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General Motivation =

Many laboratory, astrophysical and space plasmas can properly be described within the
theoretical framework of Magnetohydrodynamics (MHD).

MHD is a fluidistic approach to describe the large scale dynamics of plasmas.
The standard approach is also known as one-fluid MHD.
We are going to start from a somewhat more general approach known as two-fluid MHD,

which acknowledges the presence of ions and electrons and considers kinetic effects such
as Hall, electron pressure and electron inertia.

Physical processes that can be addressed with MHD include: Bo

o Magnetic reconnection ]
o Magnetic confinement

o Magnetic dynamo \

o MHD turbulence L

We will also address the case of plasmas embedded in strong external magnetic fields, which
allow for an approximation known as reduced MHD, both for one-fluid MHD (RMHD) and
two-fluid MHD (RHMHD).



@ For each species s we have (Goldston & Rutherford 1995):
on,

o Mass conservation
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o Momentum exchange rate ss' slgUgg

@ These moving charges act as sources for electric and magnetic fields:
o Charge density s

o Electric current density

|

ss'
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For a fully ionized plasma with ions of mass /77, and massless electrons (since /1, << /; ).

Mass conservation:
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Polytropic laws: ,0/ oC /7]/ ” pg oC /77

Newtonian viscosity: (7,'/' = U (a/U/‘ +0 /U/')



We define the Hall parameter &=
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as well as the plasma beta ﬂ:—o and the electric resistivity n=—
mn,v, Ly,
Adding these two equations yields: alj - - - . N
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On the other hand, using equations
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Hall MHD in a strong field

Let us assume a strong magnetic field along 7 so that

B=2+6B 16B |~ a << 1

where (! represents the typical tilt of field lines with respectto 2. We assume

V, =] , 0,~a <<1

The magnetic and velocity fields can be expanded in terms of potentials of order X:
B=z+Vx(az+gx)=[a,,—a,,1+ 0] :
U=sVy+Vx(pz+ I X)=[p,+v,~0,+v,, U+y,] ,

We want to eliminate the fast scale dynamics, characterized by Ty =~ Ll / V,4 ,1.e.

Viy =0
V., [b+B(p,+ p,)]=0
V.[¢+p—e(b+ pp,)]=0

We obtain the following conditions

Z=L

b=-g,
u=-1,
0, =1
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Hall MHD in a strong field

@ The relatively slower dynamics, characterizedby 7,, = L,/ V,,ie. 0,~«

is given by the following equations (Gomez, Dmitruk & Mahajan 2008):

0,a=0,(p—eb)+[p—eb, a] +nV:a
0,w=0,] +lp,w]-[a, J]] +W'w
0.b=0,(u—¢gj) +[p,b|+[u—¢gf,al +nV:b
o,Uu=0b +[o,U]-[a,b] + Wi

where j=_V?g and w=—Vp

Q9 These are the RHMHD equations. Their ideal invariants (just as for 3D HMHD) are:

E:% [ r(| 0P+ B’|2)=%jd3r(|igp|2+|ia|2 +1P+ 1) | energy
H_ :% | r(A-B)=[d’rab magnetic helicity

H,= %I o’ r(A+e0)-(B+eQ) = [ 0 r(ab+e(am+ ub) + & uw)|  hybrid helicity




We studied a number of astrophysical problems, within the general framework of MHD:
3D Hall-MHD turbulent dynamos.
(Mininni, Gomez & Mahajan 2003, 2005;
Gomez, Dmitruk & Mininni 2010)

2.5 D Hall-MHD magnetic reconnection

in the Earth magnetosphere
(Morales, Dasso & Gomez 2005, 2006)

3D HD helical fluid turbulence
(Gomez & Mininni 2004)

RMHD heating of solar coronal loops
(Dmitruk & Gomez 1997, 1999)

RHMHD turbulence in the solar wind
(Martin, Dmitruk & Gomez 2010, 2012)

Hall magneto-rotational instability in accretion disks
(Bejarano, Gomez & Brandenburg 2011)




We integrate the RHMHD egs. numerically, using a spectral scheme in the
perpendicular directions and finite differences along the (much smoother)
direction z (Gomez, Milano and Dmitruk 2000; also Dmitruk, Gomez &
Matthaeus 2003)

We show results from 512x512x40 runs performed in (CAPS), our
linux cluster with 80 cores

For the horizontal spatial derivatives, we use a pseudo-spectral
scheme with 2/3-dealiasing. Spectral codes are well suited for
turbulence studies, since they provide exponentially fast convergence.
Spatial derivatives along the loop are computed using finite differences.

Time integration is performed with a second order Runge-Kutta
scheme.The time step is chosen to satisfy the CFL condition. This
condition is more stringent if Hall is present, since it displays a
quadratic dependence with the grid size.

caps

Cluster for Astrophysical Plasma Simulations
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We focus on Fourier-Galerkin methods. Let us ilustrate on Burgers equation

OU~+Ud U=VvO_U

for u(x,t) on the interval () < X< 2, assuming periodic boundary conditions and the initial
condition  U(X,0) = U (X)

Ni2 .
We expand in a truncated Fourier expansion =~ —> u'(x, NH= > u(l g”
k=—N/2

Demanding zero residuals of the solution u(x,t) when projected on the truncated Fourier space

ou=—wu,—vku , (WU, =XIimiu

+m=

This truncated expansion UN(X, f) converges exponentially fast to the exact solution as N/ — o

However, it is computationally very demanding, since it involves 0( /Vz) operations.
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The FFT algorithm yields the discrete set {8,} from the set {U(X)} after O(Nlog )
floating point operations.

2T . .
{u(x/.),x/:;/,/:o,...,/V—l} «— {[/k,/(:—/%ﬂ,...,/%}

The strategy of computing spatial derivatives in Fourier space and nonlinear terms
in physical space, is known as pseudo-spectral, i.e.

ou=—(uwou, -vku , (wou, =FFT(FFT'(u) FFT'(/ku))

The relation between discrete Fourier coefficients {Uk} and the continuous ones is
[l/( — U/( —I_ z U/(+/Vm
m#0

This sum causes a spurious effect known as aliasing when computing nonlinear terms.
Aliasing effects can be suppressed by applying the “two-thirds rule”, i.e.

_ N
0=0, V |/(|ZA
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@ We advance the solution through discrete time steps —_— f = /Af
/

@ In compact notation, if dU

dt = 0.0

where F is a nonlinear and spatial differential operator, we use a second order Runge-Kutta scheme.

@ We first advance half a step [+~
U + — Ul + — F(Ul /)

j+1
and use U > to jump the whole step — [//4_1 U/ + Al F(U/+ )
? /+

2
@ This is second order accurate (i.e. 0((Af) )). The size of the step is limited by the CFL condition, i.e.

at<® o pu=uyou
UO



RMHD applied to coronal loop heating —

@ The solar corona is a topologically complex
array of loops (TRACE movie 171 A)

@ Coronal loops are magnetic flux tubes
with their footpoints anchored deep in the
convective region.

@ They confine a tenuous and hot plasma.
Typical densities are n = 10° cm=3 and
temperatures are T = 2-3.10° K.

@ The magnetic field provides not just the confinement of the plasma, but also the energy to heat it up
to coronal temperatures ( ).

@ One of the key ingredients is the free energy available in the sub-photospheric convective region.
Convective motions move the footpoints of fieldlines, thus building up magnetic stresses. See
Mandrini, Demoulin & Klimchuk 2000 for a comprehensive comparison between theoretical models
and observations for a large number of active regions.

@ However, the typical length scale of these magnetic stresses is way T jiss = /? /77
too large for the Ohmic dissipation to do the job, since




D Equations

@ Reduced MHD is a self-consistent approximation of the full MHD equations whenever:
(a) one component of the magnetic field is much stronger than the others and,
(b) spatial variations are smoother along than across (Strauss 1976).

0,a=V,0,p+[p,a]+nV.a U,
afa): VA82/+ [(0,(0]—[3, /]+7]Vi(() Z=L /

T
\
\
A
\

b=v,2+V x(a2) , 0=V, x(¢2)
w

- Vi , j=-Va \
Pa
@ These equations describe the evolution of the velocity z
(u) and magnetic field (b) inside the s arror souones ~

box, assuming periodic boundary
conditions at the sides.

o We enforce stationary velocity 2
fields (Upy,) at the top plate.

7.-0 /'/ PZ=

2r &y




Current density




4

)] RWHD simulatiens

—

@ We perform long time integrations of the RMHD
equations. Lengths are in units of the photospheric
convective motions ( 14 ») and times are in units of the
Alfven time (t,) along the loop.

@ Spatial resolution is 256x256x48 and the integration
time is 4000 t,. We use a spectral scheme in the xy-
plane and finite differences along z.

@ The time averaged dissipation rate is found to scale
like (Dmitruk & Gémez 1999)

2
Y

ph

@ |tis essentially independent of the Reynolds number,
as expected for stationary turbulence.




@ Energy cascade

- energy flux toward high k

- vortex breakdown

@ Scale invariance

- energy fluxink: —

- energy power spectrum:

1

T, ~—
k )
ku,

@ Therefore

i

2
u
g, ~—% = const
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injection
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Kolmogorov spectrum (K41)




Dissipative structures: ctirent sheets.in 2D~

upflows downflows

time=14.0 t,




Dissipative structures: ctrrent sheets.in 3D




- Conclusions

In this first lecture we introduced the Hall-MHD equations, which is an adequate
theoretical framework to describe a number of astrophysical and laboratory
applications.

We also presented to so called reduced approximation, which is appropriate for
plasmas embedded in relatively strong magnetic fields.

We briefly showed the numerical techniques used to integrate the Hall-MHD
equations (spectral and Runge-Kutta).

As a first application, we showed RMHD simulations (no Hall effect yet) to study the
internal dynamics of magnetic loops in the solar corona.

In the next lecture, we will include the Hall effect and focus on its influence in magnetic
reconnection, dynamo mechanisms or turbulence.



