Shadows and cryptology

جولا كاثنا

Gyula O.H. Katona Rényi Institute, Budapest

ICTP-IPM Conference in Combinatorics and Graph Theory

The Abdul Salam International Centre for Theoretical Physics Trieste, Italy

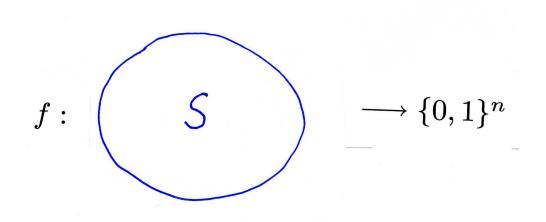
September 10, 2012

The practical problem

label,

impossible to copy because of its 3-dimensional nature

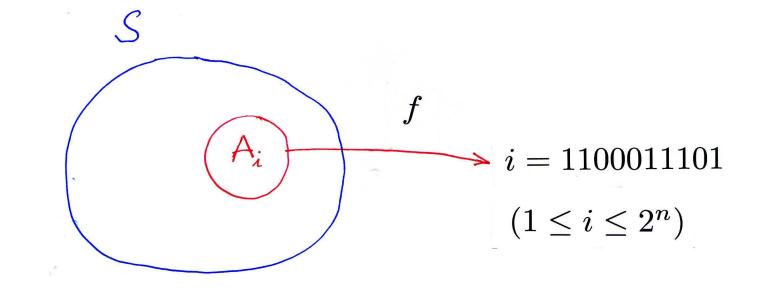
A mapping



space of all possible labels

 $|S| >>> 2^n$

Its properties



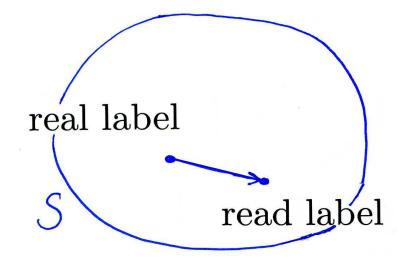
 $A_i \cap A_j = \emptyset \quad (i \neq j)$

Reading with error

a distance is given on S

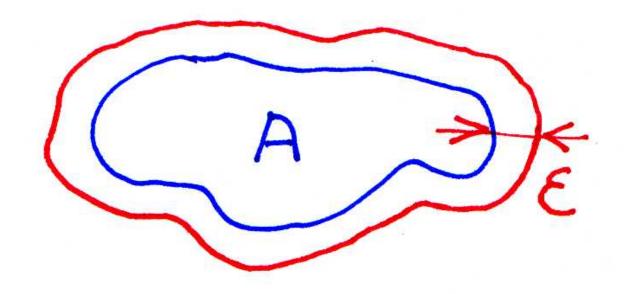
 $0 \le d(a,b) \quad a,b \in S$

 $d(\text{real label}, \text{ read label}) \leq \varepsilon \quad \text{where } 0 < \varepsilon \text{ is given}$



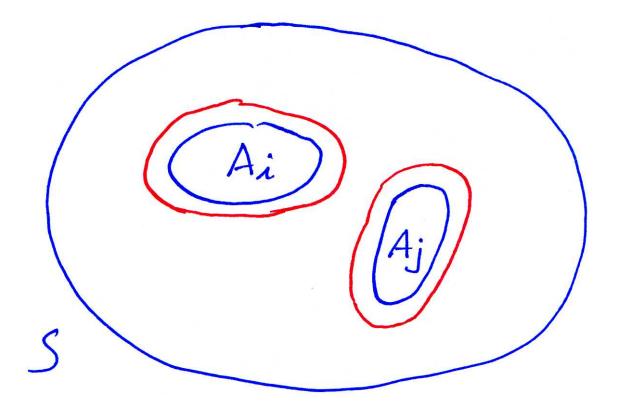
neighborhood

 $A \subset S$ $n(A, \varepsilon) = \{ x \in S : d(A, x) \le \varepsilon \}$



neighborhoods are disjoint

 $n(A_i,\varepsilon) \cap n(A_j,\varepsilon) = \emptyset \ (i \neq j)$



A_i cannot be large

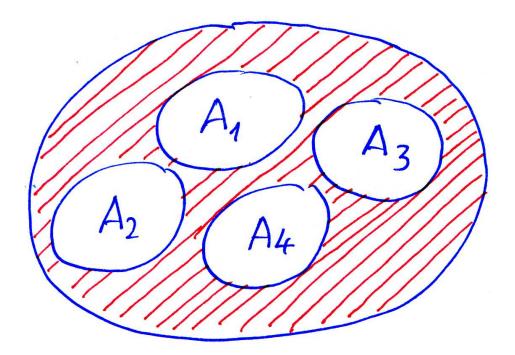
If A_i is large then the swindler chooses an $x \in S$ "randomly" and $x \in A_i$ will have a "large probability".

This is why a measure μ must be considered on S.

 $\mu(A_i) \le \rho \ (1 \le i \le 2^n)$

where $0 < \rho$ is given.

waste



waste cannot be too large:

 $\mu\left(\cup_{i=1}^{n}A_{i}\right) \geq \alpha$ where $0 < \alpha$ is not very small, say 0.1.

Definition

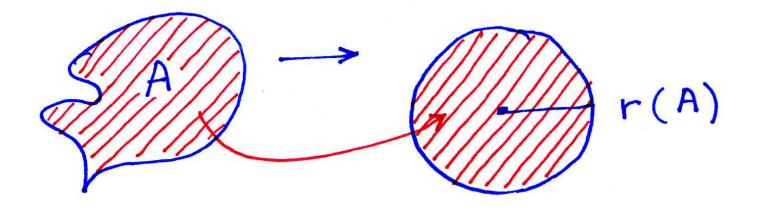
Geometric identifying code in S

(endowed with a distance d and a measure μ) with error tolerance ε (> 0), waste rate α (> 0), security ρ (> 0) is a family of sets $A_1, \ldots, A_{2^n} \subset S$ such that $n(A_i, \varepsilon) \cap n(A_j, \varepsilon) = \emptyset \ (1 \le i < j \le 2^n),$ $\mu\left(\cup_{i=1}^{n} A_{i}\right) \geq \alpha,$ $\mu(A_i) \le \rho \ (1 \le i \le 2^n).$

Ball of radius r with center x: b(x, r)

Suppose:

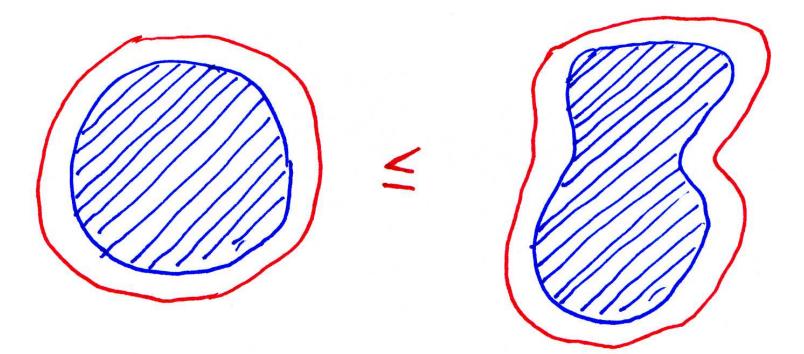
(*) $\mu(b(x,r))$ independent of x $(=\mu(r))$ Notation: r(A) = radius of a ball with measure = $\mu(A)$



Brunn-Minkowski property

Suppose:

 $(**) \qquad \mu(n(b(x, r(A))), \varepsilon) \le \mu(n(A, \varepsilon))$



 $\mu^{-1}(x)$ is the radius of a ball with measure x.

Theorem (Csirmaz-Katona, 2003)

If (*) and (**) hold then

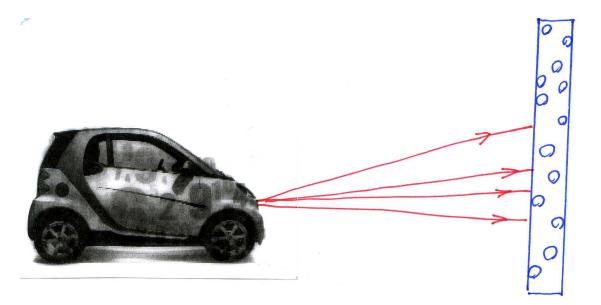
$$\varepsilon \leq \mu^{-1} \left(\frac{\rho}{\alpha}\right) - \mu^{-1} \left(\rho\right)$$

for a geometric identifying code with parameters $\varepsilon, \alpha, \rho$.

A functioning prototype was constructed by Haraszti, Marsovszky (Hewlett Packard, Hungary) and

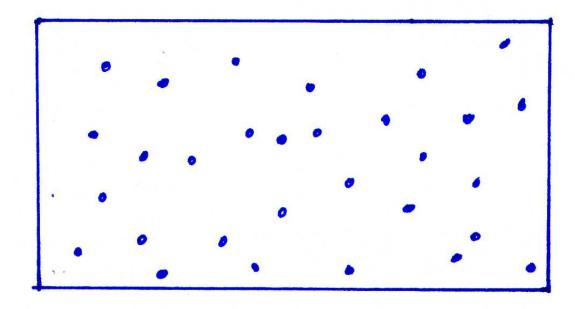
Csirmaz, Katona, Miklós, Nemetz (Rényi Institute, Budapest)

Label: reflecting foil



random, 3-dimensional

mathematically



a set of points (centers of the glass balls)

their number is between two bounds

unordered

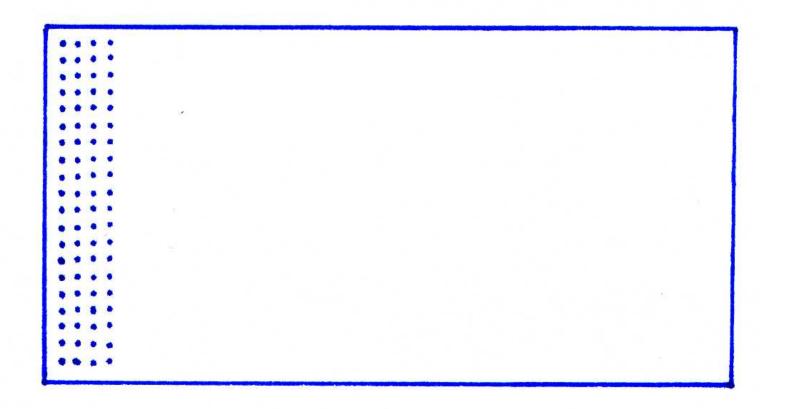
Big surprise: some points disappear at the reading

 \implies

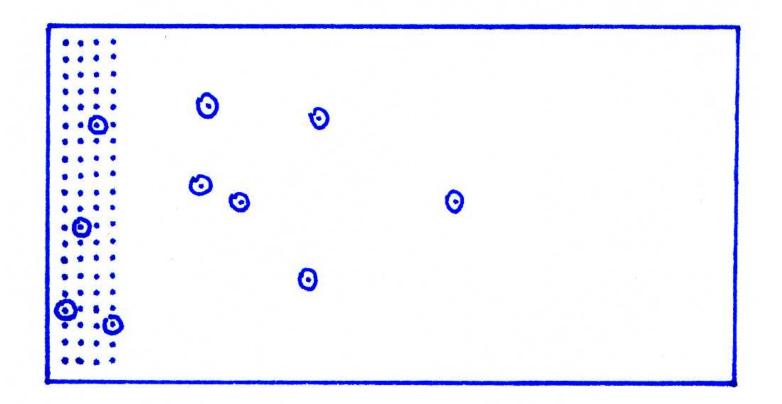
distance d between labels is defined not only by their geometry, but the also by the set distance

computational accuracy \Longrightarrow

number of possible points is finite



A label is a subset of the possible points



Our model in this particular case

Given a finite set of N points.

Space S consists of subsets of this N-element set X.

Illustrated by 0,1 sequences of length N.

Given 0 < k < N, suppose that the number of elements (number of 1s in the sequence) is exactly k.

This is a condition to make the model mathematically treatable. The real condition would be: the number of 1s is between two bounds.

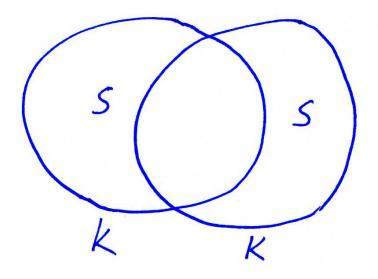
The size of the space is

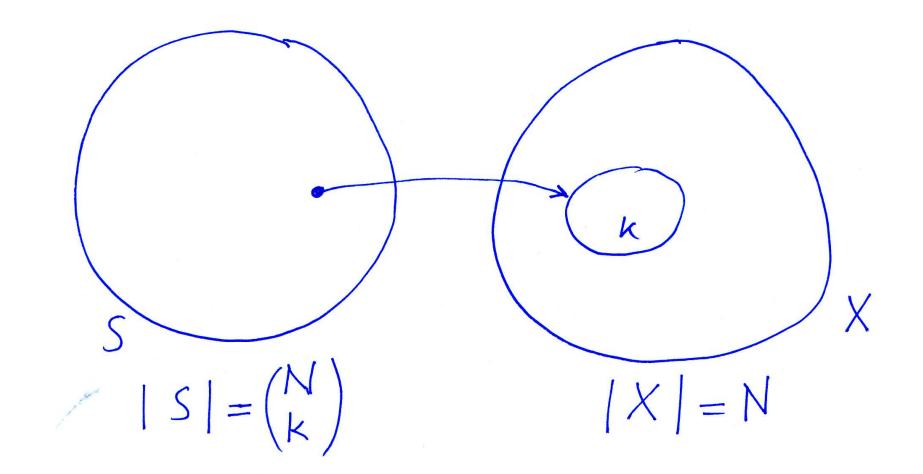
$$S| = \binom{N}{k}.$$

Distance d of two sequences in S = Hamming distance

(= number of different digits = size of the symmetric difference)

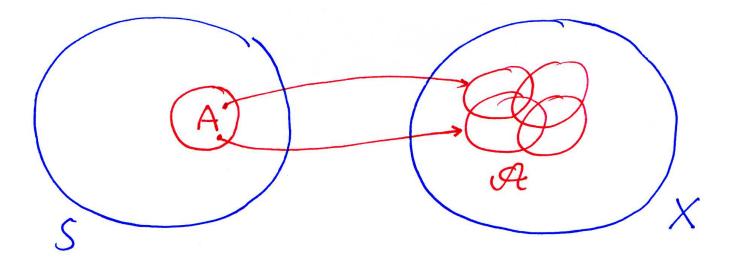
This is a condition to make the model mathematically treatable. The real distance would be a combination of this with the geometrical distance. For instance, the distance of two such sets is 2s if:





One element of S is a k-element subset of (the N-element) X.

A set A of elements of S is a family of k-element sets. It will be denoted by \mathcal{A} .



Its measure:

$$\mu(\mathcal{A}) = \frac{|\mathcal{A}|}{\binom{N}{k}}.$$

• security:

$$\mu(\mathcal{A}_i) = \frac{|\mathcal{A}_i|}{\binom{N}{k}} < \rho,$$

that is,

$$|\mathcal{A}_i| < \rho\binom{N}{k} = \binom{x}{k} = \frac{x(x-1)\dots(x-k+1)}{k!}$$

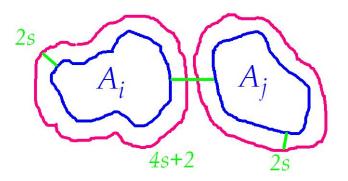
for some positive real number x > 0.

Neighbor of \mathcal{A}

= $n(\mathcal{A}, 2s)$: all k-element sets of distance at most 2s from a member of \mathcal{A} , that is, the k-element sets obtained from a member by deleting at most s elements and adding the same number of elements.

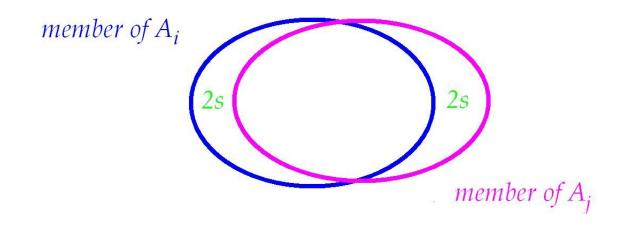
$$n(\mathcal{A}_i, 2s) \cap n(\mathcal{A}_j, 2s) = \emptyset \text{ iff } d(\mathcal{A}_i, \mathcal{A}_j) \ge 4s + 2.$$

Illustration:

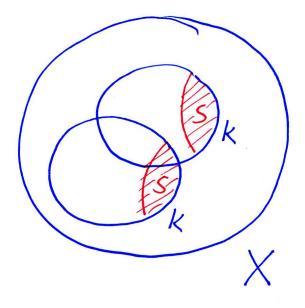


In other words, deleting 2s elements from a member of A_i and deleting 2s elements from a member of A_j , two different k - 2s-element sets are obtained.

This is **forbidden**:



Definition. The *s*-shadow $\sigma_s(\mathcal{A})$ of \mathcal{A} is the family of all k - s-element sets obtained from the members of \mathcal{A} by deleting *s* elements.



$$\sigma_s(\mathcal{A}) = \{B : |B| = k - s, B \subset A \in \mathcal{A}\}$$

• error tolerance 2s

$$n(A_i, 2s) \cap n(A_j, 2s) = \emptyset \ (1 \le i < j \le 2^n),$$

or

 $\sigma_{2s}(\mathcal{A}_i) \cap \sigma_{2s}(\mathcal{A}_j) = \emptyset$

• waste rate
$$\alpha \ (> 0)$$

$$\mu\left(\cup_{i=1}^{n}\mathcal{A}_{i}\right) = \frac{\sum_{i=1}^{n}|\mathcal{A}_{i}|}{\binom{N}{k}} \ge \alpha,$$

Given the security ρ and the error tolerance 2s, maximize α .

Combinatorial problem. Given N, maximize $\sum_{i=1}^n |\mathcal{A}_i|$ under the conditions

 $|\mathcal{A}_i| \le {\binom{x}{k}}$

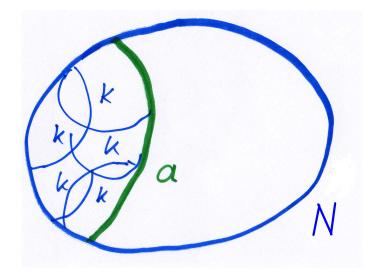
and

$$\sigma_{2s}(\mathcal{A}_i) \cap \sigma_{2s}(\mathcal{A}_j) = \emptyset.$$

Shadow problem

Given N, k and $|\mathcal{F}|$, minimize $|\sigma(\mathcal{F})|$.

If lucky then $|\mathcal{F}| = {a \choose k}$ holds for an integer *a* then the best construction is



$$\min|\sigma(\mathcal{F})| = \binom{a}{k-1}$$

Shadow problem

Lemma If 0 < k, m are integers then one can find integers $a_k > a_{k-1} > \ldots > a_t \ge t \ge 1$ such that

$$m = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \ldots + \binom{a_t}{t}$$

and they are unique.

This is called the **canonical form** of m.

Shadow problem

Shadow Theorem (Kruskal-K) If N, k and $|\mathcal{F}|$ are given,

the canonical form of $\left|\mathcal{F}\right|$ is

$$|\mathcal{F}| = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \ldots + \binom{a_t}{t}$$

then

$$\min |\sigma(\mathcal{F})| = \binom{a_k}{k-1} + \binom{a_{k-1}}{k-2} + \ldots + \binom{a_t}{t-1}.$$

another formulation

characteristic vector of the set $A \subset [N]$

the *k*th coordinate is 1 iff $k \in A$

another formulation

The previous construction with k = 3, a = 5, that is $|\mathcal{F}| = {5 \choose 3} = 10$

(1,	1,	1,	0,	0,	0,	0,)
(1,	1,	0,	1,	0,	0,	0,)
(1,	0,	1,	1,	0,	0,	0,)
(0,	1,	1,	1,	0,	0,	0,)
(1,	1,	0,	0,	1,	0,	0,)
(1,	0,	1,	0,	1,	0,	0,)
(0,	1,	1,	0,	1,	0,	0,)
(1,	0,	0,	1,	1,	0,	0,)
(0,	1,	0,	1,	1,	0,	0,)
(0,	0,	1,	1,	1,	0,	0,)
1	2	3	4	5	6	7	

(1,	1,	1,	0,	0,	0,	0,)
(1,	1,	0,	1,	0,	0,	0,)
(1,	0,	1,	1,	0,	0,	0,)
(0,	1,	1,	1,	0,	0,	0,)
(1,	1,	0,	0,	1,	0,	0,)
(1,	0,	1,	0,	1,	0,	0,)
(0,	1,	1,	0,	1,	0,	0,)
(1,	0,	0,	1,	1,	0,	0,)
(0,	1,	0,	1,	1,	0,	0,)
(0,	0,	1,	1,	1,	0,	0,)

(1,	1,	1,	0,	0,	0,	0,)
(1,	1,	0,	1,	0,	0,	0,)
(1,	0,	1,	1,	0,	0,	0,)
(0,	1,	1,	1,	0,	0,	0,)
(1,	1,	0,	0,	1,	0,	0,)
(1,	0,	1,	0,	1,	0,	0,)
(0,	1,	1,	0,	1,	0,	0,)
(1,	0,	0,	1,	1,	0,	0,)
(0,	1,	0,	1,	1,	0,	0,)
(0,	0,	1,	1,	1,	0,	0,)
(1,	1,	0,	0,	0,	1,)

(1,	1,	1,	0,	0,	0,	0,)
(1,	1,	0,	1,	0,	0,	0,)
(1,	0,	1,	1,	0,	0,	0,)
(0,	1,	1,	1,	0,	0,	0,)
(1,	1,	0,	0,	1,	0,	0,)
(1,	0,	1,	0,	1,	0,	0,)
()	0,	1,	1,	0,	1,	0,	0,)
(1,	0,	0,	1,	1,	0,	0,)
()	0,	1,	0,	1,	1,	0,	0,)
()	0,	0,	1,	1,	1,	0,	0,)
(1,	1,	0,	0,	0,	1,)
(1,	0,	1,	0,	0,	1,)

$(1, 1, 0, 1, 0, 0, 0, \dots)$	
$(1, 0, 1, 1, 0, 0, 0, \dots)$	
$(0, 1, 1, 1, 0, 0, 0, \dots)$	
$(1, 1, 0, 0, 1, 0, 0, \ldots)$	
$(1, 0, 1, 0, 1, 0, 0, \dots)$	
$(0, 1, 1, 0, 1, 0, 0, \dots)$	
$(1, 0, 0, 1, 1, 0, 0, \dots)$	
$(0, 1, 0, 1, 1, 0, 0, \dots)$	
$(0, 0, 1, 1, 1, 0, 0, \dots)$	
(1 , 1 , 0, 0, 0, 1 ,)	
(1 , 0, 1 , 0, 0, 1 ,)	
(0, 1 , 1 , 0, 0, 1 ,)	

(1,	1,	1,	0,	0,	0,	0,)
(1,	1,	0,	1,	0,	0,	0,)
(1,	0,	1,	1,	0,	0,	0,)
(0,	1,	1,	1,	0,	0,	0,)
(1,	1,	0,	0,	1,	0,	0,)
(1,	0,	1,	0,	1,	0,	0,)
(0,	1,	1,	0,	1,	0,	0,)
(1,	0,	0,	1,	1,	0,	0,)
(0,	1,	0,	1,	1,	0,	0,)
(0,	0,	1,	1,	1,	0,	0,)
(1,	1,	0,	0,	0,	1,)
(1,	0,	1,	0,	0,	1,)
(0,	1,	1,	0,	0,	1,)
(1,	0,	0,	1,	0,	1,)

(1,	1,	1,	0,	0,	0,	0,)
(1,	1,	0,	1,	0,	0,	0,)
(1,	0,	1,	1,	0,	0,	0,)
(0,	1,	1,	1,	0,	0,	0,)
(1,	1,	0,	0,	1,	0,	0,)
(1,	0,	1,	0,	1,	0,	0,)
(0,	1,	1,	0,	1,	0,	0,)
(1,	0,	0,	1,	1,	0,	0,)
(0,	1,	0,	1,	1,	0,	0,)
(0,	0,	1,	1,	1,	0,	0,)
(1 ,	1,	0,	0,	0,	1,)
(1 ,	0,	1,	0,	0,	1,)
(0,	1,	1,	0,	0,	1,)
(1 ,	0,	0,	1,	0,	1,)
(0,	1,	0,	1,	0,	1,)

another formulation

Arabically lexicographical ordering

Version of the Shadow Theorem

- If N, k and $|\mathcal{F}|$ are given, then
- $|\sigma(\mathcal{F})|$ is minimum for

the lexicographically first $|\mathcal{F}|$ subsets containing k elements.

s-shadow

Shadow Theorem (Kruskal-K) If N, k and $|\mathcal{F}|$ are given,

the canonical form of $\left|\mathcal{F}\right|$ is

$$|\mathcal{F}| = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \ldots + \binom{a_t}{t}$$

then

$$\min |\sigma_s(\mathcal{F})| = \binom{a_k}{k-s} + \binom{a_{k-s}}{k-1-s} + \dots + \binom{a_t}{t-s}.$$

Only an estimate

If x is a real number, $\binom{x}{k} = \frac{x(x-1)\dots(x-k+1)}{k!}$.

Theorem. (Lovász' version of the Shadow theorem) If \mathcal{A} is a family of k-element sets,

$$|\mathcal{A}| = \begin{pmatrix} x \\ k \end{pmatrix}$$

then

$$|\sigma_s(\mathcal{A})| \ge \binom{x}{k-s}.$$

Theorem. If \mathcal{A}_i are families of k-element subsets of an N-element set,

$$|\mathcal{A}_i| \le \binom{x}{k} \ (1 \le i \le n)$$

and

$$\sigma_{2s}(\mathcal{A}_i) \cap \sigma_{2s}(\mathcal{A}_j) = \emptyset \ (1 \le i < j \le n)$$

hold, then

$$\frac{\sum_{i=1}^{n} |\mathcal{A}_i|}{\binom{N}{k}} \le \left(\frac{x}{N}\right)^{2s}.$$

Unfortunately this is not sharp.

A very special case, modified

k = 3, s = 1, n = 2

 \mathcal{A}, \mathcal{B} are families of 3-element subsets of an N-element set. If $A \in \mathcal{A}, B \in \mathcal{B}$ then $|A \cap B| \leq 1$. $|\mathcal{A}| = |\mathcal{B}|$ Find max $|\mathcal{A}|$.

A weak estimate from Shadow Theorem

Choose x in this way: $|\mathcal{A}| = |\mathcal{B}| = {x \choose 3}$

By the Shadow Theorem: $\binom{x}{2} \leq |\sigma(\mathcal{A})|, |\sigma(\mathcal{B})|$

$$2\binom{x}{2} \le |\sigma(\mathcal{A})| + |\sigma(\mathcal{B})| \le \binom{N}{2}$$

From here, asymptotically

$$|\mathcal{A}| = \binom{x}{3} \le \frac{1}{2\sqrt{2}} \binom{N}{3} (1+o(1))$$

Trivial construction gives:

$$|\mathcal{A}| = \frac{N^3}{48}(1 + o(1)).$$

$$\mathcal{A} = \left\{ (a, b, c) : a < b < c \le \frac{N}{2} \right\}, \mathcal{B} = \left\{ (a, b, c) : \frac{N}{2} \le a < b < c \right\}$$

A better construction:
$$|\mathcal{A}| = \frac{N^3}{24}(1 + o(1)).$$

$$\mathcal{A} = \left\{ (a, b, c) : \frac{b+c}{2} \leq \frac{N}{2} \right\}$$

$$A = \left\{ (a, b, c) : \frac{N}{2} < \frac{a+b}{2} \right\}.$$

$$A = \left\{ (a, b, c) : \frac{N}{2} < \frac{a+b}{2} \right\}.$$

Theorem (Frankl-Kato-Katona-Tokushige, 2012+)

$$\max |\mathcal{A}| = \kappa \binom{N}{3} (1 + o(1))$$

where κ is the unique real root in the (0,1)-interval of the equation

$$z^{3} = (1-z)^{3} + 3z(1-z)^{2}.$$

Theorem (Frankl-Kato-Katona-Tokushige, 2012+) If $\mathcal{A} \subset {[N] \choose k}$ then

$$\max |\mathcal{A}| = \mu_k \binom{N}{k} (1 + o(1))$$

where μ_k is the unique real root in the (0,1)-interval of the equation

$$z^{k} = (1-z)^{k} + kz(1-z)^{k-1}.$$

Badly needed generalizations

s-shadows rather than s = 1.

Badly needed generalizations

s-shadows rather than s = 1.

More families rather than only n = 2.

Badly needed generalizations

s-shadows rather than s = 1.

More families rather than only n = 2.

Combining this distance with the **geometric distance**.

Thanks Köszönöm

Grazie

تشكر ميكنم

