Car-Parrinello MD

Filippo De Angelis, Edoardo Mosconi, Simone Piccinin

CNR-ISTM Perugia & CNR-IOM, Trieste

First Principles Molecular Dynamics

We call *Molecular Dynamics* (MD) a computer simulation technique in which the time evolution of a set of interacting atoms is followed by integrating their equations of motion.

We limit our attention to a set of interacting atoms moving classically: the dynamics is described by Newton's law:

$$\mathbf{F}_i = m_i \mathbf{a}_i$$

 $\mathbf{a}_{i} = d^{2}\mathbf{r}_{i}/dt^{2}$ \mathbf{F}_{i} \mathbf{m}_{i} The interatomic potential: $\mathbf{F}_{i} = -\nabla_{\mathbf{r}_{i}}V(\mathbf{r}_{1},\ldots,\mathbf{r}_{N})$

Evaluation of the energy and its derivatives:

•Quantum mechanics (ab initio)

- •Multi-reference configuration interaction $\rightarrow N^{7-8}$ (MRCI) •Coupled-cluster $\rightarrow N^{5-6}$ (CC) •Density Functional Theory $\rightarrow N^{3-4}$ (DFT) H₂O $\rightarrow 10$ elettroni MRCI=30 min, CC=15 min, DFT=1 min 2H₂O $\rightarrow 20$ elettroni MRCI=7680(128 h) CC=960 (16h) DFT=8-16
- •Semi-empirical methods
- •INDO/MNDO/ZINDO $\rightarrow N^{2-3}$
- Model potentials
- •force fields

Dimensions/accuracy

QM Computer codes:

- GAUSSIAN 09
- TURBOMOLE
- MOLPRO
- GAMESS
- ADF
- QUANTUM ESPRESSO
- ABINIT
- CP2K

- USA
- GERMANY
- GERMANY
- UK / USA
- NETHERLANDS
- ITALY
- BELGIUM
- SWITZERLAND

Nuclear displacement (R)

Car-Parrinello Molecular Dynamics (CPMD)

Trieste 1985 → Trieste 2007→ Trieste 2012

Car-Parrinello Molecular Dynamics (CPMD)

Electronic minimization without moving the nuclei (SCF).

Then we allow the nuclei to move

Nuclear displacement (R)

