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Model potential molecular dynamics... as simple as possible
@ how to calculate forces...
@ how to numerically calculate trajectories...

Q from time evolution to thermodynamics (optimizations and
equilibrium calculations)
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Definitions (I)

The dynamics is the study of the time evolution of a system x(t) as a
result of the forces acting on it.

Molecular Dynamics

Molecular dynamics (MD) is the computer simulation of the physical
movements of molecules and atoms of a system under study.
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Definitions 11

The molecular constituents are treated classically when the De Broglie
length A is smaller than the interatomic distances (i.e. /2mkg T /h >>

(N/ V)% , where T is the temperature N/V the density).

For classical particles the Newton equations of motion can be
used to calculate the molecular trajectories x(t):
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Definitions (II)

Molecular:
refers to atomic constituents: x(t) is the molecular or atomic
trajectory (i.e. position as a function of time)
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Definitions (II)

Molecular:
refers to atomic constituents: x(t) is the molecular or atomic
trajectory (i.e. position as a function of time)

potential:
refers to the fact that atomic forces F(x) are obtained by interatomic
potential that are functions of the atomic positions U(x)
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Definitions (II)

Molecular:
refers to atomic constituents: x(t) is the molecular or atomic
trajectory (i.e. position as a function of time)

potential:
refers to the fact that atomic forces F(x) are obtained by interatomic
potential that are functions of the atomic positions U(x)

model:

refers to the fact that the interatomic potential is and “effective”
potential calibrated on suitable set of physical properties of the
system rather than obtained from first-principles
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Potential

For an isolated (non dissipative) system the interatomic forces only
depends on the particle position F(x) and are conservative (i.e. the
work do not depend on the path) so derivable from an interatomic
potential U(x)

F=-VU(x)

First-principles molecular dynamics: Forces explicitly taking
into account electrons (for example, within DFT methods) (Newton’s
equation are still used fot the motion of the molecular constituents)
Model potential molecular dynamics: Forces are derived

F = —VU(x) by an analytic potential U(x; a) depending on empirical
parameters « that are calibrated on experiments or on first-principles
calculations.
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Interatomic potential: General requirements

What requirements should be satisfied by an interatomic potential (in-
ternal forces):

@ not explicitly dependent on time U(xy, xa, ...)

@ translational invariant (only depending on pair vectors)
Uy — X2, %1 — X3, ..., Xi — Xj)

@ rotational invariant (only dependent on scalar products and
tensors)

U(xij) = F(Xj - Xij, Xij - Xut, Xij - Xt X Xpq)

@ sum of two-body, N—body term

+ Z 8 ,J Z 8X, 8Xk/XU ik
0) + Z U(X,'J',Xjk)...
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Interatomic potential: General requirements

sum of two-body, N-body term
Z Ox; anI Xu'Xjk +

U= Z U2(X,-12-) + Z Us(xij, Xitc) +
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Lennard-Jones potential

Two-body potential 12-6

U(%1,xw) = Y US(ry)
i

UzLJ(fij) = 4e [(%)p B <%>q}

p =12 and g = 6 in the 12-6 Lennard-Jones potential.
The minimum energy is found at rg = 0(28) = 1.1220;

where

€ is a measure of the cohesive energy since U(r%) = —¢;
The lengths o is such that Us/(c) =0

Forces are calculated by deriving the potential.
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Lennard-Jones

We define xjj = x; — x;, and the modulus rj = |x; — Xj| so that the forces

can be calculated:

dU o 8U(r,J) ) dr,-j

Fi=—s=- z
dX,' 8r,-j dX,'
OUlry) _, [ 12(0\*, 6 (0)°
8r,-j r,-j r,-j r,-j r,j
o qg |1
- pP‘H- pq+1 o

where p = rj/o
Furthermore,

Introduction to MPMD
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Lennard-Jones forces

Once the derivation of the single two-body component has been per-
formed that it is possible to consider the overall potential:

U(rij, rix) E U(rij)

i<j

So when deriving it is obtained that

dU( r,J B ' dU(rij) . dU(ry)]
dka Z %, =2 [5* a5 T TR | T

i<j

> {5,,{ dU(ry) o dU(r,-J-)]

— dXi dX;
1<J

So the general idea is that we loop over the atoms in orde to construct
the potential and we distribute the forces
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@ language is the Fortran 95
(http://en.wikipedia.org/wiki g

o tested by gfortran compiler o mod

(version GCC 4.6.0) (GCC i
is the GNU compiler K ° heck
collection)

9 For fortran beginners learn
by trying program first.f90

@ Modules are also briefly
reviewed

@ A simple makefile is
described

objectMain= md.o

Figure: Makefile
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http://en.wikipedia.org/wiki/Fortran_95_language_features

Exercise on force model

Exercise 1: Use the codo.0 to calculate the forces for a dimer of Pt
atoms

9 stepl

The L-J potential parameters

Metal 4 (A) £ (eV)
Ag 2.574 0.351
Al 2.551 0.408
Au 2.569 0.458
Cu 2277 0.415
Ir 2419 0.830
Ni 2220 0.529
Pd 2451 0.465
Pt 2471 0.694
Rh 2.396 0.687

Figure: Parameters taken from P. M. Agrawal, Surface Science 515 (2002)
21-35
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Time evolution (trajectories)

Analytical trajectory for one particle 1D problem.

dx

x(t)
/" ¢2m(E—4e[(%)”—(z)ﬁb

X
The simplest approach is to discretize the first and the second derivative

X( t) _ x(t+d§1—x(t)

(t) _ x(t+d;lfx(t)7x(t)72(tt7dt)  x(tdt)—2x(8)+x(t—dt)
XAt = dt - dt?

and to impose the Newton equation law on acceleration

mx = F(x)
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Time evolution (II)

It is easily obtained an expression that make possible to evolve positions
from the knowledge of accelerations

x(t+ dt) = 2x(t) — x(t — dt) + dt?> F(x(t))/m

The trajectories can be calculated (error dt*) without the need of ve-
locities; these latter are calculated apart
v(t) _ x(t+dt);x(t—dt)
t
The overall algorithm was adopted by Verlet(1967).
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Time evolution (II)

By using Taylor expansion, and relation a = F/m

x(t + dt) = x(t) + dt v(t) + dt? F(x(t))/m

v(t) = v(t) + dt F(x(t))/m)
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Time evolution (III)

Integrate equations of motion

Velocity-Verlet algorithm

VV algorithm is probably the most attractive proposed to date
because of its numerically stability, convenience and simplicity:

x(t + dt) = x(t) + v(t)dt + 3dt?F(x(t))/m

v(t + dt) = v(t) + 2dt [F(x(t))/m + F(x(t + dt)/m)]
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Time evolution (IV)

Integrate equations of motion

Velocity-Verlet algorithm

VV algorithm is probably the most attractive proposed to date
because of its numerically stability, convenience and simplicity:

v(t+ %) =v(t)+ %dt F(x(t))/m
x(t + dt) = x(t) + dt v(t + L)

v(t + dt) = v(t + %) + Ldt F(x(t + dt)/m)
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First order formulation

The Newton equation of motion x(t) = F(x) is equivalent to:
{ x=p/m
p=F(x)
By naming '(t) = (x, p) the point of the phase space representing the
system, its time evolution can be written as
M =Ll
where

L=z 0
~Xox " Pap

The solution is formally obtained by applying the exponential operator
et to the point at initial time

r(t) = e™r(0)
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Time propagation

The Trotter-Suzuki decomposition makes possible to approximate the
exponential operator:

. A pg A A g a
ATB — lim (emePen)" ~ ez eBe?
n—oo

e

It can be applied to the Liouville operator

eildt _ gdtxgetdiphy _ dti B tdtF(x) 4, e% F(x)a%edt'x%e% F(x)&

The action of the exponential of the derivative can be calculated

e®ox f(x,p) = f(x + a, p)

and the Velocity Verlet in the simpletic form is obtained; for gntegrating
thermostat and barostat a further action can be usefule®ox f(x, p) =

f(xe®, p)
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Choice of the timestep

The timestep of molecular dynamics must be smaller than the timescale
of the the molecular phenomena. A simple estimate is obtained by
considering that [t] = [EMflsz} where the energies of interatomic
interactions are of the order of eV = 1.6 - 1071°J, atomic masses are
1073/ Navogadro = 1/6.02 - 10-20Kg and distances ~ A.

[{] ~1.014-107 ~ 10 f |

S.I S.I
[E] 1leV/atom 1.602-10-1°J [E]  kcal/mol ~ 4.18kJ/mol
[M]  lamu  1.66x1077"Kg [M] lamu  1.66x10"%Kg
[L] 1 1071%m [L] 1 1071%m
[T] 1-1071%s [T] 1-107%s
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Exercise

Exercise dynamics

Implement the Velocity Verlet algorithm see stepl-step2
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Damping and optimization

Dampingis a physical effect that reduces the amplitude of oscillations in
an oscillatory system. During damping the system moves towards the
minimum (minimizing optimizing relaxing). Within molecular dynamics
there are two simple methods for damp

Zero-velocity dynamics

Set all the velocities to zero at each step.

v =0 always

The system evolves “slowly” untill the forces are zero (minimum); the
system goes towards the minimum but it cannot accelerate.

Damped dynamics:

Set the velocities to zero if moving against the the force

v(a,i) =0 if F(a,i)- vel(a,i) <0

The system evolves untill the forces are zero; the system is allowed to
accelerate when moving towards the minimum.

A. Mattoni Introduction to MPMD



Exercise

Exercise damping 3

Implement zero velocity method for dissipating kinetic energy and
reach the minimum energy configuration; use the damped dynamics
method
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Exercise

putting atoms at random cluster of Pt atoms obtained by
positions damping or by dynamics

Figure: initial random positions Figure: relaxed structure
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Computational workload

Calculate the workload as a function of the number of particles of the
system

T ~aN?
The N? scaling si associated to double loops over atoms
zi:l,numiatomsdrij = POS(Z, l) — pOS(Z,j)

Verlet list method consists in store the list of neighboring atoms instead
of calculating at each step. In order to do this it is necessary to store the
list of atoms in sphere larger than the physical cutoff Ry, ~ 1.1cutoffand
to reduce the num

1
T~ N>+ (ATy — 1) (Ny — Npeigh) ~
Aty

—|e
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Fluctuations

Fluctuations

Fluttuazioni di energia (meatca)

L canonico & e i a quelle mi ico, in quante contiene sistemi la maggior parte dei quali ha energia uguale. Sulla base del caleel
media, cakoliamo:

419 1 faz\*
'°gz‘07(_72)‘_ﬁ(u_j) %

a\bralﬁ Z & uguale a:
Z 3
T2 =81 " P
Jari _ Jar#?e ™ 32
Z Z
Ora possiamo cakcolare:
(AH)? = —{H)? + (M)
quindi:
9 i d ar a
/ = oo = ! = e = e I
(AH) =g e 2= 55" = 55U = 5551

sviluppando le derivate sulla base delle relazioni di Maxwel|:

(. e
m(.r = kT°CyN
come sivede allora:
(H) ~ N

AH ~ VN
cioé per N molto grande le fluttuazioni sono trascurabili, e questo equivale al fatto che quasi tutti | sistemi hanno energia ( ,H_) da cui segue che 'energia interna U & la ste
dellensemble microcanonico.
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Short-range interactions and truncation

Let us consider an homogenerous system where the density is constant
everywhere p = j—\'}. If the particle-particle forces (potential) go to zero
faster than F ~ r=3 (U ~ r=2) | than the total sum on a particle falls
to zero as r increases. In this case Fj(r) ~ = (Uj ~ —5) and the
total force acting on a particle / is

R
Bl< S IF ~/ dr' P2 (r') ~ R0
ri<R 0
that tends to zero when § > 0. This is the case of Van der Waals
interactions Uygw ~ r~® (as well as Buckingham potential, Morse and
many others). This is not the case of charge-charge U ~ r~! and
charge-dipole U ~ r~2 Coulombic interactions.

Figure:
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