Computational Catalysis & its applications to renewable energies

Stefano Fabris CNR-IOM DEMOCRITOS Simulation Center

SISSA - Scuola Internazionale Superiore di Studi Avanzati - Trieste - ITALY

Computational Catalysis & its applications to renewable energies

Technologies limited by the lack of stable, efficient, and selective catalysts

Solar fuels: conversion of solar energy into chemical energy **Fuel cells**: electrodes, production and purification of H2, ...

Energy storage: batteries, ...

Catalysis: general principles

Catalyst: material that can control the rate of a chemical reaction

ACTIVITY: it alters the kinetics and thermodynamic of the reaction leading to <u>high rate</u>

Catalysis: general principles

Catalyst: material that can control the rate of a chemical reaction

ACTIVITY: it alters the kinetics and thermodynamic of the reaction leading to <u>high rate</u>

SELECTIVITY: it converts the reactants to the <u>wanted</u> products with no production of <u>undesired</u> byproducts

Catalysis: general principles

Catalyst: material that can control the rate of a chemical reaction

ACTIVITY: it alters the kinetics and thermodynamic of the reaction leading to <u>high rate</u>

SELECTIVITY: it converts the reactants to the <u>wanted</u> products with no production of <u>undesired</u> byproducts

MATERIALS SCIENCE CHALLENGE

Finding materials that optimally comply with these principles

Length scales of Catalysis

Catalysis spans a wide range of length scales

Length scales of Catalysis

Catalysis spans a wide range of length scales

Ex:Water oxidation catalysts

WOx is one of the main bottlenecks in the conversion and storage of solar energy into chemical fuels

Homogeneous

Single- and multi-center TM-based catalysts (Ru, Ir, Co, Mn)

"Blue dimer" (T. Meyer 1982)

STRUCTURE AND FUNCTION

Well characterized - mechanisms of reactions

STABILITY

Short-lived due to ligand oxidation

Heterogeneous

Metal-oxide reducible catalysts (RuO2, IrO2, Co3O4, ...)

RuO2(110 and 0001) under UHV

STABILITY

Combine robustness and efficiency Stable under suitable pH conditions

STRUCTURE AND FUNCTION

Structure and composition of the active sites? Surface of the catalyst under reaction conditions?

Computational Catalysis

Traditionally addressed both

single-metal

atom

Homogeneous

extended crystalline surfaces

Heterogeneous

simplified models of real catalyst's surfaces

Computational Catalysis

Traditionally addressed both

Current trend towards more complex systems:

supported sub-nm clusters

core-shell nanoparticles

functionalized surfaces

Computational Catalysis

Traditionally addressed both

Current trend towards more complex systems:

supported sub-nm clusters

core-shell nanoparticles

functionalized surfaces

New materials synthesized in the context of renewable materials belong to these classes

Friday, November 30, 12

Challenges for Comp. Catalysis?

Materials and processes for renewable energy questions&challenges for computational catalysis

- •How to determine the activation energy?
- •How to identify the reaction mechanism?
- •Catalyst characterization (experiment)
- •Effects of chemical environment (gas and liquid)?
- •How to find new catalysts or guidelines for improving existing ones?
- •Electrochemistry?

grain 6

EXAFS

Techniques and approaches

DFT, plane waves and pseudopotentials
Total energy and electronic structure
Interatomic Forces & Molecular Dynamics
Computational spectroscopy & link to experiment

Simulating rare (activated) events
Minimum energy paths - NEB
Beyond MD - Metadynamics

Screening techniques for finding new catalysts
Reaction descriptors - Volcano plots
Materials informatics

Examples

Heterogeneous, sub-nm supported, characterization, role of support

M. Farnesi Camellone and SF

Reaction Mechanisms for the CO Oxidation on Au/CeO2 catalysts: Activity of Substitutional Au3+/Au+ Cations and Deactivation of Supported Au+ Adatoms J.Am. Chem. Soc. 131, 10473 (2009)

Homogeneous/Heterogeneous, functionalized surfaces, characterization, reaction mechanism, role of environment

S. Piccinin, A. Sartorel, G. Aquilanti, A. Goldoni, M. Bonchio, and SF Water Oxidation Surface mechanisms replicated by a totally inorganic tetraruthenium-oxo complex Submitted

Heterogeneous, characterization, structure prediction

H. L. Hu, S. Piccinin, A. Laio, and SF Atomistic Structure of Cobalt-Phosphate Nanoparticles for Catalytic Water Oxidation to appear in ACS Nano (2012)

Techniques and approaches

OFT, plane waves and pseudopotentials Total energy and electronic structure Interatomic Forces & Molecular Dynamics Computational spectroscopy & link to experiment

Simulating rare (activated) events

 Minimum energy paths - NEBOAsed FORCES
Beyond MD - Metadynamics difficulty
Sening techniques (Screening techniques for finding new catalysts Reaction descriptors - Volcano plots 0 Materials informatics

Ab-initio interatomic forces

Interatomic forces are central in computational catalysis (rare events, reactions ...)

Hellmann-Feynman theorem Energy variations are second order in the electron density

$$\mathbf{F}_{I} = -\frac{\partial E}{\partial \mathbf{R}_{I}} = \left\langle \Psi_{\mathbf{R}} | \frac{\partial H}{\partial \mathbf{R}_{I}} | \Psi_{\mathbf{R}} \right\rangle$$

Interatomic forces can be calculated on the basis of the ground state density only

Minimum energy paths - NEB Beyond MD - Metadynamics Varied FORCES Simulating rare (activated) events

3 APRIL 2009 VOL 324 SCIENCE

Consecutive Thermal H₂ an Light-Induced O₂ Evolution 1 Promoted by a Metal Comp

Stephan W. Kohl,¹ Lev Weiner,² Leonid Schwartsburd,¹ Leonid Kon-Linda J. W. Shimon,² Yehoshoa Ben-David,¹ Mark A. Iron,² David Milstein¹* o MD?

ce

₹AA\$

ter

3 APRIL 2009 VOL 324 SCIENCE

Consecutive Thermal H₂ an Light-Induced O₂ Evolution f Promoted by a Metal Comp

Stephan W. Kohl,¹ Lev Weiner,² Leonid Schwartsburd,¹ Leonid Kon-Linda J. W. Shimon,² Yehoshoa Ben-David,¹ Mark A. Iron,² David Milstein¹*

Ab-initio MD of reactants ... and wait for reaction to occour

Reaction Mechanisms of Water Splitting and H₂ Evolution by a Ru(II)-Pincer Complex Identified with Ab Initio Metadynamics Simulations

Research Article

pubs.acs.org/acscatalysis

Changru Ma,[†] Simone Piccinin,^{‡,†} and Stefano Fabris^{*,‡,†,§}

ce

AAS

ter

o MD?

Friday, November 30, 12

time-step~0.1 fs; 1 transition in 10¹⁶ MD steps Reaction rates NOT compatible with MD time scales

time-step~0.1 fs; 1 transition in 10¹⁶ MD steps Reaction rates NOT compatible with MD time scales

time-step~0.1 fs; 1 transition in 10¹⁶ MD steps Reaction rates NOT compatible with MD time scales

Thermally activated processes & relevance to renewable energies materials

Diffusion (e.g. I3- ions in DSSC, proton diffusion in electrolytic cells, Li in batteries, FC...)

Chemical reactions (e.g.CO oxidation, NOx reduction, steam reforming, WGS, ...)

Electron injection at interfaces (e.g. DSSC, electrodes for water OX, ...)

Carrier concentration in semiconductors (e.g.photoexitation, exitons...)

Carrier conductivity in insulators (e.g. charge percolation in DSSC, ...)

Materials growth, ...

Numerical modeling of *rare events* requires methods beyond MD Taking advantage of statistical mechanics

Harmonic Transition State Theory

The rate of the process can be estimated using statistical mechanics

We need to determine v₀, TS, and E_a

Harmonic Transition State Theory

The rate of the process can be estimated using statistical mechanics

We need to determine v₀, TS, and E_a

In TST vo is approximated as $\nu_0 pprox -$

$$\frac{\prod_{i=1}^{3N} \nu_i^{\text{reactants}}}{\prod_{i=1}^{3N-1} \nu_i^{TS}}$$

Harmonic Transition State Theory

The rate of the process can be estimated using statistical mechanics

Friday, November 30, 12

Identifying the TS

Exploring energy landscapes: Unknown and often multidimensional

Reactants Intermediate Products ARREST OFFICE AND

Identifying the TS

Exploring energy landscapes: Unknown and often multidimensional

Identifying the TS

Exploring energy landscapes: Unknown and often multidimensional

Exploring energy landscapes

• Nudged Elastic Band (NEB)

Method for finding the MEP between IS (reactants) and FS (products) based on the calculation of atomic forces.

G.Mills and H.Jonsson, Phys. Rev. Lett. 72, 1124 (1994) G.Henkelman and H.Jonsson, J. Chem. Phys. 133, 9978 (2000)

Meta-dynamics (available in PLUMED)

Method for calculating the free energy landscape, unknown products, ... based on a biased dynamics in the space of a set of CVs.

A. Laio and M. Parrinello, PNAS 99, 12562 (2002)

Constrained minimization
Method for finding the **MEP** between IS (reactants) and FS (products) based on the calculation of atomic forces

!! MUST KNOW IS AND FS !!

Minimum Energy Path

- Path with maximum rate
- Crosses all saddle points with minimum Ea
- Components of the forces ORTHOGONAL to the path are zero

!! E(Ri) is NOT known !! MUST be sampled with single point calculations

Method for finding the **MEP** between IS (reactants) and FS (products) based on the calculation of atomic forces

!! MUST KNOW IS AND FS !!

Minimum Energy Path

- Path with maximum rate
- Crosses all saddle points with minimum Ea
- Components of the forces ORTHOGONAL to the path are zero

$$\mathbf{f}^{i}_{\parallel} = -\langle \nabla E(\mathbf{R}^{i}) | \tau^{i} \rangle \ \tau^{i}$$

$$\mathbf{f}_{\perp}^{i} = -(\nabla E(\mathbf{R}^{i}) - \langle \nabla E(\mathbf{R}^{i}) | \tau^{i} \rangle \tau^{i})$$

!! E(Ri) is NOT known !! MUST be sampled with single point calculations

Method for finding the **MEP** between IS (reactants) and FS (products) based on the calculation of atomic forces

!! E(Ri) is NOT known !!

NEB condition

Components of the forces ORTHOGONAL to the path are zero

- Build a set of n replicas of the system connecting the IS and FS
- Calculate parallel and perpendicular components of the forces along the path

$$\mathbf{f}^{i}_{\parallel} = -\langle \nabla E(\mathbf{R}^{i}) | \tau^{i} \rangle \ \tau^{i}$$

$$\mathbf{f}_{\perp}^{i} = -(\nabla E(\mathbf{R}^{i}) - \langle \nabla E(\mathbf{R}^{i}) | \tau^{i} \rangle \tau^{i})$$

Method for finding the **MEP** between IS (reactants) and FS (products) based on the calculation of atomic forces

!! E(Ri) is NOT known !!

NEB condition

Components of the forces ORTHOGONAL to the path are zero

- Build a set of n replicas of the system connecting the IS and FS
- Calculate parallel and perpendicular components of the forces along the path

$$\mathbf{f}^{i}_{\parallel} = -\langle \nabla E(\mathbf{R}^{i}) | \tau^{i} \rangle \ \tau^{i}$$

$$\mathbf{f}^{i}_{\perp} = -(\nabla E(\mathbf{R}^{i}) - \langle \nabla E(\mathbf{R}^{i}) | \tau^{i} \rangle \tau^{i})$$

• Add an harmonic interaction acting between adjacent images along path

$$\mathbf{F}^{i} = \mathbf{f}_{\perp}^{i} - \left\langle \nabla \left(\frac{1}{2} K \left(\mathbf{R}^{i} - \mathbf{R}^{i-1} \right)^{2} \right) \mid \tau^{i} \right\rangle \tau^{i}$$

Method for finding the **MEP** between IS (reactants) and FS (products) based on the calculation of atomic forces

!! E(Ri) is NOT known !!

NEB condition

- Components of the forces ORTHOGONAL to the path are zero
- Build a set of n replicas of the system connecting the IS and FS
- Calculate parallel and perpendicular components of the forces along the path

$$\mathbf{f}^{i}_{\parallel} = -\langle \nabla E(\mathbf{R}^{i}) | \tau^{i} \rangle \ \tau^{i}$$

$$\mathbf{f}^{i}_{\perp} = -(\nabla E(\mathbf{R}^{i}) - \langle \nabla E(\mathbf{R}^{i}) | \tau^{i} \rangle \tau^{i})$$

• Add an harmonic interaction acting between adjacent images along path

$$\mathbf{F}^{i} = \mathbf{f}_{\perp}^{i} - \left\langle \nabla \left(\frac{1}{2} K \left(\mathbf{R}^{i} - \mathbf{R}^{i-1} \right)^{2} \right) | \tau^{i} \right\rangle \tau^{i}$$

• Impose MEP condition $||\mathbf{F}_{\perp}^{i}|| = 0$

Method for finding the **MEP** between IS (reactants) and FS (products) based on the calculation of atomic forces

Method for finding the **MEP** between IS (reactants) and FS (products) based on the calculation of atomic forces

NEB @QE

Notes	Changes	Files	Associated Tracker Items	Tags		
				_		
Files			FileSize	Downloads		
pwcond-5.0.1.tar.gz			121296	2497		
atomic-5.0.tar.gz			2348770	4076		
PHonon-5.0.2.tar.gz			1115310	408		
xspectra-5.0.tar.gz			2168600	1667		
pwcond-5.0.tar.gz			118978	3596		
tddfpt-5.0.tar.gz			3193486	3719		
atomic-5.0.1.tar.gz			2347148	2779		
PWgui-5.0.1.tgz			1221946	1154		
PHonon-5.0.tar.gz			1058047	45	4569	
neb-5.0.tar.gz			282091	39	3911	
xspectra-5.0.1.tar.gz			2168611	10	1096	
PWgui-5.0.tgz			1228689	17	1750	
PHonon-5.0.1.tar.gz			1053933	28	2880	
plugins list-5.0			830	342		
PWgui-5.0.2.tgz			1230959	529		
plugins list-5.0.1			844	643		
neb-5.0.1.tar.gz			282306	2559		
tddfpt-5.0.2.tar.gz			6965590	663		
tddfpt-5.0.1.tar.gz			7120668	27	70	
XSpectra-5.0.2.tar.gz			2168615	29	299	
atomic-5.0.2.tar.gz			2340420	69	698	
espresso-5.0.tar.gz			16558830	8651		
pwcond-5.0.2.tar.gz			201307	19	198	
espresso-5.0.2.tar.gz			17001783	895		
espresso-5.0.1.tar.gz			16572110	51	5187	
neb-5.0.2.tar.gz			285154	25	259	
plume	d-1.3-qe.ta	nr.gz	11729604	53		

Md5 Hash
0978887ad083903baf16709ce3cf0328
d1d11e75397a0be7eb35cc391c3d2b50
c93ebb301ff657b2737664ca77ee6770
cee73c09ebc1b7664bad5bdee40a64c5
f1d844a110ad113b2d797e3157d7a00d
634b2364d8c4f487761177c6ab3d2dd1
4bda54a136468fbeed06ed5ee10037bc
107c8bd84c495ad8e85154193ccaeb79
d8b0d7ac3ddbfe0a656ec1501a2a4688
0a280604d738d312e881a97b3b3dfbb1
5ae778fe2ae033d15182778f5f4f6334
88c8468aec16347bef513972c35eba11

ker

Catalyst class that promotes a wide range of redox reactions

- ENERGY: H₂ production, HC reforming, ...
- ENVIRONMENT: gas sensing, gas purification, ...
- DEVICES: fuel cells, photocatalysts, ...

Reactivity controlled by several factors

Friday, November 30, 12

*from Fu et al., Science 301, 935 (2001)

Reactivity controlled by several factors

Friday, November 30, 12

Reactivity controlled by several factors

Reactivity controlled by several factors

Reactivity controlled by several factors

Which are the active species on supported catalysts?

Which are the active species on supported catalysts?

Water Gas Shift reaction

Fu et al., Science 2005: active species are isolated Au^{d+} Rodriguez et al., xxx: no, they are neutral or negative Au species

Which are the active species on supported catalysts?

Water Gas Shift reaction

Fu et al., Science 2005: active species are isolated Au^{d+} Rodriguez et al., xxx: no, they are neutral or negative Au species <u>CO oxidation</u>

Guzman et al., JACS 2005: active species are isolated Au³⁺ or Au⁺

Supported Au ionic species

Charge transfer and electron localization effects at the metal/oxide interface Au+ species in oxidizing conditions (CO ox)

Au-species in reducing conditions (WGS)

Stabilization of reaction intermediates

I) CO weakly bind to the stoichiometric CeO2 (III) surface

b) Yang et al., CPL 396, 384 (2004)

Metal particles required to form stable CO adsorbates on the <u>CeO2 (III) surface</u>

M. Huang and SF, J. Phys. Chem. C 112, 8643 (2008)

CO adsorption on ionic Au

I) CO weakly binds to the stoichiometric CeO2 (III) surface

2) CO strongly binds to the Au⁺ scpecies supported by CeO2 (III)

• CO adsorption drives further charge depletion of Au+ adsorbate

M. Farnesi Camellone and SF, J. Am. Chem. Soc. 131, 10473 (2009)

CO adsorption on ionic Au

- I) CO weakly bind to the stoichiometric CeO2 (III) surface
- 2) CO strongly bind to the Au+ species supported by CeO2 (III)
- 3) CO does not bind to Au-species supported by CeO2 (III)

- Repulsive interaction between CO and Au- species
- Supported Au- species prevents CO adsorption
- Au- species prevents also O2 adsorption

M. Farnesi Camellone and SF, J. Am. Chem. Soc. 131, 10473 (2009)

CO oxidation via O buffering of the oxide support

Are these Au⁺ species relevant for CO oxidation?

I. Adsorbate diffusion to oxide surface (spillover)

2. Oxidation via lattice O and O vacancy formation

MEP for CO oxidation

- Molecular spillover from supported Au is the rate limiting step -0.14 eV
- O vacancy formed during reaction attracts supported Au
- Charge reorganization and catalyst deactivation
- Results independent on the U parameter

Au+ species promotes CO oxidation but readily turns into inactive Au-

M. Farnesi and SF, J. Am. Chem. Soc. 131, 10473 (2009)

- Molecular spillover from supported Au is the rate limiting step -0.14 eV
- O vacancy formed during reaction attracts supported Au
- Charge reorganization and catalyst deactivation
- Results independent on the U parameter

Au+ species promotes CO oxidation but readily turns into inactive Au-

M. Farnesi and SF, J. Am. Chem. Soc. 131, 10473 (2009)

MEP for CO oxidation

- Molecular spillover from supported Au is the rate limiting step -0.14 eV
- O vacancy formed during reaction attracts supported Au
- Charge reorganization and catalyst deactivation
- Results independent on the U parameter

Au+ species promotes CO oxidation but readily turns into inactive Au-

M. Farnesi and SF, J. Am. Chem. Soc. 131, 10473 (2009)

Stability of adsorbates

Friday, November 30, 12

Stability of adsorbates

Friday, November 30, 12

Reaction Path for Au_3

Reaction Path for Au_3

Friday, November 30, 12

Reaction Path for Au_3

Friday, November 30, 12

Exploring energy landscapes

• Nudged Elastic Band (NEB)

Method for finding the MEP between IS (reactants) and FS (products) based on the calculation of atomic forces.

Meta-dynamics (available in PLUMED)

Method for calculating the free energy landscape, unknown products, ... based on a biased dynamics in the space of a set of CVs.

A. Laio and M. Parrinello, PNAS 99, 12562 (2002)

Simulating rare (activated) events without knowledge of the final state is even more challenging!

Ex: the formation of the O-O bond during water oxidation

 $2H_2O \rightarrow 4H^+ + 4e^- + O_2$ $4H^+ + 4e^- \rightarrow H_2$

Simulating rare (activated) events without knowledge of the final state is even more challenging!

Ex: the formation of the O-O bond during water oxidation

 $2H_2O \rightarrow 4H^+ + 4e^- + O_2$ $4H^+ + 4e^- \rightarrow H_2$

Polyoxometalate Embedding of a Tetraruthenium(IV)-oxo-core by Template-Directed Metalation of [γ-SiW₁₀O₃₆]⁸⁻: A Totally Inorganic Oxygen-Evolving Catalyst

Andrea Sartorel,*,[‡] Mauro Carraro,[‡] Gianfranco Scorrano,[‡] Rita De Zorzi,[†] Silvano Geremia,*,[†] Neal D. McDaniel,["] Stefan Bernhard,["] and Marcella Bonchio*,[‡]

ITM-CNR and Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy, Centro di Eccellenza di Biocristallografia, Dipartimento di Scienze Chimiche, Università di Trieste, via L. Giorgieri 1, 34127 Trieste, Italy, and Department of Chemistry, Princeton University, Princeton, New Jersey 08544

One of the most efficient and stable catalysts reported so far

Working mechanism? Relevant intermediates? How does water split and an O2 molecule form? Which are the thermodynamic and kinetic origin of this high efficiency and stability? Is it possible to improve them? How?

Sartorel et al. JACS 130, 5006 (2008) Geletii et al. Angew. Chem. Int. Ed. 47, 3896 (2008)

Friday, November 30, 12

How is molecular O2 formed?

From the solvent?

*nucleophilic attack of RuVI=O termination *The water that splits is from the solvent *Catalyst is not damaged and can be reactivated

How is molecular O2 formed?

From the solvent?

*nucleophilic attack of RuVI=O termination *The water that splits is from the solvent *Catalyst is not damaged and can be reactivated

From an O of the oxide core?

*RuVI=O termination attacks the oxide cluster
 *Intermolecular mechanism without participation of water from the solvent
 *The water that splits is ligated
 *Catalyst is damaged and needs to be repared

Metadynamics

- Technique for accelerating rare events and reconstructing the free energy
- Technique for escaping free energy minima
- Efficient exploration of configuration space
- Knowledge of final state is not required
- Biased and history-dependent MD

A. Laio and M. Parrinello, PNAS 99, 12562 (2002)

Metadynamics

- Technique for accelerating rare events and structing the free energy
- Efficient exploration of the afternoon
 Knowledge c • Biased and his HOW? Find out at the afternmon lab

A. Laio and M. Parrinello, PNAS 99, 12562 (2002)
Metadynamics

Reaction mechanism for water oxidation and O2 formation?

S. Piccinin, A. Sartorel, G. Aquilanti, A. Goldoni, M. Bonchio, and SF, submitted

3 APRIL 2009 VOL 324 SCIENCE

Consecutive Thermal H₂ an Light-Induced O₂ Evolution 1 Promoted by a Metal Comp

Stephan W. Kohl,¹ Lev Weiner,² Leonid Schwartsburd,¹ Leonid Kon-Linda J. W. Shimon,² Yehoshoa Ben-David,¹ Mark A. Iron,² David Milstein¹* MD?

ce

∖AAS

ter

Ab-initio MD of reactants ... and wait for reaction to occour

3 APRIL 2009 VOL 324 SCIENCE

Consecutive Thermal H₂ an Light-Induced O₂ Evolution 1 Promoted by a Metal Comp

Stephan W. Kohl,¹ Lev Weiner,² Leonid Schwartsburd,¹ Leonid Kon-Linda J. W. Shimon,² Yehoshoa Ben-David,¹ Mark A. Iron,² David Milstein¹*

Ab-initio MD of reactants ... and wait for reaction to occour

Friday, November 30, 12

MD?

ce

AAS

ter

How is molecular H2 formed?

Intramolecular proton transfer?

- * Ligand dearomatization
- * Proton transfer assisted by bridging water

From the solvent?

* Splitting of a solvent water molecule @ Ru * Ligand aromatization unaffected

Free energy surfaces as a function of the CVs defined as coordination numbers of Ru, O, and H

How is molecular H2 formed?

Plain Molecular Dynamics

Metadynamics

How is molecular H2 formed?

Plain Molecular Dynamics

Metadynamics

Research Article pubs.acs.org/acscatalysis

Research Article

M2

Reaction Mechanisms of Water Splitting and H₂ Evolution by a Ru(II)-Pincer Complex Identified with Ab Initio Metadynamics Simulations d) Changru Ma,[†] Simone Piccinin,^{‡,†} and Stefano Fabris^{*,‡,†,§} Scheme 2. Proposed Catalytic Cycles for Water Splitting Catalyzed by the Ru(II)-Pincer proton transfer Cycle A 5 н H₂O binding H₂O splitting -P^tBu₂ ligand -co Rùaromatization NEt₂ ligand H₂O splitting H_2O dearomatization 0 -0.2 -0.4 -0.6 -0.8 ∆G (eV) H₂O 2 3 H₂O OH -P^tBu₂ P^tBu₂ -P^tBu₂ H_2O_2 -CO Rú CO ·Rú--CO NEt₂ ٧Et NEt₂ ΗН 0.8 ΟH OH H_2 OH ·P^tBu₂ ^{0.2}CV1 0.4 ·Rú—CO O₂ evolution H₂ release CV H₂ formation -NEt₂ 2' ΤS OH H_2O 0 -P^tBu₂ -P^tBu₂ -P^tBu₂ splitting -CO H_2O_2 -0.2 -CO Rú NEt₂ NEt₂ +H₂O H_2O NEt₂ 0.4 ∀0 9.0-5 H_2O H_2O OH-H₂O OH-20H⁻ H_2O 0.87 eV proton 5' Ru-hydroxylation OH. transfer -P^tBu₂ -0.8 H_2O -CO Rú Cycle B (this work) splitting H₂O binding -NEt₂ -1 **Reaction Coordinate**

Importance of an explicit description of the solvent for a predictive modeling of chemical reactions that involve the active participation of the solvent.

Atomistic Structure of Cobalt-Oxide Nanoparticles for Catalytic Water Oxidation

Co-oxides water-oxidation catalysts

Novel class of materials based on Co oxide and other earth aboundant elements

In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co²⁺

Matthew W. Kanan and Daniel G. Nocera*

Credit: Dan Nocera

STABILITY - No degradation

COST - Based on earth-abundant elements **EFFICIENCY** - Low overpotential, high TOF

STRUCTURE - FUNCTION

Design guidelines

Co oxides as WOC

Novel class of materials based on Co oxide and other earth aboundant elements

- Self-assembles on conductive substrates via electrolysis from a phosphate-buffered Co2+ solution.
- Formation and operation require a very low overpotential (0.28-0.41V), room temperature and neutral pH

Exact composition: not known. Exact structure: not known Kanan and Nocera, Science 321, 1072 (2008)

Structure and composition

X-ray diffraction: amorphous Co-oxide; No sign of long-range crystalline phases

EDX: it is not a pure Co oxide Co:P:K ratio is roughly 2:1:1

Kanan and Nocera, Science 321, 1072 (2008)

Structure and composition

X-ray diffraction: amorphous Co-oxide; No sign of long-range crystalline phases

EDX: it is not a pure Co oxide Co:P:K ratio is roughly 2:1:1

Kanan and Nocera, Science 321, 1072 (2008)

EXAFS discrete multi cobalt-oxo molecular units

?arranged into an amorphous network?

Structure and composition

X-ray diffraction: amorphous Co-oxide; No sign of long-range crystalline phases

EDX: it is not a pure Co oxide Co:P:K ratio is roughly 2:1:1

Kanan and Nocera, Science 321, 1072 (2008)

EXAFS discrete multi cobalt-oxo molecular units

?arranged into an amorphous network?

Fourier-transformed EXAFS:

Order at short and medium range Short range: CoO6 octahedra Medium range? difficult interpretation

> M.W. Kanan et al., JACS 132, 13692 (2010) M. Risch et al., JACS 131, 6936 (2009)

Structure-function relationship

Reliable structural and compositional models of the catalyst are missing

GOAL

predict the first realistic structural model of amorphous Co-Pi

(no assumptions from experimental data, besides the chemical composition of the grains)

Knowing the catalyst's structure will open the way for clarifying the reaction mechanisms

Computational approach STRUCTURAL SEARCH Metadynamics (shell model)

STRUCTURE OPTIMIZATION

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + v_{\text{eff}}(\mathbf{r})\right)\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

STRUCTURE VALIDATION EXAFS simulation

Comparison with exp

Computational approach STRUCTURAL SEARCH Metadynamics (shell model)

STRUCTURE OPTIMIZATION

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + v_{\text{eff}}(\mathbf{r})\right)\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

STRUCTURE VALIDATION EXAFS simulation

Comparison with exp

Computational approach

Model Nanoparticles

CO₄₀P₂₀K₂₀O₁₂₀ stoichiometry (EDX ~2:1:1 ratio for Co:P:K)

Initial random position of atoms

Empirical Shell-model for CoPi Fitting to DFT-PBE total energy

differences for Co3O4 and KPO4

Energetics and structure of CoPi

Computational approach

Metadynamics simulations (shell model)

2 CV sampling the atomic environment around the Co sites CVI: coordination number of Co with respect to O ions CV2: number of Co ions bridging between a pair of O ions

DLPOLY and PLUMED codes

Structural optimization with DFT

Plane-wave pseudopotential approach Structural optimization of shell-model predictions

Simulated EXAFS

Ab-initio multiple scattering simulation - FEFF code

Metadynamics simulations - I

Free energy of NP in the configurational domain spanned by CV1 and CV2

Identifies a large number of low-energy amorphous structures

Predominant six and five-fold coordination by oxygen ions in interlinked octahedral_acobalt-oxo units (XAS OK)

Predominant six and five-fold coordination by oxygen ions in interlinked octahedral_acobalt-oxo units (XAS OK)

Emergence of molecular-sized crystallites in disordered NP

Predominant six and five-fold coordination by oxygen ions in interlinked octahedral_acobalt-oxo units (XAS OK)

Emergence of molecular-sized crystallites in disordered NP

The larger the number of Co4O4 motifs-the better the agreement

Regions of our nanoparticles abundant in Co4O4+phosphate well reproduce all known exp features of CoPi

The larger the number of Co4O4 motifs-the better the agreement

First realistic structural model of amorphous CoO-Pi nanoparticles

* Emergence and stability of molecular-sized crystallites in disordered NP

* Crystallites: bis-oxo bridged Co centers -Co4O4 motifs sharing faces/corners

- * Co4O4 crystallites
 - stable up to high T
 - always expose cobalt sites at the grain surface
 - incorporate at least one phosphate group at cubane termination

* Good agreement with exp displayed only by cubane-rich NP-

Cubane-rich portion of our amorphous nanoparticles are reliable structural models of the Co-Pi catalyst surface

arain 6

Thanks

Simone Piccinin (CNR-IOM) Alessandro Laio (SISSA)

Changru Ma (SISSA) Xiao Liang Hu (SISSA)

A. Sartorel & M. Bonchio (Padova U) M. Prato (Trieste U) G. Scoles (Udine U)

FUNDING

FP7- Marie Curie Program IIT - Italian Institute of Technology PRACE Partnership for Advanced Computing in Europe ISCRA & CINECA supercomputing center COST action CM1104

Local structure around Co ions

Co-O distance 2.0 Å (1.89 Å - EXAFS)

Co coordination number 5.4 (5.2-6 EXAFS)

Independent on Co4O4 units!

Broad peak in Co-Co RDF No clear first shell -

compatible with FT-EXAFS?

Co4O4 motifs should display a sharp peak at 2.8 Å?

Simulated EXAFS

Sharp peak in Co-O g(r) strong Co-O vector in EXAFS

Broad peak in Co-Co g(r) strong Co-O vector in EXAFS

Thanks

Simone Piccinin (CNR-IOM) Alessandro Laio (SISSA)

Changru Ma (SISSA) Xiao Liang Hu (SISSA)

A. Sartorel & M. Bonchio (Padova U) M. Prato (Trieste U) G. Scoles (Udine U)

FUNDING

FP7- Marie Curie Program
IIT - Italian Institute of Technology
FP7 - COST
PRACE Partnership for Advanced Computing in Europe
ISCRA & CINECA supercomputing center

