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Hall-MHD equations 

The dimensionless version, for a length scale     , density       and Alfven speed 0L 0n 00 4/ nmBv iA
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We define the Hall parameter 
 
 
as well as the plasma beta                                       and the electric resistivity 
 
 
Adding these two equations yields: 
 
 
On the other hand, using  
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Hall MHD in a strong field 

The  RHMHD equations are  (Gomez, Dmitruk & Mahajan 2008): 
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These are the RHMHD equations. Their ideal invariants (just as for 3D HMHD) are: 
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Retaining the linear terms in the RHMHD eqs we obtain  
the following dispersion relationship 
 
 
 
 
 
which displays the following (dispersive) modes 
 
 
 
 
 
 
The positive branch corresponds to (right hand, circularly polarized) whistlers, while the negative branch are  
(left hand polarized) ion-cyclotron waves.  
 
 
The phase  speed for whistlers grows like                     thus forcing to a very small dt for numerical convergence. 
 
 
Ion-cyclotron waves, instead, display a decreasing phase speed like                         , which makes them good  
candidates for resonant particle acceleration. 

Linear modes of the RHMHD equations 
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Hall reconnection has extensively been studied for the   magnetopause and also the magnetotail.  The 
Hall effect is expected  to increase the reconnection rate. 
 
 
The simplest geometrical setup is 2.5D, for  which  the  velocity and magnetic  field can be written in terms of 
four scalar fields (Gómez 2006, Space Sci. Rev. 122, 231;  Gómez et al. 2006, Adv. Sp. Res. 37, 1287) 
 
 
 
 
 
 
 
The 2.5D Hall-MHD equations are 
 
 
 
 
 
 
 
 
 
where 

Hall-MHD reconnection in 2.5D 

In the absence of Hall , the parallel components  
(u,b) have no influence on the perp. dynamics. 
 
When Hall is present, the parallel components will  
be turned on and couple to the perp. components. 
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When the Hall effect is neglected  (pure MHD) 2D reconnection is possible. 
 
 
Magnetic fieldlines (left) and flow streamlines (right) are shown at three succesive Alfven times. 
Blue contours are positive and the red ones are negative. 

Hall-MHD reconnection in 2D 
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When the Hall effect is considered,  
the out-of-plane fields are generated. 
They were initially set to zero. 
 
 
We show contour plots of the four  
scalar fields at three succesive  
Alfven times for  
 
 
The out-of-plane magnetic field 
develops a quadrupolar pattern,  
while the velocity field develops a  
net flow at the reconnection region. 
 
 
Blue contours are positive and the  
red ones are negative. 
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The out-of-plane current density is shown for the cases 
 
The current sheets becomes narrower and smaller as the Hall parameter is 
increased. 
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The reconnected flux also  
increases with the Hall  
parameter, confirming 
previous results from  
collisionless and also  
Hall-MHD simulations. 
 
 
The plot shows reconnected 
flux vs. time for different  
values of the Hall parameter. 

Hall-MHD reconnection rates 
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Energy spectra 

We also computed energy power spectra for different values of  the Hall parameter     . 
 
The Kolmogorov slope             is also displayed  for  reference. 
 
The dotted curves correspond  to the parallel energy spectra. 
 
The vertical dotted lines indicate the location of the Hall scale                    for each run. 
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Energy spectra  

Energy power spectra for different values of     .  
 
The dotted curves are the spectra for kinetic energy. 



Current sheets in RHMHD 

Energy dissipation concentrates on very small structures known as current  sheets, in which current density  
flows almost parallel to z. 
 
The picture shows positive and negative current density in a transverse cut at           , for pure RMHD (i.e.             ). 
 
When the Hall effect is considered, current sheets display the typical Petschek-like structure. 

2
1z 0

0.0 1.0



Parallel electric field 

One of the important new features of the Hall effect, is the presence of a parallel electric field,  i.e. 
 
To order         it can be computed as   
 
and of course  it can potentially accelerate particles along magnetic field lines.  
 
Current density is displayed in red and blue, while contours coloured in light blue and pink correspond  to  
the parallel electric field. 
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-species plasmas 
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For each species s we have (Goldston & Rutherford 1995): 
 

 
        Mass conservation 
 
 
 
        Equation of motion 
 
 
 
        Momentum exchange rate 

 
 
 
These moving charges act  as sources for electric and magnetic fields: 
 
 
 

        Charge density 
 
 
 
        Electric current density 
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Two-fluid MHD equations 
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Let us now retain  electron inertia (i.e.                          ): 
 
 
 

        Mass conservation: 
 
 
        Ions: 
 
 
        Electrons: 
 
 
        Friction force:  
 
 
 
         
 
 
 
        Polytropic laws: 
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Retaining electron inertia: EIHMHD equations 

The dimensionless version, for a length scale     , density       and Alfven speed 0L 0n 00 4/ nmBv iA

We defined the Hall parameter 
 
 
as well as the plasma beta                                       and the electric resistivity 
 
 
Adding these two equations yields: 
 
 
where  
 
 
and  
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Retaining electron inertia: EIHMHD equations 

In the equation for electrons (assuming incompressibility) 
 
 
 
 
 
we replace 
 
to obtain 
 
 
 
 
 
Electron inertia is quantified by the dimensionless parameter 
 
 
Just as the Hall effect introduces the new spatial scale                      (the ion skin depth), electron inertia  
 
introduces the electron skin depth                which satisfies 

ABand
t
A

c
E

1

A
U

pwBBJUUAA
t

ee
ee

e
e

e
e

2
222

22
2

22 )
2

()()()(

0L
c

m
m

pei

e
e

1
Hk

e
ek

1

HH
e

i
e kk

m
m

k



EIHMHD in 2.5D 

We now express the EIHMHD equations in 2.5D geometry. I.e. for simplicity we assume                  and therefore 
 
 
 
 
 
 
 
The equations for these four scalar fields are 
 
 
 
 
 
 
 
 
 
 
 
where 
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Normal modes in EIHMHD  

If we linearize our equations around  an  equilibrium characterized by a uniform magnetic field, we obtain the  
following dispersion  relation: 
 
 
 
 
 
 
Asymptotically, at very large k, we have two branches 
 
 
 
 
 
 
 
while for very small  k, both branches simply become   
Alfven modes, i.e. 
 
 
 
Different approximations, just as one-fluid MHD, Hall-MHD and electron-inertia HMHD  can clearly be identified  
in this diagram. 
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Ideal invariants in EIHMHD 
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For each species s  in the incompressible  and  ideal limit 
 
 
 
 
 
Using  that                                                              and  
 
 
we can readily show  that  energy is an ideal invariant, where 
 
 
 
 
 
We also have a helicity per species which is conserved, where  
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EIHMHD simulations 

We perform 512x512 simulations of  the EIHMHD equations in 2.5D geometry to study magnetic reconnection. 
 
We force an external field with a double hyperbolic tangent  profile to drive reconnection at two X points. 
 
At three succesive times we show  the current density in the background, the  proton flow  in the left half  of  each  
frame, and the electron  flow  on  the right  half. 
 
Although  at large scales both flows look quite similar, in the vecinity of the X points, electrons tend to move  much 
faster, close to the Alfven velocity. 



Reconnected flux in EIHMHD 

The total reconnected flux at the X-point is the magnetic flux through  the perpendicular surface that extends from  
the O-point to the X-point. 
 
We compare the total reconnected flux between  
a run that includes electron inertia and another  
one  that does not. 
 

Sd

The reconnection rate is the time  derivative of these  
two curves. 
 
The apparent  saturation  is just a spurious effect  
stemming from the dynamical destruction of the X-point.   



Conclusions 

In this presentation, we integrated  the Hall-MHD equations numerically, to study magnetic 
reconnection. Even though the Hall effect does not produce reconnection, its role is to enhance the 
Ohmic reconnection rate.  
 
 
We also studied the role of the Hall effect in the presence of a strong external magnetic field. We 
showed the development of Kolmogorov-like turbulence in this system. Also, the existence of 
parallel electric fields can provide particle acceleration. 
 
 
We extended the Hall-MHD equations to include electron inertia, leading to what we call the
EIHMHD equations.  
 
 
Integrating the EIHMHD equations in a 2.5D setup, we show that electron inertia leads to efficient 
magnetic reconnection, even in the absence of magnetic resistivity. 
 
 
The ideal invariants of a multi-species plasma are the total energy and also one  helicity per 
species. 


