

BeNe 2012

'Behind the Neutrino Mass'

Proton decay window to GUT Seesaw

R. N. Mohapatra

MARYLAND

September, 2012

(K. S. Babu and R. N. M., arXiv:1204.5544;PRL: 1206.5701; PLB)

Different Approaches to neutrino masses

Seesaw paradigms for small neutrino mass

- Generating the Weinberg operator $\frac{LHLH}{M}$ from UV theories: $M \gg v_{wk}$
- Two UV complete realizations:

Type I SM+ Majorana N

$$m_{v} \simeq -\frac{{h_{v}}^{2} {v_{wk}}^{2}}{M_{R}}$$

 $M_R \approx 10^{14} GeV$

(Minkowsk'; Gell-Mann, Ramond, Slansky; Yanagida; Mohapatra, Senjanovic')

Type II SM+ Triplet Higgs

$$m_{\nu} \simeq \frac{f v_{wk}^2}{M_{\Delta}}$$

 $M_{\Lambda} \simeq 10^{14} GeV$

(Maag, Wetterich; Lazaridis, Shafi, Wetterich; Mohapatra, Senjanovic'; Schecter, Valle)

How to test high scale seesaw ?

- Seesaw (I and II) have two features:
 (i) Near GUT seesaw scale
 (ii) B-L=2
- How good a test is $\mu \rightarrow e + \gamma$?
- First it needs susy
- Tests "large Dirac Yukawa couplings" but not B-L=2
- Can test Seesaw <u>only</u> in GUTs like SUSY SO(10)
- How to probe B-L=2 nature ?What if there is no susy ?
- Nu-less double beta decay (only if inverted or degenerate)

B-Violation and GUT seesaw

 Need more probes of B-L violation to test high scale seesaw

- Main theme of the talk:
- Selection rules in B-violating processes e.g. proton decay and NN-bar oscillation can provide another window to probe seesaw in GUTs
- A new way for GUT scale baryogenesis as <u>an</u> <u>alternative to leptogenesis</u>

Neutrinos and GUTs

- Coupling unification scale ~ 10¹⁶ GeV~ seesaw scale
 →Natural theories for neutrino mass are GUTs
- Provide a unified description of quark and lepton flavor : potential to explain curious features of neutrino masses e.g. $m_{\odot}/m_{\oplus} \sim \theta_C; \theta_{13} \sim \theta_C$
- Possible GUT embeddings of seesaw:
 - -SU(5) with Type I, II
 - -SO(10) with type I and type II

Proton decay seesaw connection

- B-L is a good symmetry of SM;
- Neutrino mass breaks L-part
- Therefore, if there is B-violation in neutrino mass theories, the neutrino mass specific Bviolation must then break B-L symmetry:
- Since GUT-seesaw models naturally lead to proton decay- they are right models for exploring this issue.

Proton decay: Current Status

n→e⁻ K⁺ τ >10³³ yrs.; pp→K⁺ K⁺ τ >1.7x10³²yr S-K (Miura talk, BLV'11)

Selection rules for B-violation

(i) D=6 operators (Weinberg; Wilczek, Zee'79) B-L=0

 $\mathcal{O}_1 = (d^c u^c)^* (Q_i L_j) \epsilon_{ij}, \quad \mathcal{O}_2 = (Q_i Q_j) (u^c e^c)^* \epsilon_{ij}, \quad \mathcal{O}_3 = (Q_i Q_j) (Q_k L_l) \epsilon_{ij} \epsilon_{kl}$

- $\mathcal{O}_4 = (Q_i Q_j) (Q_k L_l) (\vec{\tau} \epsilon)_{ij} \cdot (\vec{\tau} \epsilon)_{kl}, \quad \mathcal{O}_5 = (d^c u^c)^* (u^c e^c)^* .$
- Leads to $p \to e^+ + \pi^0; p \to K^+ \bar{\nu}$ canonical GUTmodes

 $p \rightarrow \overline{\nu} K^+$

 $\Gamma^{-1}(p \to e^+ \pi^0) = (2.0 \times 10^{35} \text{ yr})$

 $\approx [\frac{f^2}{M_{H_c}M_{SUSY}}]^2 (\frac{\alpha}{4\pi})^2 m_p^5 \approx [10^{28} - 10^{32} yr]^{-1}$

 $\times \left(\frac{\alpha_{H}}{0.01 \text{ GeV}^{3}}\right)^{-2} \left(\frac{\alpha_{G}}{1/25}\right)^{-2} \left(\frac{A_{R}}{2.5}\right)^{-2} \left(\frac{M_{X}}{10^{16} \text{ GeV}}\right)^{4}$

B-L=2 B-violation

D=7 : Have B-L=2

(Weinberg; Weldon, Zee'80)

- $ilde{\mathcal{O}}_1 ~=~ (d^c u^c)^* (d^c L_i)^* H_j^* \epsilon_{ij},$
- $\tilde{\mathcal{O}}_3 = (Q_i Q_j) (d^c L_k)^* H_l^* \epsilon_{ij} \epsilon_{kl},$
- $ilde{\mathcal{O}}_{5} \;\; = \;\; (Q_{i}e^{c})(d^{c}d^{c})^{*}H_{i}^{*},$
- $ilde{\mathcal{O}}_7 ~=~ (d^c D_\mu d^c)^* (\overline{L}_i \gamma^\mu Q_i), \qquad ilde{\mathcal{O}}_8 = (d^c D_\mu L_i)^* (\overline{d^c} \gamma^\mu Q_i),$
- $ilde{\mathcal{O}}_9 = (d^c D_\mu d^c)^* (\overline{d^c} \gamma^\mu e^c) \; .$
- $\rightarrow n \rightarrow e^{-}\pi^{+}$

$$\begin{split} \tilde{\mathcal{O}}_2 &= (d^c d^c)^* (u^c L_i)^* H_j^* \epsilon_{ij}, \\ \tilde{\mathcal{O}}_4 &= (Q_i Q_j) (d^c L_k)^* H_l^* (\vec{\tau} \epsilon)_{ij} \cdot (\vec{\tau} \epsilon)_{kl}, \\ \tilde{\mathcal{O}}_6 &= (d^c d^c)^* (d^c L_i)^* H_i, \\ \tilde{\mathcal{O}}_6 &= (d^c D_c L_c)^* (\overline{d^c} \gamma^\mu Q_c) \end{split}$$

- (iii) D=9: $u^{c}d^{c}d^{c}u^{c}d^{c}d^{c}$ B-L=2 $\rightarrow n \bar{n}$
- Same property as seesaw → Are they present in GUT theories for neutrinos?

GUT Possibilities: SU(5)

- Minimal renorm. SU(5) –not realistic due to $m_s = m_\mu; m_d = m_e$: add 45:
- <u>Type I seesaw</u>: 5+45+ N_R with Majorana mass
 - -Why large M_N ?
 - -60 parameters; Need symmetries to predict:

(Altarelli, Feruglio; King, Luhn, Antusch, Spinrath; Chen, Mahanthappa; Smirnov, Schmidt, Hagedorn....)

Type II alternative: SU(5) +45+15

- 45 parameters (Joaquim, Rossi, Hambye, Raidal; Nasri, Yu, RNM,...)

SO(10) SUSY GUT -dream picture for neutrinos

- SO(10) unifies all fermions/family (including RH nu) in single rep. $\begin{pmatrix} u & u & u & \nu \\ d & d & d & e \end{pmatrix}_{LR}$ (Georgi; Fritzsch, Minkowski)
- Scales : $SO(10) \rightarrow MSSM \rightarrow SM$
- Contains all the ingredients for seesaw
- Minimal renormalizable models with 126-Higgs is predictive for nu masses and mixings in terms of quark masses (19 parameters) (Babu,Mohapatra'93)
- (Fukuyama,Okada'02; Bajc, Senjanovic, Vissani'02; Goh, Mohapatra, Ng'03; Babu, Macesanu'05; Aulakh,Bajc,Melfo,Senjanovic, Vissani;Fukuyama,Ilakovic,Meljanac,Kikuchi,Okada; Dutta,Mimura,RNM;Bertolini,Frigerio,Malinsky; Joshipura,Patel'11;Altarelli,Blankenburg'11; Dev, RNM, Severson'11)

Few parameters → predictive for neutrinos; (Goh, RNM, Ng; Babu, Macesanu)

Daya Bay value .15 $heta_{13}\simeq .17$ $m_\odot/m_\oplus\sim\lambda$

Non-SUSY case (Type I)(Joshipura, Patel, '11; Severson'12) $\sin^2 \theta_{13} = .024 \quad \theta_{13} \simeq 0.156$ (Daya Bay-RENO-DC value ~0.15) Testing seesaw via new nucleon decay modes in SO(10)

- Key ingredient of minimal renorm. SO(10) models for nu mass is 126-Higgs field that leads to large Majorana mass for N_R.
- If some of the {126} scalar fields remain at intermediate scale, they can give enhanced B-violation with B-L=2 e.g. n→ e⁻π⁺
 - n n oscillation(Babu, Mohapatra; arXiv:1203:5544; 1206.5701; PRL)
- Can be observable in Hyper-K etc.
- Way to distinguish between SU(5) and SO(10)

Origin of B-L=2 n-decay

Diagram for neutron-decay: d=7 Operator O_2

 d^c

 ω in {10, 126}; ho(3, 2, 1/6) {126} $\omega \rho^* H$ in {126}⁴

 $\tilde{\mathcal{O}}_2 = (Q_i Q_j) (d^c L_i)^* H_j^* \epsilon_{ij} \epsilon_{kl},$

• Leads to $n \to e^- + \pi^+$ decay

 \boldsymbol{U}

B - L = 2

1 A C

Observability $\rightarrow M_{\rho} \sim 10^5 GeV$; is it GUT allowed ?

$$\overrightarrow{\tau_p} \sim 4 \times 10^{33} yrs$$

Non-SUSY vs SUSY SO(10)

- Only as lone operator: d^c d^c u^c Lh_u
- Arises both in {16} and {126} models:
- e.g. in 16 models: $\{16\}^2 \{16\}^2_H, \{16\}^2 \{10\}, \{10\}^2_H \{45\}$
- Distinguishing between SUSY vs non-SUSY n→ e⁻ K⁺ allowed in non-SUSY but not in SUSY

Alternative SO(10) scenario

- Non-SUSY SO(10) does not unify without low scale particles,
- Coupling unif with sub-TeV $\Delta_{ud}(6, 1, \frac{1}{3})$
- + 2 SM triplets;
- Predicts seesaw scale near M_U~10¹⁶ GeV;
- Δ_{ud} mass ~1 TeV GeV

(Babu, Mohapatra, arXiv:1206.5701, PLB; Patel, Sharma)

• B-L violation ightarrow GUT scale coupling $v_{BL}\Delta_{ud}\Delta_{ud}\Delta_{dd}$

Scale sensitivity-1-loop

Coupling unification is sensitive to sextet mass 1 TeV 2 TeV 10 TeV

Current bounds: $\tau_{n\bar{n}} \geq 2 \times 10^8 s$. ILL; SK, SNO
Observable with available reactor fluxes

Given this limit on $T_{n\bar{n}}$ why are nuclei stable ?

• Oscillation inside nuclei are suppressed by the factor $\left(\frac{\delta m_{n\bar{n}}}{V_n - V_{\bar{n}}}\right)^2 \le 10^{-62}$

More detailed calculation: (Dover, Gal, Richard)

$$\tau_{Nuc} = R \tau_{n\bar{n}}^2 \ R = 0.3 \times 10^{23} \, \text{sec}^{-1} \to \tau_{Nuc} \ge 10^{32} \, \text{yrs}$$

• Super-K search $au_{n\overline{n}}$ > 2.44x10⁸ sec.

Possible N-Nbar search At Fermilab Project X

- Dedicated spallation target optimized for cold neutron production
- "Background free" detector:
 one event = discovery
- Expected sensitivity > 2,000 ILL units

$$P_{n-\bar{n}} \approx \left(\frac{t}{\tau_{n-\bar{n}}}\right)^2$$

Color sextets Δ_{qq} **@LHC**

TeV scaleColor sextets Can be searched at LHC: (I) **Single production**: $ud \rightarrow \Delta_{ud} \rightarrow tj$

xsection calculated in (RNM, Okada, Yu' 07;) resonance peaks above SM background- decay to tj; $\sigma(tt) > \sigma(tt)$

- **Important LHC signature:**
- (II) Drell-Yan pair production
- Leads to *tjtj* final states: LHC reach < TeV</p>

 $q\bar{q} \rightarrow G \rightarrow \Delta_{ud} \Delta_{ud}$

(Chen, Rentala, Wang; Berger, Cao, Chen, Shaughnessy, Zhang' 10; Han, Lewis' 09)

Seesaw in SU(5) and B-L nucleon decays

- SU(5) with type I seesaw:
- Recall: exotic Higgs couplings for BLV decay: $\omega \rho^* h; \eta^* \rho h; \rho^* \Phi h; \chi^* \eta h$
- But ρ and η absent in SU(5) nu models with type I or III seesaw. \rightarrow hence no B-L p-decays
- Way to distinguish SU(5) vs SO(10)
- SU(5) with type II seesaw \rightarrow {15}-field
- Leads to observable BVL n-decay but not observable nn-bar

GUT scale baryogenesis: why SU(5) failed

- In SU(5) dominant B-violation conserves B-L;
 Baryon asym, \Delta B = \Delta(B L) + \Delta(B + L)
- B-L conservation $\rightarrow \Delta B = \Delta (B + L)$
- But sphalerons violate B+L and therefore erase $\Delta(B+L)$ and hence no asymmetry !
- Things change with the inclusion of {15} because of tiny B-L breaking

B-L=2 Proton decay and baryogenesis in SO(10) In our case, p-decay violates B-L Decays of $\omega \rightarrow \rho$ H can produce baryon asym. HGraphs break B-L;

Sphalerons cannot wash B-L hence leave $\Delta B \neq 0$

Asymmetry related to neutrino mass

 Asymmetry related to ω-couplings that are couplings of {10} and {126} and related to neutrino masses:

$$\epsilon_{B-L}^{(c)} = \frac{1}{\pi} \operatorname{Im} \left[\frac{\operatorname{Tr}\{Y_{d^c \nu^c \omega} \, Y_{d^c L \rho}^{\dagger} \, Y_{\nu^c L H} \, M_{\nu^c} \, F_2(M_{\nu^c})\} \, \lambda v_R}{|\lambda v_R|^2} \right] \operatorname{Br},$$

For the light color sextet case: leptogeneis works.

Baryogenesis in the color sextet model

- N-N-bar interactions go out of eq. around 10¹⁵ GeV;
- Two sources of matter-anti-matter asymmetry:
 (a) Leptogenesis
 (b) B-L violating GUT scale by Δ_{dd}(ω) decay

Summary

- Baryon non-conservation are generic to GUTs !
- Observation of B-L conserving modes does not say anything about GUTs for neutrino masses
- Proton decay modes bearing direct seesaw signature (i.e. B-L=2) are $n\to e^-\pi^+$ and
 - $n \overline{n}$ oscillation !!
- They can be observable in realistic SO(10) models for neutrino masses !!
- Lead to revival of GUT scale baryogenesis

Coupling unification with TeV LR inverse seesaw

Running plot: Inverse seesaw with TeV WR and Z'

new appeal of inverse seesaw

p-decay OK→ squark mass>TeV

•
$$SO(10) \xrightarrow{M_G} 3_c 2_L 2_R 1_{B-L} \xrightarrow{M_R} 3_c 2_L 1_Y(\text{MSSM}) \xrightarrow{M_{\text{SUSY}}} 3_c 2_L 1_Y(\text{SM}) \xrightarrow{M_Z} 3_c 1_Q$$

(Dev, RNM, 09; PRD; arXiv: 1003:6102);

 $M_U \cong 10^{16} GeV; M_{BL,R} \cong TeV$

Current best fit values

• Schwetz, Tortola, Valle :1108

Curious feature!

 $\frac{\Delta m_{\odot}^2}{\Delta m_{\odot}^2} \sim \theta_{Cabibbo}^2$

	best fit $\pm 1\sigma$	3σ range	prec@3 σ	
$rac{\Delta m^2_{21}}{10^{-5} { m eV}^2}$	$7.59_{-0.18}^{+0.20}$	7.09–8.19	7%	KamLAND
$\frac{\Delta m_{31}^2}{10^{-3} { m eV}^2}$	${}^{2.50^{+0.09}_{-0.16}}_{-(2.40^{+0.08}_{-0.09})}$	2.14 - 2.76 - (2.13 - 2.67)	12%	MINOS
$\sin^2 \theta_{12}$	$0.312\substack{+0.017\\-0.015}$	0.27–0.36	14%	SNO
$\sin^2 \theta_{23}$	$\begin{array}{c} 0.52\substack{+0.06\\-0.07}\\ 0.52\pm0.06\end{array}$	0.39–0.64	24%	SuperK
$\sin^2 heta_{13}$	$\begin{array}{c} 0.013\substack{+0.007\\-0.005}\\ 0.016\substack{+0.008\\-0.006} \end{array}$	0.001–0.035 0.001–0.039	120%	T2K + globa
δ	$egin{pmatrix} (-0.61^{+0.75}_{-0.65}) \ \pi \ (-0.41^{+0.65}_{-0.70}) \ \pi \end{split}$	$0-2\pi$	_	

upper: normal hierarchy, lower: inverted hierarchy

General SM multiplets responsible for B-L decays

Multiplets: h(1,2,+1/2), h
(1,2,-1/2), w(3,1,-1/3), w^c(3,1,1/3), $\rho(3,2,1/6)$, p(3,2,-1/6), $\eta(3,1,2/3)$, $\overline{\eta}(3,1,-2/3)$, $\Phi(3,3,-1/3)$, $\overline{\Phi}(3,3,1/3)$, $\chi(3,2,7/6)$, $\overline{\chi}(3,2,-7/6)$, $\delta(3,1,-4/3)$, $\overline{\delta}(\overline{3},1,4/3)$.
Couplings: $\omega \rho^* h; \eta^* \rho h; \rho^* \Phi h; \chi^* \eta h$ Present in (126)⁴ coupling in SO(10)

$$\mathcal{L}(16_{i}16_{j}10_{H}) = h_{ij} \left[(u_{i}^{c}Q_{j} + \nu_{i}^{c}L_{j})h - (d_{i}^{c}Q_{j} + e_{i}^{c}L_{j})\overline{h} + \left(\frac{\epsilon}{2}Q_{i}Q_{j} + u_{i}^{c}e_{j}^{c} - d_{i}^{c}\nu_{j}^{c}\right)\omega + \left(\epsilon u_{i}^{c}d_{j}^{c} + Q_{i}L_{j}\right)\omega^{c} \right],$$
(6)

$$\mathcal{L}(16_{i}16_{j}\overline{126}_{H}) = f_{ij} \left[(u_{i}^{c}Q_{j} - 3\nu_{i}^{c}L_{j})h - (d_{i}^{c}Q_{j} - 3e_{i}^{c}L_{j})\overline{h} \right. \\ \left. + \sqrt{3}i \left(\frac{\epsilon}{2}Q_{i}Q_{j} - u_{i}^{c}e_{j}^{c} + \nu_{i}^{c}d_{j}^{c} \right) \omega_{1} + \sqrt{3}i(Q_{i}L_{j} - \epsilon u_{i}^{c}d_{j}^{c}) \omega_{1}^{c} \right. \\ \left. + \sqrt{6}(d_{i}^{c}\nu_{j}^{c} + u_{i}^{c}e_{j}^{c}) \omega_{2} + 2\sqrt{3}i d_{i}^{c}L_{j} \rho - 2\sqrt{3}i \nu_{i}^{c}Q_{j} \overline{\rho} + 2\sqrt{3}u_{i}^{c}\nu_{j}^{c} \eta \right. \\ \left. - 2\sqrt{3}i u_{i}^{c}L_{j} \chi + 2\sqrt{3}i e_{i}^{c}Q_{j} \overline{\chi} - 2\sqrt{3}d_{i}^{c}e_{j}^{c}\delta + \sqrt{6}i Q_{i}L_{j} \overline{\Phi} + \ldots \right], (7)$$

Flavor puzzle in particle physics

- quark flavor puzzle: hierarchical pattern
- Neutrino mixngs: $\theta_{23} \sim 45^{0}$; large $\theta_{12} \sim 33^{0}$
- +Recent θ_{13} results:
- T2K: $0.03 \le \sin^2(2\theta_{13}) \le 0.28$
- MINOS: $0.00 \le \sin^2(2\theta_{13}) \le 0.12$
- Double Chooz: $\sin^2(2\theta_{13}) = 0.085 \pm 0.051$
- Daya Bay: $\sin^2 2\theta_{13} = 0.092 \pm 0.016 \pm 0.005$
- RENO expt. $\sin^2 2\theta_{13} = 0.103 \pm 0.013 \pm 0.011$
- How to have a unified understanding of flavor ?

Type II dominance and mixings

II seesaw
$$M_{\nu} \simeq c(M_d - M_l)$$

• GUT relation $m_b \approx m_{\tau} + \lambda^2 \rightarrow \lambda \equiv \theta_C = 0.22$

 $M_{\nu} \propto m_{b} \begin{pmatrix} \lambda^{5} & \lambda^{3} & \lambda^{3} \\ \lambda^{3} & \lambda^{2} & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1 \end{pmatrix} - m_{\tau} \begin{pmatrix} \lambda^{6} & \sim \lambda^{3} \\ \lambda^{3} & -3\lambda^{2} & \lambda^{2} \\ \lambda^{2} & 1 \end{pmatrix} \sim \lambda^{2} \begin{pmatrix} \lambda^{2} & \lambda^{2} & \lambda \\ \lambda^{2} & 1+\lambda & 1 \\ \lambda & 1 & 1 \end{pmatrix}$ (Bajc, Senjanovic, Vissani' 02)

Predicts $heta_{13} \simeq .17$; $m_\odot/m_\oplus \sim \lambda$ (Goh, RNM, Ng'03)
 (Daya Bay central value~.15)

SO(10) with Type I+II Why?

- How well does the GUT relation $m_b \approx m_{\tau} + \lambda^2$ work ?
- Quite well for susy SO(10) with large tan $\beta \sim 50$; within 2 sigma for tan $\beta = 10$
- Large $\tan \beta$ values have problem with p-decay
- Non-Susy no $m_b \approx m_\tau$
- More general analysis with I+II+CPV (Babu, Macesanu; Bertolini, Malinsky, Schwetz;'05)
- Large θ_{13} generic of 126 models with susy.