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1. Applications under investigations and
use.
- Radiation material sciences
DPF 1s usually truments
monitorin:'g"- “ “'_'L-""‘?-di. €erist ics of its radiat .J..!, a:;
during an irradiation s <% fathin ~t1me resolution
and with high angle, spatl 11 fl_[jr :spectral precision

The same 1s true for the 0 uaa\ : of

these types of radiation w1tf§"f7ples under tests (e.g.
for the secondary plasma near the target)

These data can be cross-correlated with the results
received




In our material science experiments the

norphology of the irradiated sample’s surfaces

r the irradiation was investigated by
= |
Jvmum anel atomic foree mieros cﬂc ES)
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|

as Well as by an ontical refr.gm!um-' o

We apphed also trlbol ¢ m/ ms

----

j: rrad "*2 tion, profilometry,

I.e.elemental)’ structural



side and outside a chamber of modern full-
scale fusion devices we have:

t-wall

Stalnl . !- 1 -1

DIVertor mate : , n and carbon-
based comp051tes) F :;.f-’ \

._:_.

...

oMY materv W-actlvated
stainless steels, etc. )

materials for Wmdows (diagnostics)

Different types of ceramics (cables etc.)




Simulation of fusion relevant thermal loads

frequencies for different events in ITER:
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(according to Dr. J. Linke, Max-Planck-Institut fuer Plasmaphysik, Germany)
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(according to Dr. T. Renk, Sandia National Laboratories, U.S.A.)



Peak heat flux, P
[W/m?]:
- normal operation
- disruptions
- VDEs
- ELMs

Duration E, [s]

Irrad. surface [cm?]

X-Rays [eV]




‘DPF-generated pilses of the above radintions

(—

YN
intrinsic to the main-stream fusion devices) and of

at produced by them have duration from a ey 1y
21 auaeleacd g that makes them a very useful anc

)

| for di
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erent test modes of candidate
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Based on a modern high-é, é'chnology these
devices can operate with a high repetition rate (tested
up to 15 cps) with a life=time of their main discharge

components ~ 107 “shots”
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Results of the irradiation of the above samples by streams
of plasma and fast ions (cathode’s side)

Plasma jet

Front view




EHT =15.00 kv SignalA=SE2 WD= 9mm

FZJ-IWV /2006 EHT =15.00 kV SignalA=SE2 WD= 9mm
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FZJ-IWV /2006




d)

30, 100, 220 and 1200 magnification
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3) Optical materials (cathode’s side)

10 pm

Dy \&‘\ & O >"5 v "‘ .‘) |
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(a), sapphire (b) and topﬂ‘éz(m'c) 1rrad1ated by arbeam
of fast (~ 60’keV)'hydrogen ions




Reflectometry
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c) d)

Reflection coetficient of a sapphire sample surface
versus wavelength after irradiation




Z-scale = 700 nm
X-scale =25 um

tomic force microscopy ofisapphire and-quartz
specimen’s surfaces after a'single-pulse irradiation




4) Electron microscopy of specimen’s surface
irradiated by a fast electron beam (anode’s side)

= PR ¢ e
Image Ofa 10de erj ace ((CIHEIRCN s secondary electrons.

=)

light Zones gIV‘é’ avidence OIgei Jem L “ concentratlon

100 pm

\ Z-axis

SKU X300 9207 100.0U JEOLS
Section of an anode near its surface taken in a K-alpha line of Fe
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Virgin specimen of Al,O; (x 250) o irgin specimen of BN (x 250)

-

Specimen of ALO, (No. 3, x250) R " Specimen of BN (No. 2, x 250)
Optical microscopy of central parts of the specimens

Distance between the DPF anode and the specimen is 30 ¢m

1 irradiation pulse
Am (BN)/Am (Al,O,) = 1.7




Cathode [8 pipes 21 80 mm)

.-_I\\/ DPF chamber

|

\ Dense plasma focus
(radiation source)
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C) PRODUCTION OF NANOSTRUCTURES ON A

“ n ro, “r
KiACE

eCtron microscopy)

1Npuise

Scalen
Z-direction
200 nm




FZJ-IWV /2006
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Part of surface of the 1rradlated sample manufactured
of pure iron; a single-pulse irradiation
at PF-5M device (IMET) with P > 101° W/cm?, SEM




D11 gosye il ieeadintion of different 3amoled ki)
couple J_i' JUICINEXPECLEHICONSEHIIENCES

l—-—

First /- ¢ .1 yiieiizic the content of hy ogen '
which were implanted bysforce m ,.un to the
bulk of materlal Wlt concentraprmuch higher
compared with the solubl ;‘ 111117 was decre
ts AIIS eature is of great
importance for future fusmn ,-lLL) 5 in the context of

hydrogen retention by plasm = ri, u g elements

We associate this pheno e 'OII with a strong
enlargement of the surface area 0T the samples due to the
acquired nanostructures that results in an accelerated

back into the

reactor’s chamber



CONCENTRATION, at.%

DEPTH nm
Deuterium concentration dlStI‘lbutl .--he surface layer of austenitic

25Cr12Mn20W steel after 1rrad1at10n Fy high powerful plasma jet and
fast ion beam

(ERDA) processed with
a Rutherford Universal Manipulation Program (RUMP):
1- 1 pulse, 2 - 2 pulses, 3 - 4 pulses, 4 - 8 pulses, 5 - 16 pulses




. Second effect /1«
-ZL’L‘UQIJL IS i
of these materia
In partlcular, when ol SA ple es of tungsten
(same as above) and p (NN (Same as in the
last picture) were irradi iated't J:." ‘the above

streams of rather poyer ﬂux density —
about m? (,; . on the “border”
of sample’s surface melting or with low melting
of it) we saw well- defined cracklng and porosity

of them correspondingly (see below)




Surface of tungsten
irradiated by a single
pulse of HP/FI at PF-

1000 with P~ 103 W/em2, e
2 SEM : Surface of pure iron irradiated by

a single pulse of HP/FI at “Bora”
with P ~ 10° W/cm?, optical
microscopy




D) DINAMIC QUALITY CONTROL

(tressedly-deformed compounds — car tires)

al resolution of the image of a mechanism’s detail
ne’s blade, car tire, piston of a car engine, etc.) takes
SUIlglef o by a flash of the diati

from DPF determred 0\

/o

- diffraction (Wavelengt\:,,, ;

- contrast degree of an obj ect’s detail to be visualized
(spectrum of hard X-Rays)

Theoretically for DPF 1t could be ~ 1 um 1n a 10-cm distance



Natural

X-Ray  Kevlar threads
picture
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. Fan

N < . DPF
' chamber

Experiment in dynamic quality control



X-Ray pictures of the fan’s wing in
dynamics (a), 1 shot of DPF, and in a
static state (b), 7 shots of DPF




- Radiation chemistry/biology:
radioenzymology

il iflego experiments enzyres wer i'mdi vied Ju witre vt

VAOUS gm, (0SE POWETIIUSIECHEI AN G E OFEX -'“4

photon | -
We Have fouid Hiore o vory large (4 orders (1) of magnie
differencein doses o tneenznneacuyauonunacthation

zidieieediation wiih JCRays rr)r UDPE comnpziree with

the same proceditc usme o _[~;)Jror gourge (C7)

But with' IDPEthe Sitects appe"f’_', 21k el wer i density
difference mi these two 1rradlat1on EXperiments equal to
about 7-8'orders of magnitude

We found that the

1S a




L |
variation range

e U3 B

+1 +2

A, B—-"PF -0.27, Cufilter; C — “PF-2", Cu filter;
D —X-ray twbe: U=50.0KV, Ej,,, pux < 35.0 keV;
E — isotope ff -source Sr -Y:8keV > E,, >2000KeV; and
“PE -0.27, Al filter: 8 keV > E, ,> 100 keV:;
F, G —y-source 'Y/Cs for different enzymes: £, , = 662 keV

H-"PF-6", Cufilter; distance 3 cm: PD ~ 104(}}'25"

Activity of enzymes versus



L' |
variation range

: e e 1] o B
+3  +4
A, B—PF-0.2", Cufilter; C — “PF-2", Cu filter;
D —X-ray tube: U= 50.0kV, Ej, ux < 35.0 keV;
E —isotope f# -source Sr -Y:8keV > E, , > 2000 KeV; and

“PF -0.27, Al filter: 8 keV > £, ,> 100 keV:
F, G —y-source '/Cs for different enzymes: £, , = 662 keV
H-"PF-6", Cu filter; distance 3 cm: PD ~10°Gy?¢

Activity of enzymes versus




In these experiments we changed distances from a

ource till the test-tubes with enzymes, a number of
rradiating shots as well as filters on the DPF
an ber window, which screened pulses of X-Ra

rel mmary conclusmn is that in this case we h
effect. achieved duc to ;*mu faneously

PLEOGUGEU h|h conce v“‘JJ!LJ radlcals instine
vicinity ofanmenzyme moI *'7""oJJ..v"" Yd'an excitation of
metallic ions within this mcﬂecule

Thus 1n pulsed radiation hyglene a product of'dose
and dose power is crucial



- Radiation medicine

reost lons i 0ositron emission Lomeeiraemn w/ '

|

1 P031tron emission tomography (PET) 1s one of severa
d currently exploiting nuclear physics principles for
s led “auclenr medicine” (NI )3 generall
ents productlon of pos on-en

ogical molecul
Ir ‘fs a human body

llll

The most commenly us_ , Stcsent time as PET tracers
arc the isotopes Ct, N%*, O/ afy ,,Fl8 (T% =20.03 min, 9.97

min, 2.03 min and 109 min correspondingly) , because they
can be introduced mto biological'molecules without'altering
the composition of these molecules



[ Silena — EMCAPLUS 1.81.3M 1

This result has shown that th,egi_.,..:.,_.”f?f‘"the level of energy

about 20 kJ working with a frégueey of 10 Hz can produce
for the time period of 100/SECONUSHI76 of'the half-I1{e time)
an amount of the 1sotope N*° having total activity ~'30 MBg




6) X-Ray medical diagnostics

Spectrum of X-Rays generated by DPF has the
ollowing specific features:

nriched soft and medium-energy X-Ray
onents (O 1...5.0and 5...50 keV), Wthh resul
NEOUS vi'sualization of soﬁ tissue "

) 0f & y(same as in _‘

j ;.-;,synthe ic cord

irce . - 3 mm down to 3 um),
which gives a very high Spatia‘l resolutlon of an object

which resultsin a low=dose
formation of an 1image



¢) Micro-radiography

sing a so-called “phase-contrast technique” DPF may be

oplied for micro-radiography of tiny object (e.g. bio-
>cts) of low contrast

s to be exploited in the regime of hot-spots genera
Yy S all zones (~um) of plasma produce soft

A L L

el‘gles tunable Wlthln ne 16!
on workmg as

Y'

A few examples of the tests arSssh n n the pictures

T e

where X-Ray films are presente _1th their visualization
by an optical microscope SWitslnstruments

International S.A. with'lenses 1070.25,25/0.4 o2 40/0.65
or by scanning eléctron microscope
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Three pictures of a bird’s feather — direct optical

Feather’s
fragment

image and SXR visualizations of it

—

Secondary
structure of
the feather

. >
(not seen in

visible light) __ |



In all these pictures spatial resolution of i1mages
as circa 1 um, which has been specially tested by
C rap ning of a golden wire of 15 um thlcknes
nd without phase contrast)

-
-

._

e

needs a spatial resolution be
N s \‘lould be ‘w‘:'. ”i ,

All these experimenté can be done in the scheme
of the so-called “proximity X-Ray lithography”



A dose necessary to produce the image on this

esist appeared to be several times (almost 10 times)
ss than it was estimated for and checked by classical
tube; resolution in this case was 50 nm

also mvestlgated by these techmque
like films »m ofreptllesag
i , a butterfly,

From the above-men ru__g l e ic may Sce that this
method is reliable for the ga .-115 _} mlcro—radlography
of live bio-objects in the: su ¢ licrometer and

1
-

nanometer ranges in a Colrse of their: vital

functioning produced by mrradiation-of them with soft
X-Rays



- Nanosecond Impulse Neutron
Investigation System (NINIS) for
detection of hidden objects

TwonmportantissuesienconntereyneNuiusmasive
INSPECHl J.u of b .)J.r'l o peiteriily by neutron wernods wfrr
15Uy isotope or: classical accelerators:

-t 'Hackground ratio :mJ .

) ’.'.‘ = . . . ,_;..'..3 N £ < 1
Wi e
Bt . ».

-
= ecling

That is why these methods de _[_L_lmFle roduce GGENIUIGEY,
Of ST A0 ESTI0E) o

We have proposed to bring ihf'(v),f“play"a neutron source based on a
plasma.focus (DPF), which generates very powerful pulses of
neutrons of the nanosecond (NS) duration and can convert the

procedure into “a single-shot interrogation”



L=185m _ HD

/ w Scattered neutron beam
T

o - scattering angle

Direct neutron 0 - effective uradiation angle

beam

VA, »;"w"."\ o

Target — a 1-litre bottle with methanol (CH;OH)

Radius of the DPF chamber is 3 cm, diameter of the
bottle with methanol — 10 cm




3,0E-07 8,0E-07 1,3E-06 1,8E-06 | 3.0E07 8.0E-07 1,3E-06 1,8E-06
0,2 | 02

0 | 0
0,2 | 02
0,4 0.4
-0,6 0.6
-0,8 0,8
1 -
.2 1.2
1,4 14
1,6 + 18
-1,8 - -1.8

X-Rays]

Ineutrons

neutrons scattered by methanol 1 T neutrons scattered by a 10-
liter HPC with deuterium (150 atm)




single-shot nanosecond neutron pulsed technique for the
< detection of fissile materials

f

Ry

-200 0 200 1000

Two oscilloscope traces overlapping one another: one is taken
without fuel element (the black one, smooth) and another one is
taken with fuel element EK-10 (the blue one with multiple peaks)



Hard X-rays, 14 MeV neutrons,
0 and max level max level at the

in the chamber PMT+S

296 ns, 0 416 ns,
53 ns, D-D

14 Meﬁ utrons | 166 ns, Mg and O

peak inside the 146 ns
DPF chamber Al and Mg

Hard X-rays,
0 and max level
“atthe PMT+S

0 250 Time, ns

A result of the subtraction of oscilloscope traces with
attribution of different peaks and comparison with results
of MCNP modelling calculations



-

2. Potential implementations

a) Tritium inventory

ay use small (~1 liter) seal'ed chambers with
ture generator “built-1n” pi-

- —

. mstall inside thls cha

0=

"_, !CathOde @’: '? (

-
U

P oo,
. »

\
" ]
1c

Then we can 1nvest1gate the SU
or fast electron/soft X= Raysf 1rrad1at10n of samples,

tritium absorption, re-deposition of Be, etc. in'this
very cheap, safe and convenient configuration



b) Neutron fields characterization around ITER

Ustag itils small nevutron souree (~ |- le vicy with
el guiroi-iesdiliing zone ~ | ¢ *.;rn‘) Wichliave a
NCULTOMIPUISE Jr;)g)sm_w i s,r)a \ -v fes 1 Shell
of ~ 0.5-m thickr timc-ot= st
method'to chara' [CTHZcaNt ﬂ d of ITER at
cach stage ofi 1ts assemb m_.g, mg IDRE along the

[TER chamber mrcumfer ” ter cach step:

beam-heating guns attaching, etc.



c) Neutron tests of materials perspective for ITER

_ P 1 Ii"“' 0) the o_rder
of a few cps can fulﬁllf g de _r ana S to produce a 14-=

MeV: neutron radlatlo JJ 1 dparperoneyear

For this aim its main elemf ‘ Ould be changed' 10
times, which gives the cost ot such a device on the
level of about

Thus DPF can fill the niche 1n this very important field




d) Nuclear physics

)PF favorably differs from the classical neutron
jources by a very short pulse of neutron emission
‘u intensity These features make this de ce
resting for its use inside the aeme Sub-
alive core ke
It might help to 1 1= dynamical res of the
booster by the “instant”’-ﬁ?. 8D nﬂ That is because
the “initiating” neutron | ‘__. the ‘case of the DPF use
will be much shorter than Overall duration of the

output neutron pulse of the W ,,;,‘le sub-critical assembly

However 1t 1s very hikely that one may-attain something
more. Indeed let’s look for typical temporal and spatial
scales of the processes under investigation



‘Simple estimations show that the overall number of nevwtrons
(the above-mentioned concentration of them) will be injectadl
s aulfiplied within the l-cim zone of uranivm pamely

ring the DPF neutron pulse

mary neutrons (side by side with secondary neutr' 1

e pro L mﬁagmems Mean free path of the fis
deceleration in uranium is 01r o

each fission m erg w1110 prec1sely the

,,,.5 "'

same micro-volume as the sii 1l ary neutron

’.‘. ,_' y ?

A%

In these conditions it will be v fj.‘ teresting to check:

- a possibility to Increase th’e-.r;r-_E'of the initiation of chain

reactions in a sub-critical assembly Gy volumetric action

- an opportunity to increase “burning out” of fission
fragments inside the assembly during the DPF neutron pulse



~ @) Thermal and fast neutrons and X-Rays in Boron
Neutron Capture Therapy (FU + IPPLM + ICTP)

herapeutic effect is reached due to a very high Linear Energy
nsfer (LET) of the nuclear reaction produets, which are
‘ ed at the interaction of thermal neutrons with Boro r.".

1ntroduced beforehand in a human tissue (BPA a
e

= 'lq-> _K = l
b 4622++7Li33++2,7 ) - H

s - O.: B
o ’::,e Ly

-5 A
020 v A

<’ )\

" 'I‘ [7L13 ’,u

Mean-free-paths (MFP) of lith‘iifm Huclei and alpha-particles

within human tissues arc equal to'6'and 9 p-respectively, what
makes a release of their energy to be practically local 1n the
vicinity of a zone of neutron’s absorption



Our analysis has shown that DPF has here the
ollowing opportunities:

)PF devices of the medium size (5-10 kJ) can

£ lueLessury ¢ tloge in aboutJ hurs WOl ki
»derat or (ep1thermal neutrons) 1f 1t

1 rep rate f L cps. Wlth

grjg _ effects

fas LHIET r:ons of the ns pulse
duration comblne farppllcatlon of fast
neutrons and hard X-Rays




Possible reasons to expect these effects namely in
alignant cells enriched with boron to higher degree
rompared with sound cells are:

- simultaneous destruction
dlll’i '~ )
(“shock-like

-m —

threshold- Ilke J a o Ji@’ of radlatlon da

| tron fleld

tumor wit |

Both these opportunities Op'en ways for
of cancer




Counts/bin

Counts/bin
—
<

|

10

_Ia-slll I-al II17-5IIII-7II Ils-sll II-6 -5-5 I-5|| -4-5|||
log10(time) (seconds)

: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 L L
0 0.5 1 1.5 2 25
energy (MeV)

-
-

Neutron energy spectru ny § “,and time profile (b)

N.

obtained by simulating a r "‘"W;chromatlc pulse of 10

ns of 2.45-MeV neutrons in the small chamber of the
“Bora” device with 15 cm FluentalTM moderator




f) Brachytherapy

ecause electron beam (with electron’s energy about
) keV) generated in DPF can be transported along
istances (~ 1 meter) inside the anode’s tube d
k-current induced 1n the tube’s wall 1t e,
| ‘Ei&apy both by the e-beanm its self
130 X=1ays ger by 1t onaf |

.........




0. CONCLUSIONS
Our experiments has shown that DPF side by side with its own
sion perspectives can successfully be used right now in a
nber of applications in bivloyy, medicine, mzterial
SCIETICER? :e:spr:ess 124\, etc.

1 31mulate and help 1n investigations many dama
Y sl a

n the contemporary mam-str m fus
such as_ ;- u,,.}'* hanges, 1iie

o

destructiontand mel _Lu ev ation <l
deposition of materials und 1 teSEste durlng (Aatasnsiana

um resolution) and after (by .,,;__!;_cal equipment)
Irradiation s

And these types of damage are pfoduced here namely by'the
same types of radiation that existed in modern fusion devices



It can be used for a detection of illicit materials just in a
single ns shot of the device that shorten the whole
procedure, in particular in a case of hidden 15101
mc 'i‘v“f:l,llb
Ax be used in fow-dose medical X-Ray diagnostics as
m-rad?ogmphy a2
misin to be used for lrradiation by pither )
Jnant tumors 1] BCWT
iR r'ne«ula

tec by lt

It has good opportunities ih. a,prffﬁuction of
for the aims of PET =



'DPF has attractive perspectives for application in nuclear
physics, in particular in combination with sub-critical
assemblies

re perspectives of DPF are connected with small

aled DPF chambers giving opportunities to investigate
1 ¢ mpl licated problems like tritium inventory an
e-depc s1t10n taklng place under [ypic:

L ndltlons in: Iy

2 x v
l " X

- R ¢ v 3 3
e ”k'- g ':{" 3
; ,}.To' .‘;.
.

DPE devices basedion'the m gh-power pulsed
technology can produce s n antaneous “poweriul
impact upon materials and may helpininvestigation of
transientand phenomena in a very

broad range of experiments

g







