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General Motivation 

Many  laboratory, astrophysical and space plasmas can properly be described within the 
theoretical  framework of Magnetohydrodynamics (MHD). 
 
MHD is a fluidistic approach to describe the large scale dynamics of plasmas.  
 
The standard approach is also known as one-fluid MHD.  
 
We are going to start from a somewhat  more general approach known as two-fluid MHD,  
which acknowledges the presence of ions and electrons and considers kinetic effects such  
as Hall, electron pressure and electron inertia. 
 
Physical processes that can be addressed with MHD include: 
 
o  Magnetic reconnection 
o  Magnetic confinement  
o  Magnetic dynamo 
o  MHD turbulence 
 
We will also address the case of plasmas embedded in strong external magnetic fields, which  
allow for an approximation known as reduced MHD, both for one-fluid MHD (RMHD) and  
two-fluid MHD (RHMHD). 
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Fluid equations for multi-species plasmas 
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For each species s we have (Goldston & Rutherford 1995): 
 

 
o        Mass conservation 

 
 
 
o        Equation of motion 

 
 
 
o        Momentum exchange rate 
 
 
 
These moving charges act  as sources for electric and magnetic fields: 
 
 
 
o        Charge density 

 
 
 
o        Electric current density 
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Two-fluid MHD equations 
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For a fully ionized plasma with ions of mass        and massless electrons (since                     ): 
 
 
o        Mass conservation: 

 
 
o        Ions: 

 
 
o        Electrons: 

 
 
o        Friction force:  

 
 
 
o         

 
 
 
o        Polytropic laws: 

 
 
o        Newtonian viscosity: 
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Hall-MHD equations 

The dimensionless version, for a length scale     , density       and Alfven speed 0L 0n 00 4/ nmBv iA
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We define the Hall parameter 
 
 
as well as the plasma beta                                       and the electric resistivity 
 
 
Adding these two equations yields: 
 
 
On the other hand, using  
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Hall MHD in a strong field 

Let us assume a strong magnetic field along      so that 
 
 
 
 
where      represents the typical tilt of field lines with respect to     . We assume 
 
 
 
The magnetic and velocity fields can be expanded in terms of potentials of order     : 
 
 
 
 
 
 
We want to eliminate the fast scale dynamics, characterized by                               , i.e.  
 
 
We obtain the following conditions 
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Hall MHD in a strong field 

The relatively slower dynamics, characterized by                             , i.e.  
 
is given by the following equations (Gomez, Dmitruk & Mahajan 2008): 
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where                          and 
 
These are the RHMHD equations. Their ideal invariants (just as for 3D HMHD) are: 
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magnetic helicity 

 

hybrid helicity 



We studied a number of astrophysical problems, within the general framework of MHD: 
 
3D Hall-MHD turbulent dynamos.  
(Mininni, Gomez & Mahajan 2003, 2005; 
Gomez, Dmitruk & Mininni 2010) 
 
2.5 D Hall-MHD magnetic reconnection  
in the Earth magnetosphere 
(Morales, Dasso & Gomez 2005, 2006) 
 
3D HD helical fluid turbulence 
(Gomez & Mininni 2004) 
 
RMHD heating of solar coronal loops 
(Dmitruk & Gomez 1997, 1999) 
 
RHMHD turbulence in the solar wind 
(Martin, Dmitruk & Gomez 2010, 2012) 
 
Hall magneto-rotational instability in accretion disks 
(Bejarano, Gomez & Brandenburg 2011) 

Some applications 



Simulations 

We integrate the RHMHD eqs. numerically, using a spectral scheme in the  
perpendicular directions and finite differences along the (much smoother)  
direction z (Gomez, Milano and Dmitruk 2000; also Dmitruk, Gomez &  
Matthaeus 2003) 
 
 
 
We show results from 512x512x40 runs performed in (CAPS), our  
linux cluster with 80 cores 
 
 
 
For the horizontal spatial derivatives, we use a pseudo-spectral  
scheme with 2/3-dealiasing. Spectral codes are well suited for  
turbulence studies, since they provide exponentially fast convergence.  
Spatial derivatives along the loop are computed using finite differences. 
 
 
 
Time integration is performed with a second order Runge-Kutta  
scheme.The time step is chosen to satisfy the CFL condition. This  
condition is more stringent if Hall is present, since it displays a  
quadratic dependence with the grid size. 



We focus on Fourier-Galerkin methods. Let us ilustrate on Burgers equation 
 
 
 
for u(x,t) on the interval                        assuming periodic boundary conditions and the initial 
condition  
 
We expand in a truncated Fourier expansion 
 
Demanding zero residuals of the solution u(x,t) when projected on the truncated Fourier space 
 
 
 
 
This truncated expansion                 converges exponentially fast to the exact solution as   
 
 
However, it is computationally very demanding, since it involves                operations. 
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Simulations: spatial integration 



 

The FFT algorithm yields the discrete set           from the set                after                        

floating point operations. 

 

 

 

The strategy of computing spatial derivatives in Fourier space and nonlinear terms  

in physical space, is known as pseudo-spectral, i.e.  

 

 

 

The relation between discrete Fourier coefficients           and the continuous ones is  

 

 

This sum causes a spurious effect known as aliasing when computing nonlinear terms. 

two-thirds rule  
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Simulations: spatial integration 



We advance the solution through discrete time steps 

 

In compact notation, if  

 

                                    

 

where F is a nonlinear and spatial differential operator, we use a second order Runge-Kutta scheme.  

 

We first advance half a step 

 

 

 

and use                 to jump the whole step 

 

 

This is second order accurate (i.e.                          ). The size of the step is limited by the CFL condition, i.e. 
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Simulations: temporal integration 



RMHD applied to coronal loop heating 

The solar corona is a topologically complex  
array of loops (TRACE movie 171 A) 
 
Coronal loops are magnetic flux tubes  
with their footpoints anchored deep in the 
convective region. 
 
They confine a tenuous and hot plasma.  
Typical densities are n = 109 cm-3 and  
temperatures are T = 2-3.106 K. 

The magnetic field provides not just the confinement of the plasma, but also the energy to heat it up 
to coronal temperatures (Parker 1972, 1988; van Ballegooijen 1986; Einaudi et al. 1996).  
 
One of the key ingredients is the free energy available in the sub-photospheric convective region. 
Convective motions move the footpoints of fieldlines, thus building up magnetic stresses. See 
Mandrini, Demoulin & Klimchuk 2000 for a comprehensive comparison between theoretical models  
and observations for a large number of active regions. 
 
However, the  typical length scale of these magnetic stresses is way  
too large for the Ohmic dissipation to do the job, since  
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RMHD Equations 

 

 

 

 

 

 

These equations describe the evolution of the velocity  

(u) and magnetic field (b)  inside the 

box, assuming periodic boundary  

conditions at the sides. 

 

 We enforce stationary velocity  

 fields (Uph) at the top plate. 

Reduced MHD is a self-consistent approximation of the full MHD equations whenever: 
  (a) one component of the magnetic field is much stronger than the others and,  
  (b) spatial variations are smoother along  than across (Strauss 1976). 
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Current density distribution 

Current density 
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RMHD simulations 

We perform long time integrations of the RMHD 
equations. Lengths are in units of the photospheric 
convective motions (      ) and times are in units of the 
Alfven time (tA) along the loop. 
 
Spatial resolution is 256x256x48 and the integration 
time is 4000 tA. We use a spectral scheme in the xy-
plane and finite differences along z. 
 
The time averaged dissipation rate is found to scale 
like (Dmitruk & Gómez 1999) 
 
 
 
 
 
 
 
 
 
It is essentially independent of the Reynolds number, 
as expected for stationary turbulence. 
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Energy cascade 

  - energy flux toward high k 

  - vortex breakdown 

 

Scale invariance  

   - energy flux in k: 

 

   - energy power spectrum: 

 

 

 

 

Therefore 

k
uE k

k

2

k

k
k

u2

.,1 2

constu
ku k

k
k

k
k

inertial range 

in
je

ct
io

n 

dissipation 

Stationary turbulence 

3
5

3
22

k
k

uE k
k Kolmogorov spectrum (K41) 



Dissipative structures: current sheets in 2D 

Most of the energy dissipation takes place in current sheets.  We display the current density 
(upflows & downflows) along the loop in a transverse cut. 

Versus height. Versus time. 



Dissipative structures: current sheets in 3D 

3D distribution of the energy dissipation rate. 
 
We display the dissipation rate during 20 
Alfven times with a cadence of 0.1 tA. 



Conclusions 

In this first lecture we introduced  the Hall-MHD equations, which is an adequate  
theoretical framework to describe a number  of astrophysical and laboratory 
applications. 
 
 
We also presented to so called reduced approximation, which  is appropriate for  
plasmas embedded in relatively strong magnetic fields.  
 
 
We briefly showed  the numerical techniques used  to integrate the Hall-MHD  
equations (spectral and Runge-Kutta).   
 
 
As a first application, we showed RMHD simulations (no Hall effect yet) to study the  
internal dynamics of magnetic loops in the solar corona. 
 
 
In the next lecture, we will include the Hall effect and focus on its influence in magnetic  
reconnection, dynamo mechanisms or turbulence.  


