappa$. These inequalities can be used to bracket a solution for s'.

(c): Squaring both sides of the stationary equation gives

$$\kappa^2 s^2 = (1+s^2)(r-s)^2 \quad \Leftrightarrow \quad s^4 - 2rs^3 + (r^2 + 1 - \kappa^2)s^2 - 2rs + r^2 = 0.$$

8 Bound on Marginal Variances

First,

$$oldsymbol{A} = \sigma^{-2} oldsymbol{X}^T oldsymbol{X} + oldsymbol{B}^T oldsymbol{\Gamma}^{-1} oldsymbol{B}.$$

We have that $\operatorname{Var}_Q[s_j|\boldsymbol{y}] = \boldsymbol{b}_j^T \boldsymbol{A}^{-1} \boldsymbol{b}_j$, where $\boldsymbol{b}_j = \boldsymbol{B}^T \boldsymbol{\delta}_j$ is the *j*-th row of \boldsymbol{B} . Then,

$$\begin{split} \boldsymbol{b}_j^T \boldsymbol{A}^{-1} \boldsymbol{b}_j &= \max_{\boldsymbol{x}} 2\boldsymbol{b}_j^T \boldsymbol{x} - \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} = \max_{\boldsymbol{x}} 2\boldsymbol{\delta}_j^T \boldsymbol{B} \boldsymbol{x} - \sigma^{-2} \| \boldsymbol{X} \boldsymbol{x} \|^2 - (\boldsymbol{B} \boldsymbol{x})^T \boldsymbol{\Gamma}^{-1} (\boldsymbol{B} \boldsymbol{x}) \\ &\leq \max_{\boldsymbol{x}} 2\boldsymbol{\delta}_j^T (\boldsymbol{B} \boldsymbol{x}) - (\boldsymbol{B} \boldsymbol{x})^T \boldsymbol{\Gamma}^{-1} (\boldsymbol{B} \boldsymbol{x}) \leq \max_{\boldsymbol{w}} 2\boldsymbol{\delta}_j^T \boldsymbol{w} - \boldsymbol{w}^T \boldsymbol{\Gamma}^{-1} \boldsymbol{w} = \boldsymbol{\delta}_j^T \boldsymbol{\Gamma} \boldsymbol{\delta}_j = \gamma_j. \end{split}$$

The first \leq is due to $\|Xx\|^2 \geq 0$, the second due to the fact that Bx runs over a subspace of $w \in \mathbb{R}^q$. The first and last = are applications of the identity provided in the hint.

References

 M. Seeger and H. Nickisch. Large scale Bayesian inference and experimental design for sparse linear models. SIAM Journal of Imaging Sciences, 4(1):166–199, 2011.