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Outline

Model potential molecular dynamics... as simple as possible
1 how to calculate forces...
2 how to numerically calculate trajectories...
3 from time evolution to thermodynamics (optimizations and

equilibrium calculations)
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Definitions (I)

The dynamics is the study of the time evolution of a system x(t) as a
result of the forces acting on it.

Molecular Dynamics

Molecular dynamics (MD) is the computer simulation of the physical
movements of molecules and atoms of a system under study.
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Definitions II

The molecular constituents are treated classically when the De Broglie
length λ is smaller than the interatomic distances ( i.e.

√
2mkBT/! >>

(N/V )
1

3 , where T is the temperature N/V the density).

For classical particles the Newton equations of motion can be
used to calculate the molecular trajectories x(t):

mẍ(t) = F (x)
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Definitions (II)

Molecular:
refers to atomic constituents: x(t) is the molecular or atomic
trajectory (i.e. position as a function of time)

potential:
refers to the fact that atomic forces F (x) are obtained by interatomic
potential that are functions of the atomic positions U(x)

model:
refers to the fact that the interatomic potential is and “effective”
potential calibrated on suitable set of physical properties of the
system rather than obtained from first-principles
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Potential

For an isolated (non dissipative) system the interatomic forces only
depends on the particle position F (x) and are conservative (i.e. the
work do not depend on the path) so derivable from an interatomic
potential U(x)

F = −∇U(x)

First-principles molecular dynamics: Forces explicitly taking
into account electrons (for example, within DFT methods) (Newton’s
equation are still used fot the motion of the molecular constituents)
Model potential molecular dynamics: Forces are derived
F = −∇U(x) by an analytic potential U(x ;α) depending on empirical
parameters α that are calibrated on experiments or on first-principles
calculations.
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Interatomic potential: General requirements

What requirements should be satisfied by an interatomic potential (in-
ternal forces):

not explicitly dependent on time U(x1, x2, ...)

translational invariant (only depending on pair vectors)
U(x1 − x2, x1 − x3, . . . , xi − xj )

rotational invariant (only dependent on scalar products and
tensors)

U(xij ) = F (#xij · #xij , #xij · #xkl , #xij · #xkl × #xpq)

sum of two-body, N-body term

U = U(0) +
∑ ∂U

∂xij
(0)xij +

1

2

∑ ∂2U(0)

∂xij∂xkl
xijxjk

U = U(0) +
∑

U(xij , xjk)...
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Interatomic potential: General requirements

sum of two-body, N-body term

U =
1

2

∑ ∂2U(0)

∂xij∂xkl
xijxjk + ...

U =
∑

U2(x
2
ij ) +

∑

U3(xij , xik) + ...
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Lennard-Jones potential

Two-body potential 12-6

U(#x1, ..., #xN) =
∑

ij

ULJ
2 (rij )

where

ULJ
2 (rij ) = 4ε

[(

σ

rij

)p

−
(

σ

rij

)q]

p = 12 and q = 6 in the 12-6 Lennard-Jones potential.
The minimum energy is found at r0

ij = σ(2
1

6 ) = 1.122σ;
ε is a measure of the cohesive energy since U(r0) = −ε;
The lengths σ is such that ULJ

2 (σ) = 0

Forces are calculated by deriving the potential.
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Lennard-Jones

We define xij = xi −xj , and the modulus rij = |#xi − #xj | so that the forces
can be calculated:

Fi = −
dU

d #xi
= −

∂U(rij )

∂rij
·
drij
d #xi

∂U(rij )

∂rij
= 4ε

[

−
12

rij

(

σ

rij

)p

+
6

rij

(

σ

rij

)q]

= 4ε

[

−
p

ρp+1
+

q

ρq+1

]

1

σ

where ρ = rij/σ
Furthermore,

∂rij
∂#xi

=
#xij

rij
=

xi − xj

rij
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Lennard-Jones forces

Once the derivation of the single two-body component has been per-
formed that it is possible to consider the overall potential:

U(rij , rik) =
∑

i<j

U(rij )

So when deriving it is obtained that

d

d#xk
U =

∑

i<j

dU(rij )

d#xk
=

∑

i<j

[

δik
dU(rij )

d#xk
+ δjk

dU(rij )

d#xk

]

=

∑

i<j

[

δik
dU(rij )

d#xi
− δjk

dU(rij )

d#xi

]

So the general idea is that we loop over the atoms in orde to construct
the potential and we distribute the forces
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Fortran 95

language is the Fortran 95
(http://en.wikipedia.org/wiki/Fortran_95_language_features

tested by gfortran compiler
(version GCC 4.6.0) (GCC
is the GNU compiler
collection)
For fortran beginners learn
by trying program first.f90

Modules are also briefly
reviewed
A simple makefile is
described

Figure: Makefile
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Exercise on force model

Exercise 1: Use the codo.0 to calculate the forces for a dimer of Pt
atoms

step0

Figure: Parameters taken from P. M. Agrawal, Surface Science 515 (2002)
21–35
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Time evolution (trajectories)

Analytical trajectory for one particle 1D problem.

t =

ˆ x(t)

0

dx
√

2m(E − 4ε
[

(

σ
x

)12 −
(

σ
x

)6
]

)

The simplest approach is to discretize the first and the second derivative

ẋ(t) = x(t+dt)−x(t)
dt

ẍ(t) =
x(t+dt)−x(t)

dt
−

x(t)−x(t−dt)
dt

dt
= x(t+dt)−2x(t)+x(t−dt)

dt2

and to impose the Newton equation law on acceleration

mẍ = F (x)

.
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Time evolution (II)

It is easily obtained an expression that make possible to evolve positions
from the knowledge of accelerations

x(t + dt) = 2x(t)− x(t − dt) + dt2 F (x(t))/m

The trajectories can be calculated (error dt4) without the need of ve-
locities; these latter are calculated apart

v(t) = x(t+dt)−x(t−dt)
dt

The overall algorithm was adopted by Verlet(1967).
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Time evolution (II)

By using Taylor expansion, and relation a = F/m

x(t + dt) = x(t) + dt v(t) + dt2 F (x(t))/m

v(t) = v(t) + dt F (x(t))/m)
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Time evolution (III)

Integrate equations of motion

Velocity-Verlet algorithm

VV algorithm is probably the most attractive proposed to date
because of its numerically stability, convenience and simplicity:

x(t + dt) = x(t) + v(t)dt + 1

2
dt2F (x(t))/m

v(t + dt) = v(t) + 1

2
dt [F (x(t))/m + F (x(t + dt)/m)]
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Time evolution (IV)

Integrate equations of motion

Velocity-Verlet algorithm

VV algorithm is probably the most attractive proposed to date
because of its numerically stability, convenience and simplicity:

v(t + dt
2
) = v(t) + 1

2
dt F (x(t))/m

x(t + dt) = x(t) + dt v(t + dt
2
)

v(t + dt) = v(t + dt
2
) + 1

2
dt F (x(t + dt)/m)
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First order formulation

The Newton equation of motion ẍ(t) = F (x) is equivalent to:
{

ẋ = p/m
ṗ = F (x)

By naming Γ(t) = (x , p) the point of the phase space representing the
system, its time evolution can be written as

Γ̇ = iLΓ

where

iL = ẋ
∂

∂x
+ ṗ

∂

∂p

The solution is formally obtained by applying the exponential operator
e iΓt to the point at initial time

Γ(t) = e iLtΓ(0)
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Time propagation

The Trotter-Suzuki decomposition makes possible to approximate the
exponential operator:

eA+B = lim
n→∞

(e
A
n eBe

A
n )n ∼ e

A
2 eBe

A
2

It can be applied to the Liouville operator

e iLdt = edt ẋ ∂

∂x +dt ṗ ∂

∂p = edtẋ ∂

∂x +dtF (x) ∂

∂p ∼ e
dt
2

F (x) ∂

∂p edt ẋ ∂

∂x e
dt
2

F (x) ∂

∂p

The action of the exponential of the derivative can be calculated

eα
∂

∂x f (x , p) = f (x + α, p)

and the Velocity Verlet in the simpletic form is obtained; for integrating
thermostat and barostat a further action can be usefuleαx ∂

∂x f (x , p) =
f (xeα, p)
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Choice of the timestep

The timestep of molecular dynamics must be smaller than the timescale
of the the molecular phenomena. A simple estimate is obtained by
considering that [t] =

[

EM−1L−2
]

where the energies of interatomic
interactions are of the order of eV = 1.6 · 10−19J, atomic masses are
10−3/NAvogadro = 1/6.02 · 10−26Kg and distances ∼ Å.

[t] ∼ 1.014 · 10−14 ∼ 10 fs

S.I
[E ] 1eV /atom 1.602 · 10−19J
[M ] 1a.m.u 1.66×10−27Kg
[L] 1 10−10m
[T ] 1 · 10−14s

S.I
[E ] kcal/mol 4.18kJ/mol
[M ] 1a.m.u 1.66×10−27Kg
[L] 1 10−10m
[T ] 1 · 10−14s
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Exercise

Exercise dynamics
Implement the Velocity Verlet algorithm see step1-step2

A. Mattoni Introduction to MPMD



Damping and optimization

Damping is a physical effect that reduces the amplitude of oscillations in
an oscillatory system. During damping the system moves towards the
minimum (minimizing optimizing relaxing). Within molecular dynamics
there are two simple methods for damp

Zero-velocity dynamics

Set all the velocities to zero at each step.

v = 0 always

The system evolves “slowly” untill the forces are zero (minimum); the
system goes towards the minimum but it cannot accelerate.

Damped dynamics:
Set the velocities to zero if moving against the the force

v(α, i) = 0 if F (α, i) · vel(α, i) < 0

The system evolves untill the forces are zero; the system is allowed to
accelerate when moving towards the minimum.
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Exercise

Exercise damping 3

Implement zero velocity method for dissipating kinetic energy and
reach the minimum energy configuration; use the damped dynamics
method
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Exercise

putting atoms at random
positions

Figure: initial random positions

cluster of Pt atoms obtained by
damping or by dynamics

Figure: relaxed structure
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Computational workload

Calculate the workload as a function of the number of particles of the
system

T ∼ αN2

The N2 scaling si associated to double loops over atoms

Σi=1,num_atomsdrij = pos(:, i)− pos(:, j)

Verlet list method consists in store the list of neighboring atoms instead
of calculating at each step. In order to do this it is necessary to store the
list of atoms in sphere larger than the physical cutoff RV ∼ 1.1cutoff and
to reduce the num

T ∼
1

∆tV
N2 + (∆TV − 1) (NV − Nneigh) ∼

α

T
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Fluctuations

Fluctuations

Figure: Fluctuations
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Short-range interactions and truncation

Let us consider an homogenerous system where the density is constant
everywhere ρ = dn

dV . If the particle-particle forces (potential) go to zero
faster than F ∼ r−3 (U ∼ r−2) , than the total sum on a particle falls
to zero as r increases. In this case Fij (r) ∼ 1

r3+δ (Uij ∼ 1

r2+δ ) and the
total force acting on a particle i is

|Fi | <
∑

rij<R

|Fij | ∼
ˆ R

0

dr ′r ′2F (r ′) ∼ R−δ

that tends to zero when δ > 0. This is the case of Van der Waals
interactions UVdW ∼ r−6 (as well as Buckingham potential, Morse and
many others). This is not the case of charge-charge U ∼ r−1 and
charge-dipole U ∼ r−2 Coulombic interactions.

Figure:

A. Mattoni Introduction to MPMD


