

School on Numerical Methods for Materials Science Related to Renewable Energy Applications

26 – 30 November 2012

Hands-on : Model Potential Molecular Dynamics

OUTLINE

0. DL_POLY code introduction 0.a Input files

THF solvent molecule
 1.a Geometry optimization
 1.b NVE/NVT dynamics

2. Liquid THF
2.a Equilibration – NPT
2.b Dipole moment calculation
2.c Static dielectric constant calculation

0. DL_POLY code introduction 0.a Input files

DL_POLY code is a general purpose parallel molecular dynamics simulation package developed at Daresbury Laboratory by W. Smith and I.T. Todorov. It can be freely downloaded at (http://www.stfc.ac.uk/cse/25526.aspx) upon registration, and its manual can be found at http://www.ccp5.ac.uk/DL_POLY/MANUALS/USRMAN4.pdf

Copy the executable (DLPOLY.Z) from \$WORKSHOP/dl_poly_4.04/execute/ into your working directory, and the manual (USRMAN4.04.pdf) from \$WORKSHOP/dl_poly_4.04/manual.

We need three files to start a DL_POLY MD simulation, named as CONFIG, CONTROL and FIELD:

CONFIG contains the informations on the system geometry and the simulation cell

FIELD contains the parameters of the force field which describes the molecular interactions (bond stetching, Van der Waals interactions, atomic partial charges etc.)

CONTROL contains the simulation parameters (e.g. temperature, pressure, number of timesteps...)

CONFIG – typical file structure

FIELD – typical file structure

p3ht,nanotube,thf UNITS kcal 3 MOLECULES p3ht NUMMOL 4 ATOMS 202 details on the first bonds 400 molecular species 950 angles dihedrals 1480 FINISH nanotube NUMMOL 1 details on the second ATOMS 804 bonds 1500 molecular species angles 2450 dihedrals 8600 FINISH thf NUMMOL 1 details on the third ATOMS 13 bonds 13 molecular species angles 13 dihedrals 41 FINISH 18.0000000 vdw С li 0.1094 3.3997 С nonbonded interactions – unique lj С н 0.0414 2.9355 section for all the molecular species close

FIELD – typical file structure (2)

If there are more than 1 molecular species, the FIELD file will look like this:

CONTROL – typical file structure

1. THF solvent molecule 1.a Geometry optimization 1.b NVE/NVT dynamics

"minimise force n f"

tells the code to perform a local optimization of the molecule every *n* step by minimizing the intramolecular forces with respect to the tolerance *f*, using conjugate gradient method.

The minimization can be performed also on the *energy* or *maximum displacement*.

Edit CONTROL file by adding the highlighted row

DL_POLY thf

integrator velocity verlet temperature 1.00000 pressure 0.0000	
ensemble nve	
steps 1	
minimise force 1 1	
print 1	
stack 1	
stats 1	
traj 010	
timestep 0.0005	
cutoff 8	
ewald precision 1d-8	
rvdw cutoff 8	
iob time 1200000.	
finish	

THF solvent molecule
 1.a Geometry optimization
 1.b NVE/NVT dynamics

Run the calculation by executing DLPOLY.Z (it should be very fast)

After the calculation, some new files have been created by the program:

OUTPUT contains a summary of the simulation details, force field, system configuration at different timesteps etc.

HISTORY contains the atomic coordinates at every timestep

REVCON contains the final atomic coordinates, velocities and forces. It is used mainly as restart file.

REVIVE binary file which is used as restart file

STATIS contains a collection of statistical data, useful for post-processing, such as system temperature, energy, volume etc.

THF solvent molecule 1.a Geometry optimization 1.b NVE/NVT dynamics

We can now perform a dynamic simulation, and we will verify that the theoretical assumptions on the NVE ensemble are correct.

We can use the REVCON file generated from the geometry optimization as a restart file (rename this file as CONFIG), or use the CONFIG file in the folder. Edit the CONTROL file:

We have performed an NVE run, i.e. we should have constant number of particles, volume and energy. We can use the STATIS file to verify that everything is OK:

	potential energy							
total energy system temperature		ure	system volume					
	thf							
	ENERGY UNITS =	kcal/mol	40					
	2.464903E+01	1.000000E+00	2.46132	6E+01 -5	.701781E	-02 -8.1	01568E-03	
	6.124452E+00	1.166301E+01	6.89092	1E+00 0	.000000E	+00 6.2	233710E+00	
	0.000000E+00	5.531750E+01	-1.92695	8E-01_5	.732141E	-03 5.5	50447E+01	
	0.00000E+00	0.000000E+00	0.00000	0E+00 2	.700000E-	+04 0.0	000000E+00	
	0.000000E+00	0.000000E+00	9.00000	0E+01 9	.000000E-	+01 9.0	000000E+01	
	0.000000E+00	-4.676705E-02	0.00000	0E+00 0	.000000E-	+00 0.0	000000E+00	
	0.000000E+00	-1.379266E-01	5.78962	4E-02 1	.591232E	-01 5.7	/89624E-02	
	3.486365E-02	-1.725527E-02	1.59123	2E-01 -1	.725527E	-02 -3.7	23816E-02	
	100 5.0	00000E-02	40					
	2.462572E+01	2.096710E+02	1.71258	1E+01 -7	.141238E	-02 -7.7	78553E-03	
	3.258490E+00	7.496057E+00	6.45045	7E+00 0	.000000E-	+00 5.9	06820E+00	
	0.00000E+00	7.115652E+01	1.22257	7E-01 5	.087618E	-03 7.1	.02918E+01	
	0.000000E+00	0.000000E+00	0.00000	0E+00 2	.700000E-	+04 0.0	000000E+00	

this file contains also other useful data, we invite you to read the manual for details

TASKS

- Write a simple tool to extract the relevant data from the STATIS file
- Plot total energy, system temperature and system volume vs time
- Is <u>average total energy</u> conserved? What happens to <u>temperature</u> and <u>volume</u>?

If we want the system temperature to be conserved, we need to perform an <u>NVT simulation</u>. To do so, slightly modify the CONTROL file: change ensemble, choose the temperature, and rerun. You will also have to add two new keywords. These indicate that the code will scale the temperature every *scale* timesteps during the first *equilibration* steps (choose it to be about 10% of the total simulation time). Verify that the <u>average</u> system temperature is conserved now:

		500		500	
DL_POLY thf		400	- A A A A A A A A A A A A A A A A A A A	400	
integrator velocity verlet temperature <u>300.00000</u> pressure <u>0.0000</u>	<cal mol)<="" th=""><th>300</th><th>AL LA MA MA MANA MA.</th><th>300</th><th>ature (K)</th></cal>	300	AL LA MA MA MANA MA.	300	ature (K)
ensemble nvt hoover 0.5	Energy (I	200		200	Tempera
equilibration 1000 scale 1	_	100		100	
<pre>#minimise force 1 1 #restart</pre>		0 400	Etot —	0 400	
print 100 stack 100		350	M temperature	350	
stats 100	(lo	300		300	$\overline{\mathbf{v}}$
traj 0 100 0	cal/m	250	F ' Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	250	ure (I
cutoff 8	Jy (ke	200	- '' ' -	200	perat
ewald precision 1d-8	Enerç	150		150	Tem
rvdw cutoff 8	_	100	NVT -	100	
job time 1200000.		50		50	
TUT2U		0		0	
				500	

Perform a NVT simulation at T=300K fot both the systems of one and two THF molecules (nvt/1mol/ and nvt/2mol/). Observe the trajectories with vmd (vmd -dlpoly3hist HISTORY).

timesteps

2. Liquid THF

2.a Equilibration – NPT

2.b Dipole moment calculation2.c Static dielectric constant calculation

Since a liquid has no crystalline structure, i.e. it is disordered, we do not know where to put the molecules. We can start from any configuration (for example, a cubic crystal of arbitrary lattice constant), and then anneal the system to get a disordered, liquid-like structure.

Annealing

2. Liquid THF
2.a Equilibration - NPT
2.b Dipole moment calculation
2.c Static dielectric constant calculation

Any liquid has its own density at room temperature (g/cm³), we must reproduce it to have a good simulated liquid.

The standard way to obtain it is to perform a constant pressure simulation (ensemble NPT): in this ensemble the volume is free to change in order to achieve the correct density.

2. Liquid THF 2.a Equilibration - NPT 2.b Dipole moment calculation 2.c Static dielectric constant calculation

If the volume converges too slowly or it oscillates too much, you may consider changing the <u>relaxation constant of the barostat</u>: high values provide smaller oscillations but slow convergence, and vice versa.

2. Liquid THF
2.a Equilibration – NPT
2.b Dipole moment calculation
2.a Static dialoctric constant calculation

2.c Static dielectric constant calculation

Once your volume and potential energy have reasonably converged, we can calculate the liquid density ρ and other thermodynamic properties, e.g. the vaporization enthalpy ΔH_V

$$\rho = \frac{N_{mol} \cdot M_{mol}}{V} \qquad \Delta H_{v} = RT - \frac{(E_{NB})_{liq}}{N_{mol}}$$

- N_{mol} number of molecules
- M_{mol} molecular mass (72.104 g/mol for THF)
- V system volume
- *RT* gas constant times temperature (0.5957 kcal at 300 K)
- $(E_{NB})_{liq}$ nonbonding energy of the system (i.e. electrostatic+ VdW)

NB: Very long simulations are required to obtain correct thermodynamic properties! Use the STATIS.ref file to extract the data

experimental values			
ρ	ΔHv		
0.889 g/cm³	7.65 kcal/mol		

2. Liquid THF

2.a Equilibration – NPT

2.b Dipole moment calculation

2.c Static dielectric constant calculation

Let's now calculate the molecular dipole moment for the solvent THF. This will be useful to calculate the static dielectric permittivity of the liquid

$$\vec{\mu} = \sum_{i=1}^{N_a} q_i \vec{r}$$
 Where q_i is atom-atom

Where q_i is the atom's charge and \vec{r} is the atom-atom distance

Since we have the atoms' coordinates (in HISTORY file) and charges (in FIELD file), we can easily compute the value of the molecular dipole moment.

Edit the dipole.f90 code in codes/step1/ to calculate the molecular dipole moment for THF, and compare it to the experimental value of 1.75 D.

(NB: since charges are given in units of electron charge and the positions in Å, you will have to multiply the calculated value by 4.803 to get the value in Debyes)

Calculate the dipole moment for the system of 1 and 2 molecules (use the STATIS files in folders nvt/1mol/ and nvt/2mol/ and edit the codes in codes/step2/). Do you get the same results? Why?

2. Liquid THF2.a Equilibration - NPT2.b Static dielectric constant calculation

The relative static dielectric permittivity can be calculated from the total dipole moment fluctuations (fluctuation-dissipation theorem) in a NPT equilibrium simulation

$$\epsilon_{r} = 1 + 4 \frac{\pi}{(3k_{B}T\langle V \rangle)} (\langle \vec{M}^{2} \rangle - \langle \vec{M} \rangle^{2}) \qquad \text{(M. Neumann, Mol. Phys. 1983)}$$

 $\langle V \rangle$ average system volume

Modify the code for the single molecule dipole (as a function of time) to calculate the <u>total</u> dipole moment and hence the dielectric permittivity. Edit the code in codes/step3 and use the liquid/HISTORY.ref and liquid/STATIS.ref to extract the data.

2. Liquid THF2.a Equilibration - NPT2.b Static dielectric constant calculation

 $\epsilon_r = 1 + 4 \frac{\pi}{(3k_B T \langle V \rangle)} (\langle \vec{M}^2 \rangle - \langle \vec{M} \rangle^2)$

NB: this formula is valid with $ec{M}$ in Debyes

$$1D = 10^{-18} statC \cdot cm = \frac{10^{-27}}{2.99\sqrt{(4\pi\epsilon_0)}}C \cdot cm$$

$$\vec{M} = \sum_{i=1}^{N_{mol}} \vec{\mu}_i$$

$$\langle \vec{M}^{2} \rangle = \langle M_{x}^{2} \rangle + \langle M_{y}^{2} \rangle + \langle M_{z}^{2} \rangle$$
$$\langle \vec{M} \rangle^{2} = \langle M_{x} \rangle^{2} + \langle M_{y} \rangle^{2} + \langle M_{z} \rangle^{2}$$

Compare the calculated value with the experimental one ε_r =7.52

Does the two values compare well? Why?

<u>A GENERAL RULE</u>

In Model Potential Molecular Dynamics the calculated properties strongly depend upon the <u>choice of the parameters</u>, such as bond strength, atomic charges etc.

Furthermore, properties (such as the dielectric constant) which are related to electronic charge displacement cannot be properly taken into account with a simple fixed-charge model. Polarizable models have been developed and are available in Literature. Sec. 2.5 of the DL_POLY manual illustrates the ones which are implemented in this code.

Thanks for your attention!