# Recent Results On $\theta_{13}$ From Reactor- and Accelerator-based Neutrino Oscillation Experiments

#### **BENE 2012**

M. Toups, MIT

# Outline

- Neutrino Mixing and  $\theta_{13}$  (Up to 2010)
- Hints on the value of  $\theta_{13}$  (2011)

• Measurements of  $\theta_{13}$  (2012)

# The Standard 3v Oscillation Picture circa 2010 $|v_{\alpha}\rangle = U_{\alpha i}|v_{i}\rangle$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta_{CP}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{CP}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\begin{aligned} \sin^2 2\theta_{23} &> 0.92 \ (90\% \text{ C.L.}) & \sin^2 2\theta_{13} < 0.15 \ (90\% \text{ C.L.}) & \sin^2 2\theta_{12} = 0.861 \ ^{+0.026}_{-0.022} \\ |\Delta m^2_{32}| &= (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^2 & \mathsf{CHOOZ} & \Delta m^2_{21} = (7.50 \pm 0.21) \times 10^{-5} \text{ eV}^2 \\ & \mathsf{Super-K + MINOS} & \mathsf{Rev. Mod. Phys. 74, 297-328 (2002)} & \mathsf{KamLAND, SNO, et. al.} \end{aligned}$ 







#### The Standard 3v Oscillation Picture circa 2010

$$\begin{vmatrix} \nu_{\alpha} \rangle = U_{\alpha i} \middle| \nu_{i} \rangle$$
Dirac CP-violating phase?  

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta_{CF}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{CF}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Mass hierarch?  
Maximal Mixing?  

$$\int \sin^{2} 2\theta_{23} > 0.92 (90\% \text{ C.L.}) \qquad \sin^{2} 2\theta_{13} < 0.15 (90\% \text{ C.L.}) \qquad \sin^{2} 2\theta_{12} = 0.861 \stackrel{+0.026}{-0.022}$$

$$|\Delta m_{32}^{2}| = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^{2} \qquad \text{CHOOZ} \qquad \Delta m_{21}^{2} = (7.50 \pm 0.21) \times 10^{-5} \text{ eV}^{2}$$

$$Super-K + MINOS$$

$$\int \frac{40}{9} \int \frac{1}{9} \int \frac{1}{9$$

#### The Standard 3v Oscillation Picture circa 2010

$$\begin{vmatrix} \nu_{\alpha} \rangle = U_{\alpha i} \middle| \nu_{i} \rangle$$
Dirac CP-violating phase?  

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta_{CF}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{CF}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Mass hierarch?  
Maximal Mixing?  

$$\int \sin^{2} 2\theta_{23} > 0.92 (90\% \text{ C.L.}) \qquad \sin^{2} 2\theta_{13} < 0.15 (90\% \text{ C.L.}) \qquad \sin^{2} 2\theta_{12} = 0.861 \stackrel{+0.026}{-0.022}$$

$$|\Delta m_{32}^{2}| = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^{2} \qquad \text{CHOOZ} \qquad \Delta m_{21}^{2} = (7.50 \pm 0.21) \times 10^{-5} \text{ eV}^{2}$$

$$MaxmLAND, SNO, et. al.$$

$$\int \frac{40}{9} \int \frac{1}{9} \int$$

#### v Oscillation Probabilities

#### **Long-Baseline Accelerator Appearance Experiments**

- Oscillation probability complicated and dependent not only on  $\theta_{13}$  but also:
  - CP violation parameter (δ)
  - 2. Mass hierarchy (sign of  $\Delta m_{31}^2$ )
  - 3. Size of  $sin^2\theta_{23}$

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &+ 4S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\left(1 - 2S_{13}^{2}\right) \end{split}$$

⇒ These extra dependencies are both a "curse" and a "blessing"

#### **Reactor Disappearance Experiments**

- Reactor disappearance measurements provide a straight forward method to measure  $\theta_{13}$  with no dependence on matter effects and CP violation

$$P(\overline{\nu}_e \to \overline{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{13}^2 L}{4E} + \text{ small terms}$$

### **Experimental Methods to Measure** the "Little Mixing Angle", $\theta_{13}$

- Long-Baseline Accelerators: Appearance  $(v_{\mu} \rightarrow v_{e})$  at  $\Delta m^{2} \approx 2.4 \times 10^{-3} \text{ eV}^{2}$ 
  - Look for appearance of  $\nu_e$  in a quite pure  $\nu_{\!_{\rm H}}$  beam vs. L and E
    - Use near detector to measure background  $v_e$ 's (beam and misid)



- Reactors: Disappearance  $(\overline{v_e} \not\rightarrow \overline{v_e})$  at  $\Delta m^2 \approx 2.4 \times 10^{-3} \text{ eV}^2$ 
  - Look for a change in  $\overline{v_{e}}$  flux as a function of L and E
    - Use near detector to measure the unoscillated flux
    - Look for a non-  $1/r^2$  behavior of the  $\overline{v}_e$  rate

MINOS:

RENO: Double Chooz: Daya Bay:  $<I_{>} = 1642 \text{ m}$   $<I_{>} = 1444 \text{ m}$ <L> = 1050 m



#### Accelerator-based v Oscillation Experiment



Distance

Extrapolate signal/background flux measured in near detector to far detector





# Indications of Nonzero $\theta_{13}$ From Reactor Experiment in 2011:

#### **Double Chooz**



## Far detector only fit to rate and energy spectrum (101 days of data):

- 4344 ±165 sig + bkg expected (no osc.)
- 4121 candidate events observed

sin<sup>2</sup>2θ<sub>13</sub> = 0.086 ± 0.041 (stat) ± 0.030 (syst)

χ<sup>2</sup>/d.o.f. = 23.7/17

Frequentist study indicated no-oscillation hypothesis ruled out at 94.6% C.L.



# 2012: A Flurry of Results on $\theta_{13}$



#### Double Chooz Site in Ardennes, France



### The Double Chooz Detector

(Typical of multi-zone detectors used by reactor neutrino experiments)

Outer Veto (OV) plastic scintillator strips

Outer Shielding 250t steel shielding (15 cm)

Inner Veto (IV) 90m<sup>3</sup> of scintillator in a steel vessel (10 mm) equipped

with 78 PMTs (8 inches)

#### Buffer

110 m<sup>3</sup> of mineral oil in a stainless steel vessel (3 mm) viewed by 390 PMTs (10 in.)

#### γ-Catcher (GC)

22.3 m<sup>3</sup> scintillator in an acrylic vessel (12 mm)

#### Target

10.3 m<sup>3</sup> scintillator doped with 1g/l of Gd compound in an acrylic vessel (8 mm)

#### **Calibration Glove Box**

~7m

# The Double Chooz Detector



Inner Veto

#### **Experimental Signal For Reactor Neutrino Experiments**

- The reaction process is inverse βdecay followed by neutron capture
  - Two part coincidence signal is crucial to reduce background

 $\overline{v}_{e} + p \rightarrow e^{+} + n$  $\rightarrow n \ capture$ 

Positron energy spectrum implies
 the neutrino spectrum

 $E_v = E_{vis} + 1.8 \text{ MeV} - 2m_e$ 

 The scintillator is doped with gadolinium to enhance capture

 $n {}^{m}Gd \rightarrow {}^{m+l}Gd \gamma$ 's (8 MeV)

Veto system for cosmic–ray muons



Signal = Positron signal + Neutron signal after an average of ~30 µsec

#### Double Chooz Far Detector Only Analysis

- Simultaneous fit to two far detector spectra—low and high reactor power samples
- No near/far comparison—far detector spectrum is compared to MC prediction
  - Flux normalization taken from Bugey4 + corrections
- Rate and spectral shape fit to positron spectrum

$$\chi^{2} = \sum_{i,j}^{36} \left( N_{i} - N_{i}^{pred} \right)^{T} M_{ij}^{-1} \left( N_{j} - N_{j}^{pred} \right) + \sum_{k} \frac{\left( \alpha_{k} - 1 \right)^{2}}{\sigma_{k}^{2}} + \frac{\left( \Delta m_{31}^{2} - \Delta m_{MINOS}^{2} \right)^{2}}{\sigma_{MINOS}^{2}}$$

- First publication showed that background rate measurements agreed with data taken with both reactors off
  - Additional week of reactor off data in the can

### **Double Chooz Oscillation Fit Results**



Rate-only: sin<sup>2</sup>2θ<sub>13</sub> = 0.170 ± 0.035 (stat.) ± 0.040 (syst.)

 $\frac{\text{Rate+Shape:}}{\sin^2 2\theta_{13}} = 0.109 \pm 0.030 \text{ (stat.)} \pm 0.025 \text{ (syst.)} \\ \chi^2/\text{d.o.f.} = 42.1/35$ 

**Frequentist analysis:**  $sin^2 2\theta_{13} = 0$  excluded at 99.8% (2.9 $\sigma$ )

## Presented in arXiv:1207.6632, accepted by PRD

#### **Double Chooz Near Detector**



#### Expected to start taking data at the end of 2013

#### The MINOS Experiment



Duluth MN WI Madiser Madiser IA Fermilab IL IN MO

Positively (negatively) focused pions produce ~3 GeV  $v_{\mu}(\bar{v}_{\mu})$ 

Three different horn configurations allow separation of background - Neutral current,  $v_u$  charged-current, intrinsic  $v_e$  charged-current



Near detector



Far detector

Functionally identical, magnetized, steel-scintillator tracking calorimeters

### MINOS $\nu_{\mu} \rightarrow \nu_{e}$ Appearance Analysis

MINOS detectors optimized to look for  $\nu_{\mu}$  disappearance

- Difficult to identify  $\nu_{e}^{}\,\text{events}$
- Instead use MC library event matching technique to statistically separate  $v_e$  / bkg

Neutrino mode

- No oscillation expectation: 128.6 events
- Observe 152 events

Antineutrino mode

- No oscillation expectation: 17.5 events
- Observe 20 events

Two neutrino fit

 $- θ_{13} ≠ 0$  at 96% C.L. for Δm<sup>2</sup>>0, δ<sub>CP</sub>=0

Final three neutrino fit expected soon



#### The T2K Experiment



Positively (negatively) focused pions produce ~0.6 GeV  $v_{\mu}$  ( $\bar{v}_{\mu}$ )







Far detector (Super-K)

22.5 kt water
 Cerenkov detector

• ~11,000 ID 20" PMTs

• Identify  $v_e$  chargedcurrent interactions from electron-like single ring events

Roughly doubled the POT used in the 2011  $\nu_{\rm e}$  appearance results

### T2K $\nu_{\mu} \rightarrow \nu_{e}$ Appearance Analysis

No oscillation expectation:  $3.22 \pm 0.43$  events

Observed events: 11

Probability to observe 11 or more events given no oscillation expectation is 0.08% (3.2 $\sigma$ )

Three different analysis methods used yielding consistent results

• Main analysis uses maximum likelihood fit to signal + 4 background pdfs is  $(p_e, \theta_e)$  bins

Latest results consistent with 2011 results, but more precise



M. G. Catanesi, NOW 2012

 $\rightarrow$  Plan to achieve 5 $\sigma$  significance of nonzero  $\theta_{13}$  in coming years

### T2K $\nu_{\mu} \rightarrow \nu_{e}$ Appearance Analysis

No oscillation expectation:  $3.22 \pm 0.43$  events

Observed events: 11

Probability to observe 11 or more events given no oscillation expectation is 0.08% (3.2 $\sigma$ )

Three different analysis methods used yielding consistent results

• Main analysis uses maximum likelihood fit to signal + 4 background pdfs is  $(p_e, \theta_e)$  bins

Latest results consistent with 2011 results, but more precise



M. G. Catanesi, NOW 2012

 $\rightarrow$  Plan to achieve 5 $\sigma$  significance of nonzero  $\theta_{13}$  in coming years

### T2K $\nu_{\mu} \rightarrow \nu_{e}$ Appearance Analysis



#### The RENO Experiment

Yonggwang Nuclear Power Plant, Korea



Soo-Bong Kim, Neutrino 2012

- Started taking data with two detectors in August 2011
- Found 17102 (154088) candidates for 222.06 (192.42) days in the far (near) detector
- Performed rate-only fit with floating normalization

#### RENO $\overline{v}_{e}$ Disappearance Analysis



#### RENO $\overline{v}_e$ Disappearance Analysis



Problem with positron energy spectrum

 $\longrightarrow$  Measured value of sin<sup>2</sup>2 $\theta_{13}$  depends on upper bound of prompt energy cut

#### The Daya Bay Experiment

Daya Bay nuclear power complex, China



- First results from 55 days of data taking Dec. 24,2011 Feb.17, 2012
- > 200k antineutrino interactions
- Performed rate-only fit with floating normalization

### Daya Bay $\overline{\nu}_e$ Disappearance Analysis



 $sin^2 2\theta_{13} = 0.0920 \pm 0.016 (stat.) \pm 0.005 (syst.)$ 

Spectral distortion consistent with oscillation

### Updated Daya Bay $\overline{\nu}_e$ Disappearance Analysis



→ Final two AD's will be installed later this year

→ Aim to achieve 5% measurement of  $sin^2 2\theta_{13}$  in < 2 years

### Conclusions

- Up to 2010 only upper bounds on  $\theta^{}_{13}$ 

• In 2011 we had  $3\sigma$  evidence for  $\theta_{13} \neq 0$  from fits, but not from any one experiment

- The situation in 2012 is completely different:
  - Two accelerator-based experiments see  $v_{\mu} \rightarrow v_{e}$  appearance (T2K: 3.2 $\sigma$ )
    - Should also be confirmed in near future by NovA (not discussed here)
  - Three reactor-based experiments see  $\overline{v}_{e}$  disappearance (Daya Bay >> 5 $\sigma$ )
- Measurement of  $\sin^2 2\theta_{13}$  to a precision of 5% very likely in the next 2 years

#### <u>sin<sup>2</sup>2θ<sub>13</sub> is LARGE</u>

 Good prospect for δ<sub>CP</sub> searches in next 10-20 years



# End.

### **T2K Vertex Distributions**

