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Catalysis: general principles
Catalyst: material that can control the rate of a chemical reaction

ACTIVITY: it alters the kinetics and thermodynamic of the reaction 
leading to high rate 

MATERIALS SCIENCE 
CHALLENGE

Finding materials that optimally 
comply with these principles

SELECTIVITY: it converts the 
reactants to the wanted products with 
no production of undesired byproducts
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Length scales of Catalysis
Catalysis spans a wide range of length scales

Homogeneous Heterogeneous

3.2. Preliminary analysis in gas phase

Figure 3.2: Relaxed geometry and frontier orbitals of Ru complex 0 before (top panel)
and after (bottom panel) the simplification in which methyl groups are replaced by
hydrogen atoms. In the left panel we show the structural formula, in the central and
right panels the isosurfaces at constant square modulus of the HOMO and LUMO
orbitals, respectively. Green, blue, tan, cyan, white and red spheres represent Ru, N, P,
C, H and O atoms, respectively.

The free energy change ¢G of a reaction is computed as

¢G =¢E +¢Z PE °T¢S, (3.2)

where¢E is DFT difference of total energies,¢Z PE is the difference of zero point ener-
gies (computed through the phonon frequencies obtained within linear response[112]).
¢S is the change of entropy of water and hydrogen during the adsorption and release
steps: we assume S to be zero when these species are attached to the molecule, while
the values in gas phase are obtained from standard thermodynamics tables[113]. Ex-
periments corresponding to different steps of the catalytic cycle have been performed
at different temperatures T : The initial steps of water adsorption and water decompo-
sition (0 ! 1(included)) have been observed at 300 K, while the hydrogen formation
and release reactions (1(excluded) ! 3) have been obtained at 373 K. Accordingly, in
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high selectivity
well-determined structure
difficult to immobilize

    lower selectivity
easier synthesis and process
difficult to characterize
stable in reaction conditions
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Homogeneous Heterogeneous

Ex: Water oxidation catalysts
WOx is one of the main bottlenecks in the conversion and storage of 

solar energy into chemical fuels 

Single- and multi-center TM-based catalysts 
(Ru, Ir, Co, Mn)

STRUCTURE AND FUNCTION
Well characterized - mechanisms of reactions

STABILITY
Short-lived due to ligand oxidation

Metal-oxide reducible catalysts 
(RuO2, IrO2, Co3O4, ...)

STABILITY
Combine robustness and efficiency
Stable under suitable pH conditions

STRUCTURE AND FUNCTION
Structure and composition of the active sites?

Surface of the catalyst under reaction conditions?

RuO2(110 and 0001) under UHV
“Blue dimer” (T. Meyer 1982)
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Computational Catalysis
Traditionally addressed both 

Homogeneous Heterogeneous

3.2. Preliminary analysis in gas phase

Figure 3.2: Relaxed geometry and frontier orbitals of Ru complex 0 before (top panel)
and after (bottom panel) the simplification in which methyl groups are replaced by
hydrogen atoms. In the left panel we show the structural formula, in the central and
right panels the isosurfaces at constant square modulus of the HOMO and LUMO
orbitals, respectively. Green, blue, tan, cyan, white and red spheres represent Ru, N, P,
C, H and O atoms, respectively.

The free energy change ¢G of a reaction is computed as

¢G =¢E +¢Z PE °T¢S, (3.2)

where¢E is DFT difference of total energies,¢Z PE is the difference of zero point ener-
gies (computed through the phonon frequencies obtained within linear response[112]).
¢S is the change of entropy of water and hydrogen during the adsorption and release
steps: we assume S to be zero when these species are attached to the molecule, while
the values in gas phase are obtained from standard thermodynamics tables[113]. Ex-
periments corresponding to different steps of the catalytic cycle have been performed
at different temperatures T : The initial steps of water adsorption and water decompo-
sition (0 ! 1(included)) have been observed at 300 K, while the hydrogen formation
and release reactions (1(excluded) ! 3) have been obtained at 373 K. Accordingly, in

33

single-metal 
atom

extended 
crystalline
surfaces

 
5 

 

Fi
g.

 S
1.

 C
om

pu
ta

tio
na

l u
ni

t c
el

l m
ar

ke
d 

by
 th

in
 g

re
y 

lin
es

 u
se

d 
to

 m
od

el
 th

e 
in

iti
al

 s
ta

te
 

(I
S)

 o
f t

he
 m

et
al

 o
rg

an
ic

 c
oo

rd
in

at
io

n 
ne

tw
or

k.
 

 

 

Fi
g 

S2
. 

C
om

pu
ta

tio
na

l 
un

it 
ce

ll 
m

ar
ke

d 
by

 t
hi

n 
gr

ey
 l

in
es

 a
nd

 s
im

pl
ifi

ed
 m

od
el

 o
f 

th
e 

be
nz

oi
c 

ac
id

s 
us

ed
 t

o 
si

m
ul

at
e 

th
e 

fin
al

 s
ta

te
 (

FS
) 

of
 t

he
 m

et
al

 o
rg

an
ic

 c
oo

rd
in

at
io

n 

ne
tw

or
k.

 

simplified models of real catalyst’s surfaces
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Computational Catalysis
Traditionally addressed both 

Homogeneous Heterogeneous

3.2. Preliminary analysis in gas phase

Figure 3.2: Relaxed geometry and frontier orbitals of Ru complex 0 before (top panel)
and after (bottom panel) the simplification in which methyl groups are replaced by
hydrogen atoms. In the left panel we show the structural formula, in the central and
right panels the isosurfaces at constant square modulus of the HOMO and LUMO
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simplified models of real catalyst’s surfaces

Current trend towards more complex systems:

supported sub-nm clusters
core-shell nanoparticles

 functionalized surfaces
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Computational Catalysis
Traditionally addressed both 

Homogeneous Heterogeneous

3.2. Preliminary analysis in gas phase

Figure 3.2: Relaxed geometry and frontier orbitals of Ru complex 0 before (top panel)
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hydrogen atoms. In the left panel we show the structural formula, in the central and
right panels the isosurfaces at constant square modulus of the HOMO and LUMO
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where¢E is DFT difference of total energies,¢Z PE is the difference of zero point ener-
gies (computed through the phonon frequencies obtained within linear response[112]).
¢S is the change of entropy of water and hydrogen during the adsorption and release
steps: we assume S to be zero when these species are attached to the molecule, while
the values in gas phase are obtained from standard thermodynamics tables[113]. Ex-
periments corresponding to different steps of the catalytic cycle have been performed
at different temperatures T : The initial steps of water adsorption and water decompo-
sition (0 ! 1(included)) have been observed at 300 K, while the hydrogen formation
and release reactions (1(excluded) ! 3) have been obtained at 373 K. Accordingly, in

33

single-metal 
atom

extended 
crystalline
surfaces

 
5 

 

Fi
g.

 S
1.

 C
om

pu
ta

tio
na

l u
ni

t c
el

l m
ar

ke
d 

by
 th

in
 g

re
y 

lin
es

 u
se

d 
to

 m
od

el
 th

e 
in

iti
al

 s
ta

te
 

(I
S)

 o
f t

he
 m

et
al

 o
rg

an
ic

 c
oo

rd
in

at
io

n 
ne

tw
or

k.
 

 

 

Fi
g 

S2
. 

C
om

pu
ta

tio
na

l 
un

it 
ce

ll 
m

ar
ke

d 
by

 t
hi

n 
gr

ey
 l

in
es

 a
nd

 s
im

pl
ifi

ed
 m

od
el

 o
f 

th
e 

be
nz

oi
c 

ac
id

s 
us

ed
 t

o 
si

m
ul

at
e 

th
e 

fin
al

 s
ta

te
 (

FS
) 

of
 t

he
 m

et
al

 o
rg

an
ic

 c
oo

rd
in

at
io

n 

ne
tw

or
k.

 

simplified models of real catalyst’s surfaces

New materials synthesized in the context of renewable materials 
belong to these classes

Current trend towards more complex systems:

supported sub-nm clusters
core-shell nanoparticles

 functionalized surfaces
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Challenges for Comp. Catalysis?
Materials and processes for renewable energy

questions&challenges for computational catalysis

•How to determine the activation energy?

•How to identify the reaction mechanism?

•Catalyst characterization (experiment)

•Effects of chemical environment (gas and liquid)?

•How to find new catalysts or guidelines for improving existing 
ones?

•Electrochemistry?

Reaction Mechanisms of Water Splitting and H2 Evolution by a Ru(II)-
Pincer Complex Identified with Ab Initio Metadynamics Simulations
Changru Ma,† Simone Piccinin,‡,† and Stefano Fabris*,‡,†,§

†SISSA, Scuola Internazionale Superiore degli Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
‡CNR-IOM, DEMOCRITOS Simulation Center, Istituto Officina dei Materiali, c/o SISSA, Via Bonomea 265, 34136 Trieste, Italy
§IIT-SISSA Unit, Italian Institute of Technology, Via Bonomea 265, 34136 Trieste, Italy

*S Supporting Information

ABSTRACT: Water splitting is at the basis of artificial
photosynthesis for solar energy conversion into chemical
fuels. While the oxidation of water to molecular oxygen and
the reduction of protons to molecular hydrogen are typically
promoted by different catalysts, the Ru(II)-pincer complex
recently synthesized by Kohl et al. [Science 2009, 324, 74] has
been shown to promote both the thermal driven formation of
H2 and the UV−vis driven evolution of O2. Here, we
investigate, through density functional theory calculations, a
portion of the catalytic cycle, focusing on the formation of
hydrogen. We adopt an explicit description of the solvent and employ metadynamics coupled with the Car−Parrinello method to
study the reaction mechanism and determine the activation free energies. Our simulations predict a novel catalytic cycle, which
has considerably lower activation energies than earlier proposals and which does not involve the sequential aromatization−
dearomatization of the PNN ligand of the complex. This work clearly demonstrates the general importance of an explicit
description of the solvent for a predictive modeling of chemical reactions that involve the active participation of the solvent.
KEYWORDS: homogenous catalysis, water splitting, modeling reaction mechanisms in solution,
density functional theory and metadynamics, Ru(II)-pincer complex

1. INTRODUCTION
The sunlight-driven splitting of water into H2 and O2 is a
milestone for storing solar energy in chemical fuels.1−3 This
electrochemical reaction involves two semireactions: water
oxidation at the anode, releasing protons and evolving O2; and
reduction of protons at the cathode, evolving H2. Among these,
the water oxidation semireaction is by far the most challenging
and represents a bottleneck for the development of efficient
artificial photosynthesis devices for the production of solar
fuels.4−6

Although most of the molecular catalysts promoting efficient
water oxidation comprise cores containing multiple metal
centers,7−10 some single-center complexes have also been
reported.11−15 Among these, the recent discovery and
characterization of a Ru(II)-pincer is of fundamental
importance since it demonstrates that a single metal center
can promote the whole reaction, namely, water oxidation as
well as H2 evolution.14 Full characterization of the reaction
mechanism of this homogeneous catalyst would have important
fundamental and technological implications. Ab initio simu-
lations have already provided useful information toward this
characterization, proposing several possible reaction paths for
the thermal- and light-driven H2 and O2 evolutions,
respectively.16−19

This Ru(II)-pincer complex (P-da-PNN)RuH(CO) (0, P-da
= dearomatized at the phosphorus side arm, PNN = (2-(di-tert-
butylphosphinomethyl)-6-diethylaminomethyl)pyridine) in a
tetrahydrofuran aqueous solution activates a water molecule
by forming a trans-hydrido-hydroxo complex, which yields
aromatization of the PNN ligand.14 Heating at 100 °C releases
H2 with concomitant formation of a cis-dihydroxo intermediate.
Upon irradiation with 320−420 nm UV−vis light, O2 is
evolved, probably by first liberating H2O2, which then
catalytically disproportionates to O2 and water.14

The solvent plays a key role in the function of water-
oxidation catalysts and introduces significant complexities into
the simulations, which often relies on simplified solvent models.
In particular, previous simulations have captured the electro-
static effects of the solvent on the reaction sites/intermediates
through implicit solvent descriptions. This is a very powerful
and popular technique, which has, however, one important
limitation. It precludes/limits the exchange of products,
reactants, and intermediates between the solvent and the
reaction sites, essentially preventing the active participation of
the solvent in the reaction. In this paper, we demonstrate the
importance of describing explicitly the solvent for simulating
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ions are the building blocks of the cubane motifs
as well as of the layered structures that have been
proposed in refs 6, 8, and 9. Quite importantly, such
putative structures were not identified directly with
crystallographic measurements, but were proposed on
the basis of structural parameters (average coordina-
tion numbers and interatomic distances between
Co!O and Co!Co pairs) resulting from fitting the
EXAFS spectra of Co-Pi catalysts.

In the following we use a direct procedure to assess
the atomistic structure of the catalyst. Namely, we start
from the atomic coordinates of our Co-Pi nanoparti-
cles, andwe simulate the corresponding EXAFS spectra
by calculating the phases and amplitudes in the EXAFS
equation (see Methods) and compare them with the
experimental data. Besides assessing the accuracy of
our model for Co-Pi clusters, the comparison allows for
rationalizing the spectroscopic measurements, provid-
ing insights into the origins of the different spectral
features.

Comparison with EXAFS Spectra and Discussion. The top
panels of Figure 3 display the simulated Co k3-weighted
EXAFS spectra calculated for different nanoparticles con-
taining four (grain 6, panel a), three (grain 5, panel b), and
zero (grain 1, panel c) complete cubanemotifs. The red
lines refer to simulated spectra obtained by averag-
ing the EXAFS signal over all the Co ions in the nano-
particle. The simulated spectra are compared to the
experimental spectrum (black line in all panels) mea-
sured for a Co-Pi thick film and reported in ref 8. The
corresponding Fourier transforms of these spectra
are reported in the bottom panels (d!f) of Figure 3.

The theoretical spectra for the nanoparticles richest in
crystallites and cubane motifs, grains 5 and 6, display
an overall good agreement with the experimental
spectrum, in both the position and width of the main
peaks. Instead, significant differences with experiment
affect the simulated EXAFS spectrum of amorphous
nanoparticles without cubane motifs (grain 1). We first
focus our analysis on grain 6, having the largest cubane
crystallites. The RDF of Co ions with all surrounding
ions for grains 6 is also reported in Figure 3d. The first-
shell experimental peak (at ∼1.5 Å, black line) is
present both in the Fourier-transformed EXAFS spectra
(at ∼1.5 Å, red line) and in the RDF (at ~2.0 Å). It
clearly corresponds to the Co!O bond length at ∼2.0
Å, which is also consistent with high-energy X-ray
scattering data (1.91 Å).9 The second experimental
peak (at ∼2.4 Å, black line) is qualitatively well repro-
duced by the simulated spectra (at ∼2.5 Å, red line),
but its relative height with respect to the first peak is
underestimated by ∼30% with reference to experi-
ment. As already noticed, the RDF also shows a broad
second peak between ∼2.5 and ∼4 Å, which reflects
the broad distribution of Co!Co distances in the
disordered fraction of the grain. Remarkably, the
shoulder is almost completely absent in the Fourier
transform of the EXAFS spectrum computed for the
same grain, which in turn is, as we already underlined,
consistent with experiment, except for the relative
height of the second peak. This suggests that the peak
of the transformed EXAFS at the apparent distance of
∼2.4 Å arises mostly from the quasi-ordered portion of
the grain, namely, from Co pairs bridged by two

Figure 3. EXAFS spectra and Fourier transforms for three grain candidates compared to experimental ones in ref 8. Upper
panel: Averaged Co k3-weighted EXAFS oscillation over all Co ions in the grain (red line) and over only the Co ions in the
cubane crystallites (blue line). Lower panel: Fourier transforms of the averaged k-space oscillation along with the radial
distribution function of all Co ions with all ions in the grain. For Fourier transforms of the k3-weighted EXAFS oscillation, the
k-range of 3!12 Å and a Hanning window function were used.
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ton and an electron from the hydroperoxo ligand. This leads
to a O

•�
2 superoxo bound to the Ru(V) center (S8 in Fig. 4

and Fig. 1f). Then, an electron transfers from the super-
oxo to the neighboring Ru ion and the resulting O2 ligand is
exchanged with a solvent water molecule. This leads to O2

evolution and to the S2 intermediate, thus closing the cat-
alytic cycle. Overall, the proton exchange and O2 evolution
steps are exothermic by -0.05 and -0.20 eV, respectively.

Atomistic and thermodynamic origins of catalytic e�ciency:
Unifying concepts in water oxidation catalysis.The formation
of the key hydroperoxo intermediate through the S5 ! S6 !
S⇤
6 sequence could also be envisioned as a single PCET step

coupled to the nucleophilic attack (S5 ! S⇤
6, �G=1.47 eV,

Fig. 4). This is the same mechanism of water oxidation pro-
posed for ideal metal and metal-oxide surfaces [30, 31, 32].

The similarity between the homogeneous and heteroge-
neous reaction mechanisms becomes even more evident by
considering the S3 ! S4 ! S5 ! S6

⇤ ! S7 path (cycle D in
Fig 3b), which is energetically equivalent to the S2 ! S⇤

6 one
(cycle C) described above. Cycle D involves the same four
PCET steps proposed for metal-oxide surfaces [32]:

2H2O
�G1���! OH⇤ +H+ + e� +H2O [1]

OH⇤ +H+ + e� +H2O
�G2���! O⇤ + 2H+ + 2e� +H2O [2]

O⇤ + 2H+ + 2e� +H2O
�G3���! OOH⇤ + 3H+ + 3e� [3]

OOH⇤ + 3H+ + 3e�
�G4���! O2 + 4H+ + 4e�. [4]

In both the crystalline RuO2 and molecular Ru4-POM
cases (cycle D), the oxygen evolution cycle takes place at a
single ruthenium site. It involves the hydroxo (OH*), oxo (O*)
and hydroperoxo (OOH*) intermediates, which are formed
electrocatalytically, and the formation of the O-O bond pro-
ceeds through the nucleophilic attack of a water molecule.
This analogy sheds light on the origins of the e�ciency of the
Ru4-POM complex and provides a unifying scenario govern-
ing water oxidation at molecular and crystalline metal-oxide
catalysts.

In the theory of surface catalysts, maximum thermody-
namic e�ciency is achieved by thermodynamic stairways of
metal-based intermediates that equally distribute the free en-
ergy of water oxidation (4.92 eV at pH=0) among the four
elementary steps of Eq. 1-4. In this way the same minimal
potential (1.23 V at pH=0, NHE) can drive all the PCET
steps, avoiding thermodynamic barriers due to uneven sta-
bility of some intermediates. For a wide class of crystalline
metal and metal-oxide surfaces, the binding energies of metal-
aquo/hydroxo and oxo species are shown to depend linearly
one to another [32, 33]. As a result, the free energy of each
oxidation (�Gi in Eq. 1-4) can be expressed as linear func-
tions of the oxygen binding energy (�EO), which is taken as
the reaction descriptor [32, 34].

Fig. 6 reports the free energies for the two most demand-
ing oxidations steps - the formation of the oxo (�G2) and
of the hydroperoxo (�G3) intermediates - as a function of
�EO. The resulting volcano plot (shaded area) determines
the thermodynamic overpotential (i.e. the largest �Gi) for
a given value of the descriptor �EO. The thermodynamic
requirements at the top of the volcano plot (�EO such that
�G2=�G3) set the optimal catalyst with the smallest over-
potential [32]. Extended screening of metal-oxide crystalline
surfaces show that RuO2(110) surfaces well satisfy these op-
timal thermodynamic requirements (black dot in Fig. 6, data
from Ref. [33] obtained using the RPBE functional for an
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Fig. 6. Top: Free energies of the four PCET steps (reactions 1-4) for water oxi-
dation on the crystalline RuO2 surface (black line) and Ru4-POM (blue). Bottom:
negative of free energy cost of the most demanding oxidation steps (�G2 and�G3)
as a function of the oxygen binding energy (�EO). The shaded area (volcano plot)
sets the overpotential for a given value of �EO.

O-covered surface [35]). This rationalizes why this material is
among the ones displaying the smallest, albeit finite, overpo-
tential [33].

Our calculations show that Ru4-POM perfectly complies
with the set of linear relationships established for metal oxide
surfaces and is almost on top of the volcano, in close prox-
imity with RuO2(110) surfaces (see Fig. 6). This is a clear
indication that the tetraruthenate-oxo core of this molecular
catalysts can be viewed as an elementary RuO2 unit, promot-
ing the same reaction mechanism as the parent oxide, with
very similar overpotential as shown both experimentally and
theoretically. In Fig. 6 we report for Ru4-POM both data
obtained with the B3LYP and PBE functionals. While for
this system the use of di↵erent functionals results in signifi-
cant di↵erences in the energetics (with only hybrid functionals
being able to accurately reproduce the experimental overpo-
tential and the free energy change of the S0 ! S3 transfor-
mation [21]), both data points lie on the volcano plot. This
suggests that the linear relationships established using one
particular functional (RPBE [32]) might be of general appli-
cation.

Single- vs. multi-site mechanisms by molecular cores.The
thermodynamic equivalence of the two reaction pathways
shown in Fig. 4, suggests that the e�ciency of multicen-
ter metal-oxo cores is not necessarily determined by multi-
site mechanisms involving oxidation of several metal centers
of the core. Instead, the minimum overpotentials can be
achieved also by reaction pathways in which a single metal
site within the tetraruthenium core promotes a multi-electron
process, like cycle D for the Ru4-POM. In this cycle, the
non-participating sites remain in the Ru(V)-OH state. While
metal oxidation states on the bulk material have hardly been
discussed, this observation traces a parallel between cycle D
and water oxidation on fully hydroxylated RuO2 surfaces,
which are predicted to be stabilized under applied bias [32, 36].

Indeed a single-site Ru-POM molecule was recently shown
to catalyze the oxidation of water in the homogeneous
phase [37], suggesting that cycle D could be a common mech-
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ABSTRACT: Water splitting is at the basis of artificial
photosynthesis for solar energy conversion into chemical
fuels. While the oxidation of water to molecular oxygen and
the reduction of protons to molecular hydrogen are typically
promoted by different catalysts, the Ru(II)-pincer complex
recently synthesized by Kohl et al. [Science 2009, 324, 74] has
been shown to promote both the thermal driven formation of
H2 and the UV−vis driven evolution of O2. Here, we
investigate, through density functional theory calculations, a
portion of the catalytic cycle, focusing on the formation of
hydrogen. We adopt an explicit description of the solvent and employ metadynamics coupled with the Car−Parrinello method to
study the reaction mechanism and determine the activation free energies. Our simulations predict a novel catalytic cycle, which
has considerably lower activation energies than earlier proposals and which does not involve the sequential aromatization−
dearomatization of the PNN ligand of the complex. This work clearly demonstrates the general importance of an explicit
description of the solvent for a predictive modeling of chemical reactions that involve the active participation of the solvent.
KEYWORDS: homogenous catalysis, water splitting, modeling reaction mechanisms in solution,
density functional theory and metadynamics, Ru(II)-pincer complex

1. INTRODUCTION
The sunlight-driven splitting of water into H2 and O2 is a
milestone for storing solar energy in chemical fuels.1−3 This
electrochemical reaction involves two semireactions: water
oxidation at the anode, releasing protons and evolving O2; and
reduction of protons at the cathode, evolving H2. Among these,
the water oxidation semireaction is by far the most challenging
and represents a bottleneck for the development of efficient
artificial photosynthesis devices for the production of solar
fuels.4−6

Although most of the molecular catalysts promoting efficient
water oxidation comprise cores containing multiple metal
centers,7−10 some single-center complexes have also been
reported.11−15 Among these, the recent discovery and
characterization of a Ru(II)-pincer is of fundamental
importance since it demonstrates that a single metal center
can promote the whole reaction, namely, water oxidation as
well as H2 evolution.14 Full characterization of the reaction
mechanism of this homogeneous catalyst would have important
fundamental and technological implications. Ab initio simu-
lations have already provided useful information toward this
characterization, proposing several possible reaction paths for
the thermal- and light-driven H2 and O2 evolutions,
respectively.16−19

This Ru(II)-pincer complex (P-da-PNN)RuH(CO) (0, P-da
= dearomatized at the phosphorus side arm, PNN = (2-(di-tert-
butylphosphinomethyl)-6-diethylaminomethyl)pyridine) in a
tetrahydrofuran aqueous solution activates a water molecule
by forming a trans-hydrido-hydroxo complex, which yields
aromatization of the PNN ligand.14 Heating at 100 °C releases
H2 with concomitant formation of a cis-dihydroxo intermediate.
Upon irradiation with 320−420 nm UV−vis light, O2 is
evolved, probably by first liberating H2O2, which then
catalytically disproportionates to O2 and water.14

The solvent plays a key role in the function of water-
oxidation catalysts and introduces significant complexities into
the simulations, which often relies on simplified solvent models.
In particular, previous simulations have captured the electro-
static effects of the solvent on the reaction sites/intermediates
through implicit solvent descriptions. This is a very powerful
and popular technique, which has, however, one important
limitation. It precludes/limits the exchange of products,
reactants, and intermediates between the solvent and the
reaction sites, essentially preventing the active participation of
the solvent in the reaction. In this paper, we demonstrate the
importance of describing explicitly the solvent for simulating
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(a) top view

(b) side view

FIG. 1: Molecular structure for the full Ru4-POM complex @ functionalized graphene from the top view a) and the
side view b). Red, pink, white, yellow and green spheres represent O, W, H, Si and Ru atoms, respectively. Red,

white, blue, cyan sticks represent O, H, N, C atoms, respectively. Part of graphene layer and all water molecules are
not displayed for simplicity.

In the Lennard-Jones potential part, for W, we adopt
López’s choice20 where they studied POM in solution.
Tang et. al

21 simulated silicon monocrystals in water
and we extracted their Si (4-coordinated) - O LJ pa-
rameters for Si. We take the same assumption that the

LJ parameters for OPOM is the same as the oxygen in
the TIP3P water in the literature9 and because the core
of Ru4POM retains its structural properties with the
presence of MWCNT-dend, we assume the interactions
between the atoms in the core (Ru and ORu) and wa-
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ant green microcrystalline solid 3 (60% yield).
It is stable in a THF solution up to 65°C but
decomposes into unidentified products at 102°C
in dioxane. The 31P{1H} NMR spectrum of 3
shows a singlet at 94.0 ppm, representing an
upfield shift of 14 ppm relative to the corre-
sponding singlet of complex 2. The two tert-
butyl (tBu) groups of PtBu2 give rise to different
signals in both the 1H and 13C{1H}NMR spec-
tra, and the ethyl groups of NEt2 are also non-
equivalent, indicating C1 symmetry and a cis
dihydroxo arrangement. The hydroxo ligands
give rise to a broad signal at –7.4 ppm in the 1H
NMR spectrum and absorb at 3413 cm–1 in the
infrared (IR) spectrum. The carbonyl ligand ex-
hibits a doublet at 207.4 ppm (2JPC = 16.1 Hz)
in the 13C{1H} NMR spectrum and absorbs at
1923 cm–1 in the IR spectrum. The main peak
in the mass spectrum (electrospray ionization)

at mass/charge ratio (m/z) = 453 (100) can be
assigned to the cation [M – OOH]+ and the peak
at m/z = 469 (18) is characteristic for [M –OH]+.
Elemental analysis agrees with the calculated
values for our posited structure.

We next studied the stability of complex 3
on exposure to light. Irradiation of THF or
aqueous solutions of 3 under N2 or Ar with a
300-W halogen lamp filtered through perspex
(27) over 2 days resulted in a color change from
green to greenish-yellow, accompanied by O2

evolution. NMR of the solution showed that be-
sides unreacted 3 (33%), the hydrido-hydroxo
complex 2.nH2O (45%) was formed, in ad-
dition to some unidentified by-products (22%),
most probably phosphine oxides (Fig. 3). The
liberated gas was identified as dioxygen by
GC–mass spectrometry (GC-MS) and by the
reaction with (PEt3)3IrCl to form the dioxy-

gen complex (PEt3)3Ir(O2)Cl (20). This spe-
cific and very sensitive reaction was also
used for quantification (20). The yield of the
detected dioxygen formed from the reaction
in water was 23% (34% based on reacted 3).
When irradiation of aqueous solutions of 3
was performed under argon flow to remove
the generated O2, clean conversion of 3 (49%,
the rest being unreacted 3) to 2.nH2O (49%)
was observed, with no by-products being formed,
indicating that the unidentified by-products
are a result of reaction with the generated
dioxygen.

To verify that O2 was released from the di-
hydroxo complex, a labeled complex bearing two
18OH groups (3-18O18O) was prepared using
H2

18O (Fig. 4). The 18O-H stretching vibration is
shifted in the IR spectrum to lower energy by 14
wavenumbers, to 3399 cm–1, whereas all NMR
spectra are identical to those of 3. Upon ir-
radiation (27) of 3-18O18O in H2O,

36O2 was
formed as the major dioxygen product, as con-
firmed by GC-MS (Fig. 4A and fig. S3A). No
exchange between 3-18O18O and H2

16O was ob-
served, indicating that no substantial Ru-OH dis-
sociation took place.

An important question is whether the O–O
bond formation process is intra- or intermolecular.
To address this issue, we prepared the isotopically
mixed-labeled dihydroxo complex 3-18O16O by
treatment of 2-18O with N2

16O (Fig. 4A). Upon
photolysis, 34O2 was formed predominantly with
only small amounts of 32O2 and 36O2 observed
(observed ratio 32O2:

34O2:
36O2, 3.8:16.2:1) (fig

S3B) (20). Moreover, we performed a crossover
experiment involving photolysis of equimolar
amounts of complexes 3-18O18O and 3-16O16O,
resulting in formation of 36O2 and 32O2 with
only a small amount of 34O2 (observed ratio
32O2:

34O2:
36O2, 13.1:1:15.6) (Fig. 4B). Thus,

our results unambiguously show that the O-O

Fig. 4. Photolysis of iso-
topically labeleddihydroxo
complexes. (A) Synthesis
and photolysis of com-
plexes 3-18O18O and
3-18O16O. (B) Mass spec-
trum of a gaseous extract
from the photolytic reaction
of equimolar amounts of
3-18O18O and 3-16O16O,
showing virtually no cross-
over.

Fig. 5. Proposed mechanism
for the formation of H2 and
O2 from water.
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ABSTRACT: Water splitting is at the basis of artificial
photosynthesis for solar energy conversion into chemical
fuels. While the oxidation of water to molecular oxygen and
the reduction of protons to molecular hydrogen are typically
promoted by different catalysts, the Ru(II)-pincer complex
recently synthesized by Kohl et al. [Science 2009, 324, 74] has
been shown to promote both the thermal driven formation of
H2 and the UV−vis driven evolution of O2. Here, we
investigate, through density functional theory calculations, a
portion of the catalytic cycle, focusing on the formation of
hydrogen. We adopt an explicit description of the solvent and employ metadynamics coupled with the Car−Parrinello method to
study the reaction mechanism and determine the activation free energies. Our simulations predict a novel catalytic cycle, which
has considerably lower activation energies than earlier proposals and which does not involve the sequential aromatization−
dearomatization of the PNN ligand of the complex. This work clearly demonstrates the general importance of an explicit
description of the solvent for a predictive modeling of chemical reactions that involve the active participation of the solvent.
KEYWORDS: homogenous catalysis, water splitting, modeling reaction mechanisms in solution,
density functional theory and metadynamics, Ru(II)-pincer complex

1. INTRODUCTION
The sunlight-driven splitting of water into H2 and O2 is a
milestone for storing solar energy in chemical fuels.1−3 This
electrochemical reaction involves two semireactions: water
oxidation at the anode, releasing protons and evolving O2; and
reduction of protons at the cathode, evolving H2. Among these,
the water oxidation semireaction is by far the most challenging
and represents a bottleneck for the development of efficient
artificial photosynthesis devices for the production of solar
fuels.4−6

Although most of the molecular catalysts promoting efficient
water oxidation comprise cores containing multiple metal
centers,7−10 some single-center complexes have also been
reported.11−15 Among these, the recent discovery and
characterization of a Ru(II)-pincer is of fundamental
importance since it demonstrates that a single metal center
can promote the whole reaction, namely, water oxidation as
well as H2 evolution.14 Full characterization of the reaction
mechanism of this homogeneous catalyst would have important
fundamental and technological implications. Ab initio simu-
lations have already provided useful information toward this
characterization, proposing several possible reaction paths for
the thermal- and light-driven H2 and O2 evolutions,
respectively.16−19

This Ru(II)-pincer complex (P-da-PNN)RuH(CO) (0, P-da
= dearomatized at the phosphorus side arm, PNN = (2-(di-tert-
butylphosphinomethyl)-6-diethylaminomethyl)pyridine) in a
tetrahydrofuran aqueous solution activates a water molecule
by forming a trans-hydrido-hydroxo complex, which yields
aromatization of the PNN ligand.14 Heating at 100 °C releases
H2 with concomitant formation of a cis-dihydroxo intermediate.
Upon irradiation with 320−420 nm UV−vis light, O2 is
evolved, probably by first liberating H2O2, which then
catalytically disproportionates to O2 and water.14

The solvent plays a key role in the function of water-
oxidation catalysts and introduces significant complexities into
the simulations, which often relies on simplified solvent models.
In particular, previous simulations have captured the electro-
static effects of the solvent on the reaction sites/intermediates
through implicit solvent descriptions. This is a very powerful
and popular technique, which has, however, one important
limitation. It precludes/limits the exchange of products,
reactants, and intermediates between the solvent and the
reaction sites, essentially preventing the active participation of
the solvent in the reaction. In this paper, we demonstrate the
importance of describing explicitly the solvent for simulating
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Ab-initio MD of reactants
... and wait for reaction to occour

ant green microcrystalline solid 3 (60% yield).
It is stable in a THF solution up to 65°C but
decomposes into unidentified products at 102°C
in dioxane. The 31P{1H} NMR spectrum of 3
shows a singlet at 94.0 ppm, representing an
upfield shift of 14 ppm relative to the corre-
sponding singlet of complex 2. The two tert-
butyl (tBu) groups of PtBu2 give rise to different
signals in both the 1H and 13C{1H}NMR spec-
tra, and the ethyl groups of NEt2 are also non-
equivalent, indicating C1 symmetry and a cis
dihydroxo arrangement. The hydroxo ligands
give rise to a broad signal at –7.4 ppm in the 1H
NMR spectrum and absorb at 3413 cm–1 in the
infrared (IR) spectrum. The carbonyl ligand ex-
hibits a doublet at 207.4 ppm (2JPC = 16.1 Hz)
in the 13C{1H} NMR spectrum and absorbs at
1923 cm–1 in the IR spectrum. The main peak
in the mass spectrum (electrospray ionization)

at mass/charge ratio (m/z) = 453 (100) can be
assigned to the cation [M – OOH]+ and the peak
at m/z = 469 (18) is characteristic for [M –OH]+.
Elemental analysis agrees with the calculated
values for our posited structure.

We next studied the stability of complex 3
on exposure to light. Irradiation of THF or
aqueous solutions of 3 under N2 or Ar with a
300-W halogen lamp filtered through perspex
(27) over 2 days resulted in a color change from
green to greenish-yellow, accompanied by O2

evolution. NMR of the solution showed that be-
sides unreacted 3 (33%), the hydrido-hydroxo
complex 2.nH2O (45%) was formed, in ad-
dition to some unidentified by-products (22%),
most probably phosphine oxides (Fig. 3). The
liberated gas was identified as dioxygen by
GC–mass spectrometry (GC-MS) and by the
reaction with (PEt3)3IrCl to form the dioxy-

gen complex (PEt3)3Ir(O2)Cl (20). This spe-
cific and very sensitive reaction was also
used for quantification (20). The yield of the
detected dioxygen formed from the reaction
in water was 23% (34% based on reacted 3).
When irradiation of aqueous solutions of 3
was performed under argon flow to remove
the generated O2, clean conversion of 3 (49%,
the rest being unreacted 3) to 2.nH2O (49%)
was observed, with no by-products being formed,
indicating that the unidentified by-products
are a result of reaction with the generated
dioxygen.

To verify that O2 was released from the di-
hydroxo complex, a labeled complex bearing two
18OH groups (3-18O18O) was prepared using
H2

18O (Fig. 4). The 18O-H stretching vibration is
shifted in the IR spectrum to lower energy by 14
wavenumbers, to 3399 cm–1, whereas all NMR
spectra are identical to those of 3. Upon ir-
radiation (27) of 3-18O18O in H2O,

36O2 was
formed as the major dioxygen product, as con-
firmed by GC-MS (Fig. 4A and fig. S3A). No
exchange between 3-18O18O and H2

16O was ob-
served, indicating that no substantial Ru-OH dis-
sociation took place.

An important question is whether the O–O
bond formation process is intra- or intermolecular.
To address this issue, we prepared the isotopically
mixed-labeled dihydroxo complex 3-18O16O by
treatment of 2-18O with N2

16O (Fig. 4A). Upon
photolysis, 34O2 was formed predominantly with
only small amounts of 32O2 and 36O2 observed
(observed ratio 32O2:

34O2:
36O2, 3.8:16.2:1) (fig

S3B) (20). Moreover, we performed a crossover
experiment involving photolysis of equimolar
amounts of complexes 3-18O18O and 3-16O16O,
resulting in formation of 36O2 and 32O2 with
only a small amount of 34O2 (observed ratio
32O2:

34O2:
36O2, 13.1:1:15.6) (Fig. 4B). Thus,

our results unambiguously show that the O-O

Fig. 4. Photolysis of iso-
topically labeleddihydroxo
complexes. (A) Synthesis
and photolysis of com-
plexes 3-18O18O and
3-18O16O. (B) Mass spec-
trum of a gaseous extract
from the photolytic reaction
of equimolar amounts of
3-18O18O and 3-16O16O,
showing virtually no cross-
over.

Fig. 5. Proposed mechanism
for the formation of H2 and
O2 from water.
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ABSTRACT: Water splitting is at the basis of artificial
photosynthesis for solar energy conversion into chemical
fuels. While the oxidation of water to molecular oxygen and
the reduction of protons to molecular hydrogen are typically
promoted by different catalysts, the Ru(II)-pincer complex
recently synthesized by Kohl et al. [Science 2009, 324, 74] has
been shown to promote both the thermal driven formation of
H2 and the UV−vis driven evolution of O2. Here, we
investigate, through density functional theory calculations, a
portion of the catalytic cycle, focusing on the formation of
hydrogen. We adopt an explicit description of the solvent and employ metadynamics coupled with the Car−Parrinello method to
study the reaction mechanism and determine the activation free energies. Our simulations predict a novel catalytic cycle, which
has considerably lower activation energies than earlier proposals and which does not involve the sequential aromatization−
dearomatization of the PNN ligand of the complex. This work clearly demonstrates the general importance of an explicit
description of the solvent for a predictive modeling of chemical reactions that involve the active participation of the solvent.
KEYWORDS: homogenous catalysis, water splitting, modeling reaction mechanisms in solution,
density functional theory and metadynamics, Ru(II)-pincer complex

1. INTRODUCTION
The sunlight-driven splitting of water into H2 and O2 is a
milestone for storing solar energy in chemical fuels.1−3 This
electrochemical reaction involves two semireactions: water
oxidation at the anode, releasing protons and evolving O2; and
reduction of protons at the cathode, evolving H2. Among these,
the water oxidation semireaction is by far the most challenging
and represents a bottleneck for the development of efficient
artificial photosynthesis devices for the production of solar
fuels.4−6

Although most of the molecular catalysts promoting efficient
water oxidation comprise cores containing multiple metal
centers,7−10 some single-center complexes have also been
reported.11−15 Among these, the recent discovery and
characterization of a Ru(II)-pincer is of fundamental
importance since it demonstrates that a single metal center
can promote the whole reaction, namely, water oxidation as
well as H2 evolution.14 Full characterization of the reaction
mechanism of this homogeneous catalyst would have important
fundamental and technological implications. Ab initio simu-
lations have already provided useful information toward this
characterization, proposing several possible reaction paths for
the thermal- and light-driven H2 and O2 evolutions,
respectively.16−19

This Ru(II)-pincer complex (P-da-PNN)RuH(CO) (0, P-da
= dearomatized at the phosphorus side arm, PNN = (2-(di-tert-
butylphosphinomethyl)-6-diethylaminomethyl)pyridine) in a
tetrahydrofuran aqueous solution activates a water molecule
by forming a trans-hydrido-hydroxo complex, which yields
aromatization of the PNN ligand.14 Heating at 100 °C releases
H2 with concomitant formation of a cis-dihydroxo intermediate.
Upon irradiation with 320−420 nm UV−vis light, O2 is
evolved, probably by first liberating H2O2, which then
catalytically disproportionates to O2 and water.14

The solvent plays a key role in the function of water-
oxidation catalysts and introduces significant complexities into
the simulations, which often relies on simplified solvent models.
In particular, previous simulations have captured the electro-
static effects of the solvent on the reaction sites/intermediates
through implicit solvent descriptions. This is a very powerful
and popular technique, which has, however, one important
limitation. It precludes/limits the exchange of products,
reactants, and intermediates between the solvent and the
reaction sites, essentially preventing the active participation of
the solvent in the reaction. In this paper, we demonstrate the
importance of describing explicitly the solvent for simulating
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Ab-initio MD of reactants
... and wait for reaction to occour

ant green microcrystalline solid 3 (60% yield).
It is stable in a THF solution up to 65°C but
decomposes into unidentified products at 102°C
in dioxane. The 31P{1H} NMR spectrum of 3
shows a singlet at 94.0 ppm, representing an
upfield shift of 14 ppm relative to the corre-
sponding singlet of complex 2. The two tert-
butyl (tBu) groups of PtBu2 give rise to different
signals in both the 1H and 13C{1H}NMR spec-
tra, and the ethyl groups of NEt2 are also non-
equivalent, indicating C1 symmetry and a cis
dihydroxo arrangement. The hydroxo ligands
give rise to a broad signal at –7.4 ppm in the 1H
NMR spectrum and absorb at 3413 cm–1 in the
infrared (IR) spectrum. The carbonyl ligand ex-
hibits a doublet at 207.4 ppm (2JPC = 16.1 Hz)
in the 13C{1H} NMR spectrum and absorbs at
1923 cm–1 in the IR spectrum. The main peak
in the mass spectrum (electrospray ionization)

at mass/charge ratio (m/z) = 453 (100) can be
assigned to the cation [M – OOH]+ and the peak
at m/z = 469 (18) is characteristic for [M –OH]+.
Elemental analysis agrees with the calculated
values for our posited structure.

We next studied the stability of complex 3
on exposure to light. Irradiation of THF or
aqueous solutions of 3 under N2 or Ar with a
300-W halogen lamp filtered through perspex
(27) over 2 days resulted in a color change from
green to greenish-yellow, accompanied by O2

evolution. NMR of the solution showed that be-
sides unreacted 3 (33%), the hydrido-hydroxo
complex 2.nH2O (45%) was formed, in ad-
dition to some unidentified by-products (22%),
most probably phosphine oxides (Fig. 3). The
liberated gas was identified as dioxygen by
GC–mass spectrometry (GC-MS) and by the
reaction with (PEt3)3IrCl to form the dioxy-

gen complex (PEt3)3Ir(O2)Cl (20). This spe-
cific and very sensitive reaction was also
used for quantification (20). The yield of the
detected dioxygen formed from the reaction
in water was 23% (34% based on reacted 3).
When irradiation of aqueous solutions of 3
was performed under argon flow to remove
the generated O2, clean conversion of 3 (49%,
the rest being unreacted 3) to 2.nH2O (49%)
was observed, with no by-products being formed,
indicating that the unidentified by-products
are a result of reaction with the generated
dioxygen.

To verify that O2 was released from the di-
hydroxo complex, a labeled complex bearing two
18OH groups (3-18O18O) was prepared using
H2

18O (Fig. 4). The 18O-H stretching vibration is
shifted in the IR spectrum to lower energy by 14
wavenumbers, to 3399 cm–1, whereas all NMR
spectra are identical to those of 3. Upon ir-
radiation (27) of 3-18O18O in H2O,

36O2 was
formed as the major dioxygen product, as con-
firmed by GC-MS (Fig. 4A and fig. S3A). No
exchange between 3-18O18O and H2

16O was ob-
served, indicating that no substantial Ru-OH dis-
sociation took place.

An important question is whether the O–O
bond formation process is intra- or intermolecular.
To address this issue, we prepared the isotopically
mixed-labeled dihydroxo complex 3-18O16O by
treatment of 2-18O with N2

16O (Fig. 4A). Upon
photolysis, 34O2 was formed predominantly with
only small amounts of 32O2 and 36O2 observed
(observed ratio 32O2:

34O2:
36O2, 3.8:16.2:1) (fig

S3B) (20). Moreover, we performed a crossover
experiment involving photolysis of equimolar
amounts of complexes 3-18O18O and 3-16O16O,
resulting in formation of 36O2 and 32O2 with
only a small amount of 34O2 (observed ratio
32O2:

34O2:
36O2, 13.1:1:15.6) (Fig. 4B). Thus,

our results unambiguously show that the O-O

Fig. 4. Photolysis of iso-
topically labeleddihydroxo
complexes. (A) Synthesis
and photolysis of com-
plexes 3-18O18O and
3-18O16O. (B) Mass spec-
trum of a gaseous extract
from the photolytic reaction
of equimolar amounts of
3-18O18O and 3-16O16O,
showing virtually no cross-
over.

Fig. 5. Proposed mechanism
for the formation of H2 and
O2 from water.
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Thermally activated processes
& relevance to renewable energies materials

Diffusion (e.g. I3- ions in DSSC, proton diffusion in electrolytic cells, Li in batteries, FC...)

Chemical reactions (e.g.CO oxidation, NOx reduction, steam reforming, WGS, ...)

Electron injection at interfaces (e. g. DSSC, electrodes for water OX, ...)

Carrier concentration in semiconductors (e.g.photoexitation, exitons...)

Carrier conductivity in insulators (e.g. charge percolation in DSSC, ...)

Materials growth, ...

Numerical modeling of rare events requires methods beyond MD
Taking advantage of statistical mechanics

Friday, November 30, 12
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Products

kbT
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Transition States = saddle points
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more than one TS!

Minimum Energy Path
Reaction path with the highest rate
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Reactants

Intermediate

Products

Friday, November 30, 12



Exploring energy landscapes
● Nudged Elastic Band (NEB)
Method for finding the MEP between IS (reactants) and FS (products) based 
on the calculation of atomic forces.

G.Mills and H.Jonsson, Phys. Rev. Lett. 72, 1124 (1994)
G.Henkelman and H.Jonsson, J. Chem. Phys. 133, 9978 (2000)

● Meta-dynamics (available in PLUMED)
Method for calculating the free energy landscape, unknown products, ... based 
on a biased dynamics in the space of a set of CVs.

A. Laio and M. Parrinello, PNAS 99, 12562 (2002)

● Constrained minimization

● ...
Friday, November 30, 12



  

NEB on Mueller PES
Nudged Elastic Band - NEB

Method for finding the MEP between IS (reactants) and FS (products)
 based on the calculation of atomic forces

!! MUST KNOW IS AND FS !!

IS
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MEP

Minimum Energy Path
• Path with maximum rate
• Crosses all saddle points with minimum Ea
• Components of the forces ORTHOGONAL 
to the path are zero

!! E(Ri) is NOT known !!
MUST be sampled with single point calculations
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Nudged Elastic Band - NEB
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• Impose MEP condition ||Fi
�|| = 0
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Metals at reducible oxides
Catalyst class that promotes a wide range of redox reactions

*from Fu et al., Science 301, 935 (2001)

Reactivity controlled by several factors

• ENERGY: H2 production, HC reforming, ...

• ENVIRONMENT: gas sensing, gas 
purification, ...

• DEVICES: fuel cells, photocatalysts, ...
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Metals at reducible oxides

*from Fu et al., Science 301, 935 (2001)

Reactivity controlled by several factors

Metal
composition, size, shape, charge state
supported vs. dispersed, ...

Support: active role
supply of lattice O, stabilization/dispersion/activation of M

Interface
charge transfer, 
adsorbate spillover, 
encapsulation, ...

Environment
Oxidative/reducing
dynamics during reaction
segregations, clustering, ...

p, T
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Which are the active species 
on supported catalysts?
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Which are the active species 
on supported catalysts?

Water Gas Shift reaction
Fu et al., Science 2005: active species are isolated Aud+

Rodriguez et al., xxx: no, they are neutral or negative Au 
species
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Which are the active species 
on supported catalysts?

Water Gas Shift reaction
Fu et al., Science 2005: active species are isolated Aud+

Rodriguez et al., xxx: no, they are neutral or negative Au 
species

CO oxidation
Guzman et al., JACS 2005: active species are isolated Au3+ 

or Au+ 
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Supported Au ionic species 
Charge transfer and electron localization effects at the metal/oxide interface

Au- species in reducing conditions (WGS)

E(ads)
-2.29 eV

~1 e

Au+ species in oxidizing conditions (CO ox) 

E(ads)
-1.18 eV

~1 e
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Stabilization of reaction intermediates
1) CO weakly bind to the stoichiometric CeO2 (111) surface

• Eads = -0.17 eV

 Metal particles required to form stable CO adsorbates on the 
CeO2 (111) surface

M. Huang and SF, J. Phys. Chem. C 112, 8643 (2008)

Friday, November 30, 12



CO adsorption on ionic Au

• Eads = -2.48 eV

 
• CO adsorption drives further 
charge depletion of Au+ adsorbate

1) CO weakly binds to the stoichiometric CeO2 (111) surface

2) CO strongly binds to the Au+ scpecies supported by CeO2 (111) 

M. Farnesi Camellone and SF, J.  Am. Chem. Soc.131, 10473 (2009)
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CO adsorption on ionic Au

2) CO strongly bind to the Au+ species supported by CeO2 (111) 

1) CO weakly bind to the stoichiometric CeO2 (111) surface

3) CO does not bind to Au- species supported by CeO2 (111)

• Repulsive interaction between CO 
and Au- species 

•Supported Au- species prevents CO 
adsorption 

• Au- species prevents also O2 
adsorption

M. Farnesi Camellone and SF, J.  Am. Chem. Soc.131, 10473 (2009)
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CO oxidation via O buffering of the 
oxide support

Are these Au+ species relevant for CO oxidation?

1. Adsorbate diffusion to 
oxide surface (spillover)

2. Oxidation via lattice O 
and O vacancy formation

Sp
illo

ve
rO

xidation
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MEP for CO oxidation

• Molecular spillover from supported Au is the rate limiting step
• O vacancy formed during reaction attracts supported Au
• Charge reorganization and catalyst deactivation
• Results independent on the U parameter

Au+ species promotes CO oxidation but readily turns into inactive Au-
M. Farnesi and SF, J. Am. Chem. Soc. 131, 10473  (2009)
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a) BECO=-2.48 eV b) BECO=-1.24 eV c) BECO=-1.02 eV d) BECO=-1.08 eV

e) BECO >0 g) BECO=-1.80 eV h) BECO=-1.14 eV
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f) BECO=-1.60 eV

Stability of adsorbates

Au1

Strong preferential binding 
of CO to Au@CeO2
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Reaction Path for Au_3
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P. Ghosh, M. Farnesi and SF, in preparation
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Exploring energy landscapes

● Nudged Elastic Band (NEB)
Method for finding the MEP between IS (reactants) and FS (products) based 
on the calculation of atomic forces.

● Meta-dynamics (available in PLUMED)
Method for calculating the free energy landscape, unknown products, ... based 
on a biased dynamics in the space of a set of CVs.

A. Laio and M. Parrinello, PNAS 99, 12562 (2002)
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Metadynamics

Ex: the formation of the O-O bond during water oxidation

Simulating rare (activated) events without knowledge of 
the final state is even more challenging!

2H2O       4H+ + 4e- + O2

4H+ + 4e-            H2
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Metadynamics

Ex: the formation of the O-O bond during water oxidation

Simulating rare (activated) events without knowledge of 
the final state is even more challenging!

2H2O       4H+ + 4e- + O2

4H+ + 4e-            H2

Sartorel et al. JACS 130, 5006 (2008) 
Geletii et al. Angew. Chem. Int. Ed. 47, 3896 (2008) 

One of the most efficient and stable catalysts reported so far
Working mechanism? Relevant intermediates? 

How does water split and an O2 molecule form?
Which are the thermodynamic and kinetic origin of this high efficiency and stability?

Is it possible to improve them? How?
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How is molecular O2 formed?

From the solvent? 

S6/2O. S6/OOH

S6/2O. S6/OOH

TS

S6/2O.

S6/OOH

0.96/0.79

TS

Δ
G
(e
V)

Δ
G
(e
V)

CV2
CV1

✴nucleophilic attack of RuVI=O termination
✴The water that splits is from the solvent
✴Catalyst is not damaged and can be reactivated
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How is molecular O2 formed?

From the solvent? 

From an O of the oxide core? 

✴nucleophilic attack of RuVI=O termination
✴The water that splits is from the solvent
✴Catalyst is not damaged and can be reactivated

S6/2O. S6/OOH

S6/2O. S6/OOH

TS

S6/2O.

S6/OOH

0.96/0.79

TS

Δ
G
(e
V)

Δ
G
(e
V)

CV2
CV1

S6/2O. S6/OOH

S6/2O. S6/OOH

TS

S6/2O.

S6/OOH

0.96/0.79

TS

Δ
G
(e
V)

Δ
G
(e
V)

CV2
CV1

✴RuVI=O termination attacks the oxide cluster
✴Intermolecular mechanism without participation of 
water from the solvent
✴The water that splits is ligated
✴Catalyst is damaged and needs to be repared
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Metadynamics

• Technique for accelerating rare events and reconstructing the free energy
• Technique for escaping free energy minima
• Efficient exploration of configuration space
• Knowledge of final state is not required
• Biased and history-dependent MD

A. Laio and M. Parrinello, PNAS 99, 12562 (2002)
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Metadynamics

• Technique for accelerating rare events and reconstructing the free energy
• Technique for escaping free energy minima
• Efficient exploration of configuration space
• Knowledge of final state is not required
• Biased and history-dependent MD

A. Laio and M. Parrinello, PNAS 99, 12562 (2002)

MODIFIED forces again
 ...

HOW? Find out at th
e afternnon lab
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Metadynamics
Reaction mechanism for water oxidation and O2 formation?

S6 FS

Δ
G
(e
V)

CV2
CV1

S6

FS

0.96/0.79

TS

Δ
G
(e
V)

S6

a)

FSTS

b)

c)

S. Piccinin, A. Sartorel, G. Aquilanti, A. Goldoni, M. Bonchio, and SF, submitted
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Ab-initio MD?
DOI: 10.1126/science.1168600 

, 74 (2009); 324Science
  et al.Stephan W. Kohl,

Evolution from Water Promoted by a Metal Complex
2 and Light-Induced O2Consecutive Thermal H

 www.sciencemag.org (this information is current as of June 10, 2009 ):
The following resources related to this article are available online at

 http://www.sciencemag.org/cgi/content/full/324/5923/74
version of this article at: 

 including high-resolution figures, can be found in the onlineUpdated information and services,

 http://www.sciencemag.org/cgi/content/full/324/5923/74/DC1
 can be found at: Supporting Online Material

found at: 
 can berelated to this articleA list of selected additional articles on the Science Web sites 

 http://www.sciencemag.org/cgi/content/full/324/5923/74#related-content

 http://www.sciencemag.org/cgi/content/full/324/5923/74#otherarticles
, 4 of which can be accessed for free: cites 29 articlesThis article 

 http://www.sciencemag.org/cgi/collection/chemistry
Chemistry 

: subject collectionsThis article appears in the following 

 http://www.sciencemag.org/about/permissions.dtl
 in whole or in part can be found at: this article

permission to reproduce of this article or about obtaining reprintsInformation about obtaining 

registered trademark of AAAS. 
 is aScience2009 by the American Association for the Advancement of Science; all rights reserved. The title 

CopyrightAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 
 (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theScience
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Ab-initio MD of reactants
... and wait for reaction to occour

ant green microcrystalline solid 3 (60% yield).
It is stable in a THF solution up to 65°C but
decomposes into unidentified products at 102°C
in dioxane. The 31P{1H} NMR spectrum of 3
shows a singlet at 94.0 ppm, representing an
upfield shift of 14 ppm relative to the corre-
sponding singlet of complex 2. The two tert-
butyl (tBu) groups of PtBu2 give rise to different
signals in both the 1H and 13C{1H}NMR spec-
tra, and the ethyl groups of NEt2 are also non-
equivalent, indicating C1 symmetry and a cis
dihydroxo arrangement. The hydroxo ligands
give rise to a broad signal at –7.4 ppm in the 1H
NMR spectrum and absorb at 3413 cm–1 in the
infrared (IR) spectrum. The carbonyl ligand ex-
hibits a doublet at 207.4 ppm (2JPC = 16.1 Hz)
in the 13C{1H} NMR spectrum and absorbs at
1923 cm–1 in the IR spectrum. The main peak
in the mass spectrum (electrospray ionization)

at mass/charge ratio (m/z) = 453 (100) can be
assigned to the cation [M – OOH]+ and the peak
at m/z = 469 (18) is characteristic for [M –OH]+.
Elemental analysis agrees with the calculated
values for our posited structure.

We next studied the stability of complex 3
on exposure to light. Irradiation of THF or
aqueous solutions of 3 under N2 or Ar with a
300-W halogen lamp filtered through perspex
(27) over 2 days resulted in a color change from
green to greenish-yellow, accompanied by O2

evolution. NMR of the solution showed that be-
sides unreacted 3 (33%), the hydrido-hydroxo
complex 2.nH2O (45%) was formed, in ad-
dition to some unidentified by-products (22%),
most probably phosphine oxides (Fig. 3). The
liberated gas was identified as dioxygen by
GC–mass spectrometry (GC-MS) and by the
reaction with (PEt3)3IrCl to form the dioxy-

gen complex (PEt3)3Ir(O2)Cl (20). This spe-
cific and very sensitive reaction was also
used for quantification (20). The yield of the
detected dioxygen formed from the reaction
in water was 23% (34% based on reacted 3).
When irradiation of aqueous solutions of 3
was performed under argon flow to remove
the generated O2, clean conversion of 3 (49%,
the rest being unreacted 3) to 2.nH2O (49%)
was observed, with no by-products being formed,
indicating that the unidentified by-products
are a result of reaction with the generated
dioxygen.

To verify that O2 was released from the di-
hydroxo complex, a labeled complex bearing two
18OH groups (3-18O18O) was prepared using
H2

18O (Fig. 4). The 18O-H stretching vibration is
shifted in the IR spectrum to lower energy by 14
wavenumbers, to 3399 cm–1, whereas all NMR
spectra are identical to those of 3. Upon ir-
radiation (27) of 3-18O18O in H2O,

36O2 was
formed as the major dioxygen product, as con-
firmed by GC-MS (Fig. 4A and fig. S3A). No
exchange between 3-18O18O and H2

16O was ob-
served, indicating that no substantial Ru-OH dis-
sociation took place.

An important question is whether the O–O
bond formation process is intra- or intermolecular.
To address this issue, we prepared the isotopically
mixed-labeled dihydroxo complex 3-18O16O by
treatment of 2-18O with N2

16O (Fig. 4A). Upon
photolysis, 34O2 was formed predominantly with
only small amounts of 32O2 and 36O2 observed
(observed ratio 32O2:

34O2:
36O2, 3.8:16.2:1) (fig

S3B) (20). Moreover, we performed a crossover
experiment involving photolysis of equimolar
amounts of complexes 3-18O18O and 3-16O16O,
resulting in formation of 36O2 and 32O2 with
only a small amount of 34O2 (observed ratio
32O2:

34O2:
36O2, 13.1:1:15.6) (Fig. 4B). Thus,

our results unambiguously show that the O-O

Fig. 4. Photolysis of iso-
topically labeleddihydroxo
complexes. (A) Synthesis
and photolysis of com-
plexes 3-18O18O and
3-18O16O. (B) Mass spec-
trum of a gaseous extract
from the photolytic reaction
of equimolar amounts of
3-18O18O and 3-16O16O,
showing virtually no cross-
over.

Fig. 5. Proposed mechanism
for the formation of H2 and
O2 from water.

3 APRIL 2009 VOL 324 SCIENCE www.sciencemag.org76
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Ab-initio MD of reactants
... and wait for reaction to occour

ant green microcrystalline solid 3 (60% yield).
It is stable in a THF solution up to 65°C but
decomposes into unidentified products at 102°C
in dioxane. The 31P{1H} NMR spectrum of 3
shows a singlet at 94.0 ppm, representing an
upfield shift of 14 ppm relative to the corre-
sponding singlet of complex 2. The two tert-
butyl (tBu) groups of PtBu2 give rise to different
signals in both the 1H and 13C{1H}NMR spec-
tra, and the ethyl groups of NEt2 are also non-
equivalent, indicating C1 symmetry and a cis
dihydroxo arrangement. The hydroxo ligands
give rise to a broad signal at –7.4 ppm in the 1H
NMR spectrum and absorb at 3413 cm–1 in the
infrared (IR) spectrum. The carbonyl ligand ex-
hibits a doublet at 207.4 ppm (2JPC = 16.1 Hz)
in the 13C{1H} NMR spectrum and absorbs at
1923 cm–1 in the IR spectrum. The main peak
in the mass spectrum (electrospray ionization)

at mass/charge ratio (m/z) = 453 (100) can be
assigned to the cation [M – OOH]+ and the peak
at m/z = 469 (18) is characteristic for [M –OH]+.
Elemental analysis agrees with the calculated
values for our posited structure.

We next studied the stability of complex 3
on exposure to light. Irradiation of THF or
aqueous solutions of 3 under N2 or Ar with a
300-W halogen lamp filtered through perspex
(27) over 2 days resulted in a color change from
green to greenish-yellow, accompanied by O2

evolution. NMR of the solution showed that be-
sides unreacted 3 (33%), the hydrido-hydroxo
complex 2.nH2O (45%) was formed, in ad-
dition to some unidentified by-products (22%),
most probably phosphine oxides (Fig. 3). The
liberated gas was identified as dioxygen by
GC–mass spectrometry (GC-MS) and by the
reaction with (PEt3)3IrCl to form the dioxy-

gen complex (PEt3)3Ir(O2)Cl (20). This spe-
cific and very sensitive reaction was also
used for quantification (20). The yield of the
detected dioxygen formed from the reaction
in water was 23% (34% based on reacted 3).
When irradiation of aqueous solutions of 3
was performed under argon flow to remove
the generated O2, clean conversion of 3 (49%,
the rest being unreacted 3) to 2.nH2O (49%)
was observed, with no by-products being formed,
indicating that the unidentified by-products
are a result of reaction with the generated
dioxygen.

To verify that O2 was released from the di-
hydroxo complex, a labeled complex bearing two
18OH groups (3-18O18O) was prepared using
H2

18O (Fig. 4). The 18O-H stretching vibration is
shifted in the IR spectrum to lower energy by 14
wavenumbers, to 3399 cm–1, whereas all NMR
spectra are identical to those of 3. Upon ir-
radiation (27) of 3-18O18O in H2O,

36O2 was
formed as the major dioxygen product, as con-
firmed by GC-MS (Fig. 4A and fig. S3A). No
exchange between 3-18O18O and H2

16O was ob-
served, indicating that no substantial Ru-OH dis-
sociation took place.

An important question is whether the O–O
bond formation process is intra- or intermolecular.
To address this issue, we prepared the isotopically
mixed-labeled dihydroxo complex 3-18O16O by
treatment of 2-18O with N2

16O (Fig. 4A). Upon
photolysis, 34O2 was formed predominantly with
only small amounts of 32O2 and 36O2 observed
(observed ratio 32O2:

34O2:
36O2, 3.8:16.2:1) (fig

S3B) (20). Moreover, we performed a crossover
experiment involving photolysis of equimolar
amounts of complexes 3-18O18O and 3-16O16O,
resulting in formation of 36O2 and 32O2 with
only a small amount of 34O2 (observed ratio
32O2:

34O2:
36O2, 13.1:1:15.6) (Fig. 4B). Thus,

our results unambiguously show that the O-O

Fig. 4. Photolysis of iso-
topically labeleddihydroxo
complexes. (A) Synthesis
and photolysis of com-
plexes 3-18O18O and
3-18O16O. (B) Mass spec-
trum of a gaseous extract
from the photolytic reaction
of equimolar amounts of
3-18O18O and 3-16O16O,
showing virtually no cross-
over.

Fig. 5. Proposed mechanism
for the formation of H2 and
O2 from water.
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thermal evolution of H2 that does not involve the
aromatization−dearomatization of the catalyst during the
cycle (see cycle B in Scheme 2)
CP MD simulations of the final state (2′) show that after H2

desorption from the Ru center, the OH− species present in
solution quickly binds at the vacant site of the Ru atom (2′→ 3′
in Scheme 2). This leads to the formation of trans aqua−
hydroxo ligands at the Ru site. The high reactivity of the Ru
center in the short-lived intermediate complex 2′ correlates with
the large positive charge of the molecule relative to the other
intermediates (Table S5 in the SI). The formation of complex
3′ through the binding of OH− re-establishes the same overall
charge of the initial state 1′. During the 1′ → 3′ transformation,
the computed charge of the Ru center increases by ∼0.2e.
As a further example of the complexity of these reactions in

solution, we report a specific long-range process occurring
during the simulation of the 1′ → 2′ step. The OH− resulting
from the proton transfer of the bridging water molecule to Ru
is immediately saturated through proton transfer chains, leading
to a quick diffusion of the OH− in solution away from the Ru-
pincer. Because of this, in the second step of the hydrogen
formation reaction (2′ → 2), a proton is transferred from the
methylene group to a water molecule rather than to a hydroxo.
This leads to the formation of a hydronium that quickly reacts
with the hydroxo present in solution, resulting in two water

molecules. Clearly, these complex diffusions and reactions can
only be captured through an explicit solvent simulation.

3.4. O2 Evolution and Cycle Closure. In the catalytic
cycle proposed by Kohl et al.,14 the formation of O2 is triggered
by UV−vis irradiation through the formation of H2O2, which
catalytically disproportionates into O2 and water. This step has
been modeled by Yang et al. considering, first, the OH and CO
ligand exchange, leading to two neighboring OH groups that
proceed to the formation of H2O2. The activated formation of
H2O2 could involve two singlet−triplet crossings, promoted by
the UV−vis radiation.17 A similar mechanism could be at play
also in the reaction path we propose (cycle B in Scheme 2),
with the only difference that we now have an aqua instead of a
hydroxo ligand. In this work, we do not investigate this
radiation-promoted portion of the catalytic cycle. The final state
of the O2 evolution step proposed by Li et al. (complex 4 in
Scheme 2) is, however, perfectly compatible also with the
catalytic cycle we have identified so far. In the following, we
propose the final steps that could close our cycle B (Scheme 2).
After the evolution of molecular oxygen, both sides of the Ru

center are left unsaturated (4). Although we do not address
explicitly the 3′→ 4 transformation, we note that it involves the
largest relative variation of the Ru charge during the cycle (see
Löwdin charge analysis in Table S5 of the SI). Overall, the Ru
center becomes more negative by ∼0.5e. This variation likely
results from the proton ligand, whose presence polarizes the

Figure 2. Comparison between the reaction mechanisms for H2 formation via M1, deprotonating the C1 site of the PNN ligand with the assistance
of a bridging water (left); or M2, splitting a solvent water molecule (right). (a, d) Representative configurations of the initial and final states taken
from the molecular dynamics simulations. (b, e) Free energy surfaces as a function of the CVs defined as coordination numbers of Ru, O, and H (see
dashed lines and text) used in the metadynamics. (c, f) 2D cuts of the free energy surface.

ACS Catalysis Research Article

dx.doi.org/10.1021/cs300350b | ACS Catal. 2012, 2, 1500−15061504

How is molecular H2 formed?

From the solvent? 
✴ Splitting of a solvent water molecule @ Ru
✴ Ligand aromatization unaffected

thermal evolution of H2 that does not involve the
aromatization−dearomatization of the catalyst during the
cycle (see cycle B in Scheme 2)
CP MD simulations of the final state (2′) show that after H2

desorption from the Ru center, the OH− species present in
solution quickly binds at the vacant site of the Ru atom (2′→ 3′
in Scheme 2). This leads to the formation of trans aqua−
hydroxo ligands at the Ru site. The high reactivity of the Ru
center in the short-lived intermediate complex 2′ correlates with
the large positive charge of the molecule relative to the other
intermediates (Table S5 in the SI). The formation of complex
3′ through the binding of OH− re-establishes the same overall
charge of the initial state 1′. During the 1′ → 3′ transformation,
the computed charge of the Ru center increases by ∼0.2e.
As a further example of the complexity of these reactions in

solution, we report a specific long-range process occurring
during the simulation of the 1′ → 2′ step. The OH− resulting
from the proton transfer of the bridging water molecule to Ru
is immediately saturated through proton transfer chains, leading
to a quick diffusion of the OH− in solution away from the Ru-
pincer. Because of this, in the second step of the hydrogen
formation reaction (2′ → 2), a proton is transferred from the
methylene group to a water molecule rather than to a hydroxo.
This leads to the formation of a hydronium that quickly reacts
with the hydroxo present in solution, resulting in two water

molecules. Clearly, these complex diffusions and reactions can
only be captured through an explicit solvent simulation.

3.4. O2 Evolution and Cycle Closure. In the catalytic
cycle proposed by Kohl et al.,14 the formation of O2 is triggered
by UV−vis irradiation through the formation of H2O2, which
catalytically disproportionates into O2 and water. This step has
been modeled by Yang et al. considering, first, the OH and CO
ligand exchange, leading to two neighboring OH groups that
proceed to the formation of H2O2. The activated formation of
H2O2 could involve two singlet−triplet crossings, promoted by
the UV−vis radiation.17 A similar mechanism could be at play
also in the reaction path we propose (cycle B in Scheme 2),
with the only difference that we now have an aqua instead of a
hydroxo ligand. In this work, we do not investigate this
radiation-promoted portion of the catalytic cycle. The final state
of the O2 evolution step proposed by Li et al. (complex 4 in
Scheme 2) is, however, perfectly compatible also with the
catalytic cycle we have identified so far. In the following, we
propose the final steps that could close our cycle B (Scheme 2).
After the evolution of molecular oxygen, both sides of the Ru

center are left unsaturated (4). Although we do not address
explicitly the 3′→ 4 transformation, we note that it involves the
largest relative variation of the Ru charge during the cycle (see
Löwdin charge analysis in Table S5 of the SI). Overall, the Ru
center becomes more negative by ∼0.5e. This variation likely
results from the proton ligand, whose presence polarizes the

Figure 2. Comparison between the reaction mechanisms for H2 formation via M1, deprotonating the C1 site of the PNN ligand with the assistance
of a bridging water (left); or M2, splitting a solvent water molecule (right). (a, d) Representative configurations of the initial and final states taken
from the molecular dynamics simulations. (b, e) Free energy surfaces as a function of the CVs defined as coordination numbers of Ru, O, and H (see
dashed lines and text) used in the metadynamics. (c, f) 2D cuts of the free energy surface.

ACS Catalysis Research Article

dx.doi.org/10.1021/cs300350b | ACS Catal. 2012, 2, 1500−15061504

Intramolecular proton transfer?

✴ Ligand dearomatization
✴ Proton transfer assisted by bridging water 

Free energy surfaces as a function of the CVs defined as 
coordination numbers of Ru, O, and H

Friday, November 30, 12



How is molecular H2 formed?
Plain Molecular Dynamics Metadynamics

Friday, November 30, 12



How is molecular H2 formed?
Plain Molecular Dynamics Metadynamics

Friday, November 30, 12



Reaction Mechanisms of Water Splitting and H2 Evolution by a Ru(II)-
Pincer Complex Identified with Ab Initio Metadynamics Simulations
Changru Ma,† Simone Piccinin,‡,† and Stefano Fabris*,‡,†,§

†SISSA, Scuola Internazionale Superiore degli Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
‡CNR-IOM, DEMOCRITOS Simulation Center, Istituto Officina dei Materiali, c/o SISSA, Via Bonomea 265, 34136 Trieste, Italy
§IIT-SISSA Unit, Italian Institute of Technology, Via Bonomea 265, 34136 Trieste, Italy

*S Supporting Information

ABSTRACT: Water splitting is at the basis of artificial
photosynthesis for solar energy conversion into chemical
fuels. While the oxidation of water to molecular oxygen and
the reduction of protons to molecular hydrogen are typically
promoted by different catalysts, the Ru(II)-pincer complex
recently synthesized by Kohl et al. [Science 2009, 324, 74] has
been shown to promote both the thermal driven formation of
H2 and the UV−vis driven evolution of O2. Here, we
investigate, through density functional theory calculations, a
portion of the catalytic cycle, focusing on the formation of
hydrogen. We adopt an explicit description of the solvent and employ metadynamics coupled with the Car−Parrinello method to
study the reaction mechanism and determine the activation free energies. Our simulations predict a novel catalytic cycle, which
has considerably lower activation energies than earlier proposals and which does not involve the sequential aromatization−
dearomatization of the PNN ligand of the complex. This work clearly demonstrates the general importance of an explicit
description of the solvent for a predictive modeling of chemical reactions that involve the active participation of the solvent.
KEYWORDS: homogenous catalysis, water splitting, modeling reaction mechanisms in solution,
density functional theory and metadynamics, Ru(II)-pincer complex

1. INTRODUCTION
The sunlight-driven splitting of water into H2 and O2 is a
milestone for storing solar energy in chemical fuels.1−3 This
electrochemical reaction involves two semireactions: water
oxidation at the anode, releasing protons and evolving O2; and
reduction of protons at the cathode, evolving H2. Among these,
the water oxidation semireaction is by far the most challenging
and represents a bottleneck for the development of efficient
artificial photosynthesis devices for the production of solar
fuels.4−6

Although most of the molecular catalysts promoting efficient
water oxidation comprise cores containing multiple metal
centers,7−10 some single-center complexes have also been
reported.11−15 Among these, the recent discovery and
characterization of a Ru(II)-pincer is of fundamental
importance since it demonstrates that a single metal center
can promote the whole reaction, namely, water oxidation as
well as H2 evolution.14 Full characterization of the reaction
mechanism of this homogeneous catalyst would have important
fundamental and technological implications. Ab initio simu-
lations have already provided useful information toward this
characterization, proposing several possible reaction paths for
the thermal- and light-driven H2 and O2 evolutions,
respectively.16−19

This Ru(II)-pincer complex (P-da-PNN)RuH(CO) (0, P-da
= dearomatized at the phosphorus side arm, PNN = (2-(di-tert-
butylphosphinomethyl)-6-diethylaminomethyl)pyridine) in a
tetrahydrofuran aqueous solution activates a water molecule
by forming a trans-hydrido-hydroxo complex, which yields
aromatization of the PNN ligand.14 Heating at 100 °C releases
H2 with concomitant formation of a cis-dihydroxo intermediate.
Upon irradiation with 320−420 nm UV−vis light, O2 is
evolved, probably by first liberating H2O2, which then
catalytically disproportionates to O2 and water.14

The solvent plays a key role in the function of water-
oxidation catalysts and introduces significant complexities into
the simulations, which often relies on simplified solvent models.
In particular, previous simulations have captured the electro-
static effects of the solvent on the reaction sites/intermediates
through implicit solvent descriptions. This is a very powerful
and popular technique, which has, however, one important
limitation. It precludes/limits the exchange of products,
reactants, and intermediates between the solvent and the
reaction sites, essentially preventing the active participation of
the solvent in the reaction. In this paper, we demonstrate the
importance of describing explicitly the solvent for simulating
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thermal evolution of H2 that does not involve the
aromatization−dearomatization of the catalyst during the
cycle (see cycle B in Scheme 2)
CP MD simulations of the final state (2′) show that after H2

desorption from the Ru center, the OH− species present in
solution quickly binds at the vacant site of the Ru atom (2′→ 3′
in Scheme 2). This leads to the formation of trans aqua−
hydroxo ligands at the Ru site. The high reactivity of the Ru
center in the short-lived intermediate complex 2′ correlates with
the large positive charge of the molecule relative to the other
intermediates (Table S5 in the SI). The formation of complex
3′ through the binding of OH− re-establishes the same overall
charge of the initial state 1′. During the 1′ → 3′ transformation,
the computed charge of the Ru center increases by ∼0.2e.
As a further example of the complexity of these reactions in

solution, we report a specific long-range process occurring
during the simulation of the 1′ → 2′ step. The OH− resulting
from the proton transfer of the bridging water molecule to Ru
is immediately saturated through proton transfer chains, leading
to a quick diffusion of the OH− in solution away from the Ru-
pincer. Because of this, in the second step of the hydrogen
formation reaction (2′ → 2), a proton is transferred from the
methylene group to a water molecule rather than to a hydroxo.
This leads to the formation of a hydronium that quickly reacts
with the hydroxo present in solution, resulting in two water

molecules. Clearly, these complex diffusions and reactions can
only be captured through an explicit solvent simulation.

3.4. O2 Evolution and Cycle Closure. In the catalytic
cycle proposed by Kohl et al.,14 the formation of O2 is triggered
by UV−vis irradiation through the formation of H2O2, which
catalytically disproportionates into O2 and water. This step has
been modeled by Yang et al. considering, first, the OH and CO
ligand exchange, leading to two neighboring OH groups that
proceed to the formation of H2O2. The activated formation of
H2O2 could involve two singlet−triplet crossings, promoted by
the UV−vis radiation.17 A similar mechanism could be at play
also in the reaction path we propose (cycle B in Scheme 2),
with the only difference that we now have an aqua instead of a
hydroxo ligand. In this work, we do not investigate this
radiation-promoted portion of the catalytic cycle. The final state
of the O2 evolution step proposed by Li et al. (complex 4 in
Scheme 2) is, however, perfectly compatible also with the
catalytic cycle we have identified so far. In the following, we
propose the final steps that could close our cycle B (Scheme 2).
After the evolution of molecular oxygen, both sides of the Ru

center are left unsaturated (4). Although we do not address
explicitly the 3′→ 4 transformation, we note that it involves the
largest relative variation of the Ru charge during the cycle (see
Löwdin charge analysis in Table S5 of the SI). Overall, the Ru
center becomes more negative by ∼0.5e. This variation likely
results from the proton ligand, whose presence polarizes the

Figure 2. Comparison between the reaction mechanisms for H2 formation via M1, deprotonating the C1 site of the PNN ligand with the assistance
of a bridging water (left); or M2, splitting a solvent water molecule (right). (a, d) Representative configurations of the initial and final states taken
from the molecular dynamics simulations. (b, e) Free energy surfaces as a function of the CVs defined as coordination numbers of Ru, O, and H (see
dashed lines and text) used in the metadynamics. (c, f) 2D cuts of the free energy surface.
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of the Ru atom does not change significantly in the 0 → 1, 0→
1′, and 1 → 1′ transformations, thus suggesting that the Ru(II)
center does not change its oxidation state.
3.3. H−H Bond Formation. The solvation analysis

described above proposes that the relevant initial state for the
catalytic cycle leading to H2 and O2 evolutions is complex 1′.
We note that the dihydrogen-bonded water molecule in the
initial state 1′ is similar to the one proposed by Sandhya and
Suresh.19 In the following, we use CP MD and metadynamics
to determine the mechanism of the H−H bond formation at
the Ru center in explicit solvent. We consider and compare two
possible mechanisms: M1, the one in which the H atom
transfers from the C1 atom to the Ru center by assistance of a
bridging water molecule; and M2, the one in which the H atom
results from the splitting of a solvent water molecule nearby.
The former involves ligand aromatization−dearomatization
along the cycle and has been the subject of previous
computational works (step 1 → 2 in cycle A of Scheme
2).16,17 The latter is a prediction of our metadynamic
simulations, turns out to have lower activation energy, and
implies a catalytic cycle without aromatization−dearomatization
of the PNN ligand.
We first sample the H−H bond formation mechanism M1 by

biasing two collective variables (dashed lines in Figure 2a:
(CV1) the Ru coordination number with respect to the
hydrogen atom in the bridging water molecule and (CV2) the
coordination number of the oxygen in the bridging water with
respect to the hydrogen atom in the C1 site. The calculated (1′
→ 2) free energy profile is displayed in Figure 2b (left panel)
and clearly predicts a stepwise mechanism, at variance with the
concerted mechanism identified on the basis of an implicit
solvent description. This stepwise mechanism first involves the

splitting of the bridging water molecule, which transfers a
proton to the Ru center, forming the H2 molecule and an
hydroxide in solution (1′ → 2′). The second 2′ → 2 reaction
step reforms the solvent water molecule by transferring a
proton from the C1 site of the PNN ligand to the hydroxide in
solution. The latter step is rate-limiting, with a calculated
activation energy of 1.35 eV. Despite the mechanistic
differences, stepwise vs concerted, this value is in good
agreement with the previous estimates for mechanism M1,
1.26−1.46 eV,16,17 showing that the deprotonation of the C1
site is rate-limiting in this reaction channel. Quite importantly,
the metadynamics simulations clearly show that H−H bond
formation via splitting of the solvent water molecule is
definitely less energy-demanding than the deprotonation of
the PNN ligand.
We now turn to the H−H bond formation mechanism M2,

which we sample by two specific CVs (see Figure 2d): (CV1)
the Ru coordination number with the H atom of the bridging
water and (CV2) the coordination number between oxygen
and hydrogen in the bridging water. The 1′ → 2′ free energy
profile is displayed in Figure 2f. This rate-limiting step is
repeated three times to obtain more accurate results. The
calculated activation energies are 0.84, 1.01, and 0.77 eV, with
an average of 0.87 (±0.1) eV, which are all considerably lower
than the one for mechanism M1.
Our calculations show that the high energy barrier for the

hydrogen formation step discussed in previous theoretical
calculations can be attributed to the deprotonation of the PNN
ligand (1.35 eV). The activation of a solvent water molecule
and hydrogen transfer to Ru to form H2, on the other hand, is
considerably less energy-demanding (0.87 eV). These results
suggest the possibility of an alternative reaction path for the

Scheme 2. Proposed Catalytic Cycles for Water Splitting Catalyzed by the Ru(II)−Pincer
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photosynthesis for solar energy conversion into chemical
fuels. While the oxidation of water to molecular oxygen and
the reduction of protons to molecular hydrogen are typically
promoted by different catalysts, the Ru(II)-pincer complex
recently synthesized by Kohl et al. [Science 2009, 324, 74] has
been shown to promote both the thermal driven formation of
H2 and the UV−vis driven evolution of O2. Here, we
investigate, through density functional theory calculations, a
portion of the catalytic cycle, focusing on the formation of
hydrogen. We adopt an explicit description of the solvent and employ metadynamics coupled with the Car−Parrinello method to
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1. INTRODUCTION
The sunlight-driven splitting of water into H2 and O2 is a
milestone for storing solar energy in chemical fuels.1−3 This
electrochemical reaction involves two semireactions: water
oxidation at the anode, releasing protons and evolving O2; and
reduction of protons at the cathode, evolving H2. Among these,
the water oxidation semireaction is by far the most challenging
and represents a bottleneck for the development of efficient
artificial photosynthesis devices for the production of solar
fuels.4−6

Although most of the molecular catalysts promoting efficient
water oxidation comprise cores containing multiple metal
centers,7−10 some single-center complexes have also been
reported.11−15 Among these, the recent discovery and
characterization of a Ru(II)-pincer is of fundamental
importance since it demonstrates that a single metal center
can promote the whole reaction, namely, water oxidation as
well as H2 evolution.14 Full characterization of the reaction
mechanism of this homogeneous catalyst would have important
fundamental and technological implications. Ab initio simu-
lations have already provided useful information toward this
characterization, proposing several possible reaction paths for
the thermal- and light-driven H2 and O2 evolutions,
respectively.16−19

This Ru(II)-pincer complex (P-da-PNN)RuH(CO) (0, P-da
= dearomatized at the phosphorus side arm, PNN = (2-(di-tert-
butylphosphinomethyl)-6-diethylaminomethyl)pyridine) in a
tetrahydrofuran aqueous solution activates a water molecule
by forming a trans-hydrido-hydroxo complex, which yields
aromatization of the PNN ligand.14 Heating at 100 °C releases
H2 with concomitant formation of a cis-dihydroxo intermediate.
Upon irradiation with 320−420 nm UV−vis light, O2 is
evolved, probably by first liberating H2O2, which then
catalytically disproportionates to O2 and water.14

The solvent plays a key role in the function of water-
oxidation catalysts and introduces significant complexities into
the simulations, which often relies on simplified solvent models.
In particular, previous simulations have captured the electro-
static effects of the solvent on the reaction sites/intermediates
through implicit solvent descriptions. This is a very powerful
and popular technique, which has, however, one important
limitation. It precludes/limits the exchange of products,
reactants, and intermediates between the solvent and the
reaction sites, essentially preventing the active participation of
the solvent in the reaction. In this paper, we demonstrate the
importance of describing explicitly the solvent for simulating
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thermal evolution of H2 that does not involve the
aromatization−dearomatization of the catalyst during the
cycle (see cycle B in Scheme 2)
CP MD simulations of the final state (2′) show that after H2

desorption from the Ru center, the OH− species present in
solution quickly binds at the vacant site of the Ru atom (2′→ 3′
in Scheme 2). This leads to the formation of trans aqua−
hydroxo ligands at the Ru site. The high reactivity of the Ru
center in the short-lived intermediate complex 2′ correlates with
the large positive charge of the molecule relative to the other
intermediates (Table S5 in the SI). The formation of complex
3′ through the binding of OH− re-establishes the same overall
charge of the initial state 1′. During the 1′ → 3′ transformation,
the computed charge of the Ru center increases by ∼0.2e.
As a further example of the complexity of these reactions in

solution, we report a specific long-range process occurring
during the simulation of the 1′ → 2′ step. The OH− resulting
from the proton transfer of the bridging water molecule to Ru
is immediately saturated through proton transfer chains, leading
to a quick diffusion of the OH− in solution away from the Ru-
pincer. Because of this, in the second step of the hydrogen
formation reaction (2′ → 2), a proton is transferred from the
methylene group to a water molecule rather than to a hydroxo.
This leads to the formation of a hydronium that quickly reacts
with the hydroxo present in solution, resulting in two water

molecules. Clearly, these complex diffusions and reactions can
only be captured through an explicit solvent simulation.

3.4. O2 Evolution and Cycle Closure. In the catalytic
cycle proposed by Kohl et al.,14 the formation of O2 is triggered
by UV−vis irradiation through the formation of H2O2, which
catalytically disproportionates into O2 and water. This step has
been modeled by Yang et al. considering, first, the OH and CO
ligand exchange, leading to two neighboring OH groups that
proceed to the formation of H2O2. The activated formation of
H2O2 could involve two singlet−triplet crossings, promoted by
the UV−vis radiation.17 A similar mechanism could be at play
also in the reaction path we propose (cycle B in Scheme 2),
with the only difference that we now have an aqua instead of a
hydroxo ligand. In this work, we do not investigate this
radiation-promoted portion of the catalytic cycle. The final state
of the O2 evolution step proposed by Li et al. (complex 4 in
Scheme 2) is, however, perfectly compatible also with the
catalytic cycle we have identified so far. In the following, we
propose the final steps that could close our cycle B (Scheme 2).
After the evolution of molecular oxygen, both sides of the Ru

center are left unsaturated (4). Although we do not address
explicitly the 3′→ 4 transformation, we note that it involves the
largest relative variation of the Ru charge during the cycle (see
Löwdin charge analysis in Table S5 of the SI). Overall, the Ru
center becomes more negative by ∼0.5e. This variation likely
results from the proton ligand, whose presence polarizes the

Figure 2. Comparison between the reaction mechanisms for H2 formation via M1, deprotonating the C1 site of the PNN ligand with the assistance
of a bridging water (left); or M2, splitting a solvent water molecule (right). (a, d) Representative configurations of the initial and final states taken
from the molecular dynamics simulations. (b, e) Free energy surfaces as a function of the CVs defined as coordination numbers of Ru, O, and H (see
dashed lines and text) used in the metadynamics. (c, f) 2D cuts of the free energy surface.
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of the Ru atom does not change significantly in the 0 → 1, 0→
1′, and 1 → 1′ transformations, thus suggesting that the Ru(II)
center does not change its oxidation state.
3.3. H−H Bond Formation. The solvation analysis

described above proposes that the relevant initial state for the
catalytic cycle leading to H2 and O2 evolutions is complex 1′.
We note that the dihydrogen-bonded water molecule in the
initial state 1′ is similar to the one proposed by Sandhya and
Suresh.19 In the following, we use CP MD and metadynamics
to determine the mechanism of the H−H bond formation at
the Ru center in explicit solvent. We consider and compare two
possible mechanisms: M1, the one in which the H atom
transfers from the C1 atom to the Ru center by assistance of a
bridging water molecule; and M2, the one in which the H atom
results from the splitting of a solvent water molecule nearby.
The former involves ligand aromatization−dearomatization
along the cycle and has been the subject of previous
computational works (step 1 → 2 in cycle A of Scheme
2).16,17 The latter is a prediction of our metadynamic
simulations, turns out to have lower activation energy, and
implies a catalytic cycle without aromatization−dearomatization
of the PNN ligand.
We first sample the H−H bond formation mechanism M1 by

biasing two collective variables (dashed lines in Figure 2a:
(CV1) the Ru coordination number with respect to the
hydrogen atom in the bridging water molecule and (CV2) the
coordination number of the oxygen in the bridging water with
respect to the hydrogen atom in the C1 site. The calculated (1′
→ 2) free energy profile is displayed in Figure 2b (left panel)
and clearly predicts a stepwise mechanism, at variance with the
concerted mechanism identified on the basis of an implicit
solvent description. This stepwise mechanism first involves the

splitting of the bridging water molecule, which transfers a
proton to the Ru center, forming the H2 molecule and an
hydroxide in solution (1′ → 2′). The second 2′ → 2 reaction
step reforms the solvent water molecule by transferring a
proton from the C1 site of the PNN ligand to the hydroxide in
solution. The latter step is rate-limiting, with a calculated
activation energy of 1.35 eV. Despite the mechanistic
differences, stepwise vs concerted, this value is in good
agreement with the previous estimates for mechanism M1,
1.26−1.46 eV,16,17 showing that the deprotonation of the C1
site is rate-limiting in this reaction channel. Quite importantly,
the metadynamics simulations clearly show that H−H bond
formation via splitting of the solvent water molecule is
definitely less energy-demanding than the deprotonation of
the PNN ligand.
We now turn to the H−H bond formation mechanism M2,

which we sample by two specific CVs (see Figure 2d): (CV1)
the Ru coordination number with the H atom of the bridging
water and (CV2) the coordination number between oxygen
and hydrogen in the bridging water. The 1′ → 2′ free energy
profile is displayed in Figure 2f. This rate-limiting step is
repeated three times to obtain more accurate results. The
calculated activation energies are 0.84, 1.01, and 0.77 eV, with
an average of 0.87 (±0.1) eV, which are all considerably lower
than the one for mechanism M1.
Our calculations show that the high energy barrier for the

hydrogen formation step discussed in previous theoretical
calculations can be attributed to the deprotonation of the PNN
ligand (1.35 eV). The activation of a solvent water molecule
and hydrogen transfer to Ru to form H2, on the other hand, is
considerably less energy-demanding (0.87 eV). These results
suggest the possibility of an alternative reaction path for the

Scheme 2. Proposed Catalytic Cycles for Water Splitting Catalyzed by the Ru(II)−Pincer
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Importance of an explicit description of the solvent for a predictive modeling of 
chemical reactions that involve the active participation of the solvent.
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Co-oxides water-oxidation catalysts

STABILITY - No degradation
COST - Based on earth-abundant elements
EFFICIENCY - Low overpotential, high TOF

STRUCTURE - FUNCTION
Design guidelines

Credit: Dan Nocera

Novel class of materials based on Co oxide and other earth aboundant 
elements 
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Co oxides as WOC 

Kanan and Nocera, Science 321, 1072 (2008)

Novel class of materials based on Co oxide and other earth aboundant 
elements 

• Self-assembles on conductive substrates via electrolysis from a 
phosphate-buffered Co2+ solution.

• Formation and operation require a very low overpotential (0.28-0.41 V), 
room temperature and neutral pH

Exact composition: not known. Exact structure: not known
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Structure and composition

Kanan and Nocera, Science 321, 1072 (2008)

X-ray diffraction: amorphous Co-oxide; 
No sign of long-range crystalline phases

EDX: it is not a pure Co oxide 
Co:P:K ratio is roughly 2:1:1
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Structure and composition

Kanan and Nocera, Science 321, 1072 (2008)

X-ray diffraction: amorphous Co-oxide; 
No sign of long-range crystalline phases

EXAFS discrete multi cobalt-oxo molecular units 

?arranged into an amorphous network?

EDX: it is not a pure Co oxide 
Co:P:K ratio is roughly 2:1:1
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Structure and composition

Kanan and Nocera, Science 321, 1072 (2008)

X-ray diffraction: amorphous Co-oxide; 
No sign of long-range crystalline phases

EXAFS discrete multi cobalt-oxo molecular units 

?arranged into an amorphous network?

EDX: it is not a pure Co oxide 
Co:P:K ratio is roughly 2:1:1

Fourier-transformed EXAFS: 
Order at short and medium range
Short range: CoO6 octahedra
Medium range? difficult interpretation

M.W. Kanan et al., JACS 132, 13692 (2010)
M. Risch et al., JACS 131, 6936 (2009)
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Structure and composition

Kanan and Nocera, Science 321, 1072 (2008)

X-ray diffraction: amorphous Co-oxide; 
no sign of crystalline phases

EXAFS presence of discrete multi cobalt-oxo 
molecular units arranged into an amorphous 
network

EDX: Co:P:K ~ 2:1:1

Fourier-transformed EXAFS: 
presence of CoO6 octahedra
difficult interpretation

Complete and incomplete 
cobalt-oxo cubane motifs or 

layered CoO6 octahedra

Tentative models compatible with EXAFS
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Reliable structural and compositional models of the catalyst are missing

GOAL
predict the first realistic structural model of 

amorphous Co-Pi 
(no assumptions from experimental data, 

besides the chemical composition of the grains)

Knowing the catalyst’s structure will open the way for 
clarifying the reaction mechanisms

Structure-function relationship

STRUCTURE FUNCTION
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STRUCTURAL SEARCH 

Metadynamics
(shell model)

Computational approach

STRUCTURE OPTIMIZATION 

DFT 

STRUCTURE VALIDATION 

EXAFS simulation

Comparison with exp

grain 6 grain 5 grain 1
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STRUCTURAL SEARCH 
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Computational approach

STRUCTURE OPTIMIZATION 

DFT 

STRUCTURE VALIDATION 

EXAFS simulation

Comparison with exp

grain 6 grain 5 grain 1
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Computational approach

Model Nanoparticles
Co40P20K20O120 stoichiometry 

(EDX ~2:1:1 ratio for Co:P:K)

Initial random position of atoms

Empirical Shell-model for CoPi
Fitting to DFT-PBE total energy 

differences for Co3O4 and KPO4

Energetics and structure of CoPi
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Computational approach

Metadynamics simulations (shell model) 

2 CV sampling the atomic environment around the Co sites 
CV1: coordination number of Co with respect to O ions
CV2: number of Co ions bridging between a pair of O ions

DLPOLY and PLUMED codes

Structural optimization with DFT
Plane-wave pseudopotential approach
Structural optimization of shell-model predictions

Simulated EXAFS
Ab-initio multiple scattering simulation - FEFF code
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Metadynamics simulations - I
Free energy of NP in the configurational domain spanned by CV1 and CV2

Clear low-energy basin
COMPACT STRUCTURES

Identifies a large number of low-energy amorphous structures
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Emergence of molecular-sized crystallites in disordered NP

complete and incomplete Co4O4 cubane motifs
thermodynamic driving force
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What is the largest crystallite that can form in these NP?
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Emergence of molecular-sized crystallites in disordered NP

complete and incomplete Co4O4 cubane motifs
thermodynamic driving force
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Stability of larger cubane crystallites?
Metadynamics I

CV1 & CV2: short-range Co atomic 
environment

Metadynamics II
CV3: medium-range Co atomic 

environment

MOLECULAR-SIZE crystallites 

• Common building block: bis-oxo-bridged Co centers 

• Layered structures (edge-sharing CoO6 octahedra) + 
in corner- and face-sharing cubane units

Layered and cubane motifs coexist in the crystallites
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Stability of larger cubane crystallites?
Metadynamics I

CV1 & CV2: short-range Co atomic 
environment

Metadynamics II
CV3: medium-range Co atomic 

environment

MOLECULAR-SIZE crystallites 

• Common building block: bis-oxo-bridged Co centers 

• Layered structures (edge-sharing CoO6 octahedra) + 
in corner- and face-sharing cubane units

Phosphate groups terminate crystalline edges

Layered and cubane motifs coexist in the crystallites
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The larger the number of Co4O4 motifs-the better the agreement
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The larger the number of Co4O4 motifs-the better the agreement

Regions of our nanoparticles abundant in Co4O4+phosphate 
well reproduce all known exp features of CoPi
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First realistic structural model of amorphous CoO-Pi 
nanoparticles

* Emergence and stability of molecular-sized crystallites in disordered NP
 
* Crystallites: bis-oxo bridged Co centers - 
Co4O4 motifs sharing faces/corners

* Co4O4 crystallites 
- stable up to high T
- always expose cobalt sites at the grain surface 
- incorporate at least one phosphate group at cubane termination

* Good agreement with exp displayed only by cubane-rich NP

Cubane-rich portion of our amorphous nanoparticles 
are reliable structural models of the Co-Pi catalyst surface

Conclusions
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Local structure around Co ions
Co-O distance

 2.0 Å (1.89 Å - EXAFS)

Co coordination number
5.4 (5.2-6 EXAFS)

!Independent on Co4O4 units!

Broad peak in Co-Co RDF 
No clear first shell - 

compatible with FT-EXAFS?

Co4O4 motifs should display a
 sharp peak at 2.8 Å?
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Simulated EXAFS
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4 Co4O4

Sharp peak in Co-O g(r)
strong Co-O vector in EXAFS

Broad peak in Co-Co g(r)
strong Co-O vector in EXAFS
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