

Michael Ratz

BENE 2012, Trieste, September 18, 2012

Based on:

- W. Buchmüller, K. Hamaguchi, O. Lebedev, S. Ramos–Sánchez, M.R., Phys. Rev. Lett. 99, 021601 (2007)
- O. Lebedev, H.P. Nilles, S. Raby, S. Ramos-Sánchez, M.R., P. Vaudrevange, A. Wingerter, Phys. Rev. D77, 046013 (2008)
- H.M. Lee, S. Raby, G. Ross, M.R., R. Schieren, K. Schmidt–Hoberg & P. Vaudrevange, Phys. Lett. **B** 694, 491-495 (2011)
- R. Kappl, B. Petersen, S. Raby, M.R., R. Schieren & P. Vaudrevange, Nucl. Phys. B 847, 325-349 (2011)
- M.-C. Chen, M.R., C. Staudt & P. Vaudrevange, arXiv:1206.5375

Neutrinos from the top-down:

- what is a neutrino in a string model?
- how to distinguish neutrinos from other SM singlets (moduli etc.)

Neutrinos from the top-down:

- what is a neutrino in a string model?
- how to distinguish neutrinos from other SM singlets (moduli etc.)
- Neutrinos in explicit globally consistent string compactifications

Neutrinos from the top-down:

- what is a neutrino in a string model?
- how to distinguish neutrinos from other SM singlets (moduli etc.)
- Neutrinos in explicit globally consistent string compactifications

Summary

Scales in

unified

model building

Gauge coupling unification in the MSSM

 Running couplings in the (minimal) supersymmetric standard model (MSSM)

Gauge coupling unification in the MSSM

 Running couplings in the (minimal) supersymmetric standard model (MSSM)

There is only one coupling, we observe different coupling strengths only because of quantum effects

Gauge coupling unification in the MSSM

 Running couplings in the (minimal) supersymmetric standard model (MSSM)

There is only one coupling, we observe different coupling strengths only because of quantum effects

- \ll allowed coupling: 126 16 16 \rightarrow (SM singlets) $\bar{\nu} \bar{\nu} + \dots$
- \blacktriangleright Higgs VEV: $\langle \overline{126} \rangle \sim$ mass term $M \bar{\nu} \bar{\nu}$
- $<\!\!\!>$ expect: $\left< \overline{\mathbf{126}} \right> \sim M_{\mathrm{GUT}} \simeq 2 \cdot 10^{16}\,\mathrm{GeV}$

- \ll allowed coupling: 126 16 16 \rightarrow (SM singlets) $\bar{\nu} \bar{\nu} + \dots$
- Higgs VEV: $\langle \overline{126} \rangle \sim$ mass term $M \bar{\nu} \bar{\nu}$

- \ll allowed coupling: 126 16 16 \rightarrow (SM singlets) $\bar{\nu} \bar{\nu} + \dots$
- Higgs VEV: $\langle \overline{126} \rangle \sim$ mass term $M \bar{\nu} \bar{\nu}$
- \ll allowed coupling: **101616** \rightarrow $H_u L \bar{\nu} + \dots$
- \Rightarrow see-saw couplings: $\mathscr{W}_{\text{see-saw}} = y_v H_u L \bar{v} + M \bar{v} \bar{v}$

Minkowski (1977) Gell-Mann et al. (1979) Yanagida (1979)

- \ll allowed coupling: 126 16 16 \rightarrow (SM singlets) $\bar{\nu} \bar{\nu} + \dots$
- \blacktriangleright Higgs VEV: $\langle \overline{126} \rangle \sim$ mass term $M \bar{\nu} \bar{\nu}$
- \ll allowed coupling: **101616** \rightarrow $H_u L \bar{\nu} + \dots$
- \Rightarrow see-saw couplings: $\mathscr{W}_{\text{see-saw}} = y_v H_u L \bar{v} + M \bar{v} \bar{v}$
- ➡ see-saw mass matrix

$$\mathscr{W}_{\text{see-saw}} \xrightarrow{H_u \to v} (v, \bar{v}) \begin{pmatrix} 0 & y_v v \\ y_v v & M \end{pmatrix} \begin{pmatrix} v \\ \bar{v} \end{pmatrix} \simeq \frac{y_v^2 v^2}{M} v v + M \bar{v} \bar{v}$$

- allowed coupling: $\overline{126}$ 16 16 → (SM singlets) $\bar{\nu} \bar{\nu} + ...$
- \blacktriangleright Higgs VEV: $\langle \overline{126} \rangle \sim$ mass term $M \bar{\nu} \bar{\nu}$
- \ll allowed coupling: **101616** \rightarrow $H_u L \bar{\nu} + \dots$
- \Rightarrow see-saw couplings: $\mathscr{W}_{\text{see-saw}} = y_v H_u L \bar{v} + M \bar{v} \bar{v}$
- ➡ see-saw mass matrix

$$\mathscr{W}_{\text{see-saw}} \xrightarrow{H_u \to v} (v, \bar{v}) \begin{pmatrix} 0 & y_v v \\ y_v v & M \end{pmatrix} \begin{pmatrix} v \\ \bar{v} \end{pmatrix} \simeq \frac{y_v^2 v^2}{M} v v + M \bar{v} \bar{v}$$

→ expectation: $m_{\nu} \sim (100 \, {\rm GeV})^2 / 10^{16} \, {\rm GeV} \sim 10^{-3} \, {\rm eV}$

Neutrino masses in Nature: oscillation experiments

strong experimental evidence for neutrino oscillation on astro-physical scales

Neutrino masses in Nature: oscillation experiments

strong experimental evidence for neutrino oscillation on astro-physical scales

$$<\!\!>$$
 experiments: $\sqrt{\Delta m^2_{
m atm}} \simeq 0.04\,{
m eV}$ & $\sqrt{\Delta m^2_{
m sol}} \simeq 0.008\,{
m eV}$

Neutrino masses in Nature: oscillation experiments

strong experimental evidence for neutrino oscillation on astro-physical scales

$$<\!\!\!>$$
 experiments: $\sqrt{\Delta m^2_{
m atm}}\simeq 0.04\,{
m eV}$ & $\sqrt{\Delta m^2_{
m sol}}\simeq 0.008\,{
m eV}$

- ➡ neutrino masses hint at
 - see-saw
 - GUT structures
- Factor 10–100 discrepancy (... would need $M \sim \text{few} \cdot 10^{14} \, \text{GeV}$)

➡ 4D Newton's constant and gauge coupling

$$G_{\rm N} = rac{{{
m e}^{2\phi } \left({lpha '}
ight)^4 }}{{64\pi V }} \ \ {
m and} \ \ rac{{lpha _{\rm GUT} }}{{
m 6GUT}} = rac{{{
m e}^{2\phi } \left({lpha '}
ight)^3 }}{{16\pi V }}$$

➡ 4D Newton's constant and gauge coupling

$$G_{\rm N} = \frac{\mathrm{e}^{2\phi} \, (lpha')^4}{64\pi \, V}$$
 and $\alpha_{\rm GUT} = \frac{\mathrm{e}^{2\phi} \, (lpha')^3}{16\pi \, V}$

➡ Relation between Newton's constant and gauge coupling

$$G_{\rm N} = rac{lpha_{
m GUT} \, lpha'}{4} = rac{lpha_{
m GUT}}{8\pi M_{
m string}^2} \simeq rac{1}{(24 \, M_{
m string})^2} \stackrel{!}{=} rac{1}{M_{
m P}^2}$$

➡ 4D Newton's constant and gauge coupling

$$G_{\rm N} = rac{{{
m e}}^{2\phi} \left(lpha
ight)^4}{64 \pi V}$$
 and $lpha_{
m GUT} = rac{{{
m e}}^{2\phi} \left(lpha
ight)^3}{16 \pi V}$

Relation between Newton's constant and gauge coupling

$$G_{\rm N} = rac{lpha_{
m GUT} \, lpha'}{4} = rac{lpha_{
m GUT}}{8\pi M_{
m string}^2} \simeq rac{1}{(24 \, M_{
m string})^2} \stackrel{!}{=} rac{1}{M_{
m F}^2}$$

→ Well-known problem: using $\alpha_{GUT} = g_{GUT}^2 / 4\pi \simeq 1/25$

 $M_{
m string} \simeq 9 \cdot 10^{17}\,{
m GeV}$ and $M_{
m GUT} \simeq (2-3) \cdot 10^{16}\,{
m GeV}$

$$\sim \frac{M_{\rm string}}{M_{
m GUT}} \sim 30...40$$

➡ 4D Newton's constant and gauge coupling

$$G_{\rm N} = rac{{{
m e}}^{2\phi} \left(lpha
ight)^4}{64 \pi V}$$
 and $lpha_{
m GUT} = rac{{{
m e}}^{2\phi} \left(lpha
ight)^3}{16 \pi V}$

Relation between Newton's constant and gauge coupling

$$G_{\rm N} = rac{lpha_{
m GUT} \, lpha'}{4} = rac{lpha_{
m GUT}}{8\pi M_{
m string}^2} \simeq rac{1}{(24 \, M_{
m string})^2} \stackrel{!}{=} rac{1}{M_{
m F}^2}$$

→ Well-known problem: using $\alpha_{GUT} = g_{GUT}^2 / 4\pi \simeq 1/25$

 $M_{
m string} \simeq 9 \cdot 10^{17}\,{
m GeV}$ and $M_{
m GUT} \simeq (2-3) \cdot 10^{16}\,{
m GeV}$

$$\sim \frac{M_{\rm string}}{M_{
m GUT}} \sim 30...40$$

Gauge unification: GUT vs. string scale

cf. Dienes (1997)

1 Planck scale ('fake scale') $M_{\rm P} \sim 2.4 \cdot 10^{18} \, {\rm GeV}$

- 0 Planck scale ('fake scale') $M_{\rm P} \sim 2.4 \cdot 10^{18} \, {\rm GeV}$
- 0 (Heterotic) string scale

 $M_{
m string} \sim 8 \cdot 10^{17} \, {
m GeV}$

- \bullet Planck scale ('fake scale') $M_{
 m P}\sim 2.4\cdot 10^{18}\,{
 m GeV}$
- **2** (Heterotic) string scale
- **3** GUT scale

 $M_{
m P} \sim 2.4 \cdot 10^{10} \, {
m GeV}$ $M_{
m string} \sim 8 \cdot 10^{17} \, {
m GeV}$ $M_{
m GUT} \sim {
m few} \cdot 10^{16} \, {
m GeV}$

- Planck scale (`fake scale')
- **2** (Heterotic) string scale
- **3** GUT scale
- 4 See-saw scale

 $M_{
m P}\sim 2.4\cdot 10^{18}\,{
m GeV}$ $M_{
m string}\sim 8\cdot 10^{17}\,{
m GeV}$ $M_{
m GUT}\sim {
m few}\cdot 10^{16}\,{
m GeV}$ $M_{
m see-saw}\sim {
m few}\cdot 10^{14}\,{
m GeV}$

- 1 Planck scale ('fake scale') $M_{\rm P} \sim 2.4 \cdot 10^{18} \, {\rm GeV}$
- **2** (Heterotic) string scale
- 3 GUT scale
- 4 See-saw scale

 $M_{
m string} \sim 8 \cdot 10^{17} \, {
m GeV}$

 $M_{
m GUT} \sim {
m few} \cdot 10^{16}\,{
m GeV}$

 $M_{
m see-saw} \sim {
m few} \cdot 10^{14}\,{
m GeV}$

In the second led in anisotropic compactifications:

 $M_{\rm string} \sim 8 \cdot 10^{17} \, {
m GeV}$

Scales in unified model building

- $\ \ \, {\rm Planck\ scale\ (`fake\ scale')} \quad M_{\rm P}\sim 2.4\cdot 10^{18}\,{\rm GeV}$
- 2 (Heterotic) string scale
- ${f 3}$ GUT scale $M_{
 m GUT} \sim {
 m few} \cdot 10^{16} \, {
 m GeV}$
- ${f \Theta}$ See-saw scale $M_{
 m see-saw} \sim {
 m few} \cdot 10^{14}\,{
 m GeV}$

In the second led in anisotropic compactifications:

 $R_{
m large} \sim 1/M_{
m GUT}$ & $R_{
m small} \sim 1/M_{
m string}$

Remainder of this talk:
 M_{see-saw} vs. M_{GUT} in string models

Neutrinos in string models

Neutrinos in string models \square Matter parity from $U(1)_{B-L}$

Matter parity or effective R parity from U(1)_{B-L}

${\mathscr T} U(1)_{B\!-\!L} \subset SO(10)$ yields standard charges for matter

 $\begin{array}{rcl} \mathrm{SO}(10) & \to & \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{\mathrm{Y}} \times \mathrm{U}(1)_{B-L} \\ & \mathbf{16} & \to & (\mathbf{3}, \mathbf{2})_{1/6, 1/3} \oplus (\overline{\mathbf{3}}, \mathbf{1})_{-2/3, -1/3} \oplus (\overline{\mathbf{3}}, \mathbf{1})_{1/3, -1/3} \\ & \oplus (\mathbf{1}, \mathbf{1})_{1, 1} \oplus (\mathbf{1}, \mathbf{2})_{-1/2, -1} \oplus (\mathbf{1}, \mathbf{1})_{0, 1} \end{array}$

Matter parity or effective R parity from U(1)_{B-L}

 ${}^{{}_{\operatorname{\mathcal{S}}}}$ $U(1)_{{}_{\operatorname{B\!-\!L}}}\subset SO(10)$ yields standard charges for matter

- $\begin{array}{rcl} \mathrm{SO}(10) & \to & \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{\mathrm{Y}} \times \mathrm{U}(1)_{B-L} \\ & \mathbf{16} & \to & (\mathbf{3}, \mathbf{2})_{1/6, 1/3} \oplus (\overline{\mathbf{3}}, \mathbf{1})_{-2/3, -1/3} \oplus (\overline{\mathbf{3}}, \mathbf{1})_{1/3, -1/3} \\ & \oplus (\mathbf{1}, \mathbf{1})_{1, 1} \oplus (\mathbf{1}, \mathbf{2})_{-1/2, -1} \oplus (\mathbf{1}, \mathbf{1})_{0, 1} \end{array}$
- \sim How to define $\underline{B} \underline{L} \subset E_8 \times E_8$?

Buchmüller et al. (2007a) ; Lebedev et al. (2007)

q_{B-L}(members of 16-plet) [!]= standard
 spectrum [!]= 3 generations + vector-like w.r.t. *G_{SM}* × U(1)_{*B-L*}

Matter parity or effective R parity from U(1)_{B-L}

 ${}^{{}_{\operatorname{\mathcal{S}}}}$ $U(1)_{{}_{\operatorname{B\!-\!L}}}\subset SO(10)$ yields standard charges for matter

- $\begin{array}{rcl} \mathrm{SO}(10) & \to & \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{\mathrm{Y}} \times \mathrm{U}(1)_{B-L} \\ & \mathbf{16} & \to & (\mathbf{3}, \mathbf{2})_{1/6, 1/3} \oplus (\overline{\mathbf{3}}, \mathbf{1})_{-2/3, -1/3} \oplus (\overline{\mathbf{3}}, \mathbf{1})_{1/3, -1/3} \\ & \oplus (\mathbf{1}, \mathbf{1})_{1, 1} \oplus (\mathbf{1}, \mathbf{2})_{-1/2, -1} \oplus (\mathbf{1}, \mathbf{1})_{0, 1} \end{array}$
- \sim How to define $\underline{B} \underline{L} \subset E_8 \times E_8$?

Buchmüller et al. (2007a) ; Lebedev et al. (2007)

q_{B-L}(members of 16-plet) [!]/₌ standard
 spectrum [!]/₌ 3 generations + vector-like w.r.t. *G_{SM}* × U(1)_{B-L}

Neutrinos in string models \square Neutrinos and \mathbb{Z}_4^R

Unique \mathbb{Z}_4^R symmetry for the MSSM

Lee et al. (2011) ; Chen et al. (2012)

rightarrow A simple anomaly-free \mathbb{Z}_4^R symmetry can

- provide a solution to the μ problem
- suppress proton decay operators

Neutrinos in string models \square Neutrinos and \mathbb{Z}_{i}^{R}

Unique \mathbb{Z}_4^R symmetry for the MSSM

Lee et al. (2011) ; Chen et al. (2012)

rightarrow A simple anomaly-free \mathbb{Z}_4^R symmetry can

- provide a solution to the μ problem
- suppress proton decay operators

universal anomaly coefficients universal charges for matter forbid μ @ tree-level allow Yukawa couplings allow Weinberg operator

 \sim unique \mathbb{Z}_4^R

Neutrinos in strina models Neutrinos and \mathbb{Z}^R

Unique \mathbb{Z}_4^R symmetry for the MSSM

Lee et al. (2011) : Chen et al. (2012)

rightarrow A simple anomaly-free \mathbb{Z}_4^R symmetry can

- provide a solution to the μ problem
- suppress proton decay operators

universal anomaly coefficients $\begin{array}{c|c} \text{universal charges for matter} \\ \text{forbid } \mu @ \text{tree-level} \\ \text{allow Yukawa couplings} \end{array} \right\} \sim \text{unique } \mathbb{Z}_4^R$ allow Weinberg operator

 $\mathbb{Z}_4^R \sim \begin{cases} \dim. 4 \text{ proton decay operators completely forbidden} \\ \dim. 5 \text{ proton decay operators highly suppressed} \\ \mu \text{ appears non-perturbatively} \end{cases}$
$\ \mathbb{Z}_4^R: \left\{ \begin{array}{ll} \text{matter} & : \quad R \text{ charge } 1 \\ \text{Higgs} & : \quad R \text{ charge } 0 \end{array} \right.$

→ Neutrinos : R charge 1

 $\ \ \, \oslash \ \ \, \mathbb{Z}_4^R \colon \left\{ \begin{array}{ll} \text{matter} & : & R \text{ charge } 1 \\ \text{Higgs} & : & R \text{ charge } 0 \end{array} \right.$

➡ Neutrinos : R charge 1

Kappl et al. (2011)

 $\mathbb{Z}_4^R: \left\{ \begin{array}{ll} \text{matter} & : \quad R \text{ charge } 1 \\ \text{Higgs} & : \quad R \text{ charge } 0 \end{array} \right.$

➡ Neutrinos : R charge 1

Kappl et al. (2011)

- However, discuss an older example

An explicit example

Lebedev et al. (2007)

An explicit example

Model definition and spectrum

Lebedev et al. (2007)

Input = geometry, shift & Wilson lines

🗢 Gauge group

An explicit example

 $\subset {\rm SU}(5) \subset {\rm SO}(10)$

 $G = [\widetilde{\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_Y} \times \mathbf{U}(1)_{B-L}] \times [\mathrm{SU}(4) \times \mathrm{SU}(2)'] \times \mathrm{U}(1)^7$

 $\begin{array}{rcl} \hline \textbf{GUT normalization} & & & & & \\ \hline \textbf{gauge coupling unification} \\ \hline \textbf{t}_{Y} & = & \left(0,0,0,\frac{1}{2},\frac{1}{2},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}\right) (0,0,0,0,0,0,0,0,0) \\ \hline \textbf{t}_{B-L} & = & \left(0,0,0,0,0,-\frac{2}{3},-\frac{2}{3},-\frac{2}{3}\right) (0,0,0,0,0,2,0,0) \\ \hline \textbf{normalization not as in SO(10)} \end{array}$

An explicit example

Model definition and spectrum

Lebedev et al. (2007)

Input = geometry, shift & Wilson lines

🗢 Gauge group

An explicit example

 $\subset {\rm SU}(5) \subset {\rm SO}(10)$

 $G = [\widetilde{\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_Y} \times \mathbf{U}(1)_{B-L}] \times [\mathrm{SU}(4) \times \mathrm{SU}(2)'] \times \mathrm{U}(1)^7$

Spectrum

spectrum = $3 \times \text{generation} + \text{vector-like w.r.t.} G_{\text{SM}} \times U(1)_{BL}$

Model definition and spectrum

#	irrep	label	#	irrep	label
3	$(3,2;1,1)_{(1/6,1/3)}$	q_i	3	$(\overline{3},1;1,1)_{(-2/3-1/3)}$	$ar{u}_i$
3	$(1,1;1,1)_{(1,1)}$	\bar{e}_i	8	$(1, 2; 1, 1)_{(0,*)}$	m_i
<mark>3</mark> + 1	$\left(\overline{3},1;1,1\right)_{(1/3-1/3)}$	$ar{m{d}}_i$	1	$(3,1;1,1)_{(-1/3,1/3)}$	d_i
<mark>3</mark> + 1	$(1, 2; 1, 1)_{(-1/2, -1)}$	ℓ_i	1	$(1,2;1,1)_{(1/2,1)}$	$\bar{\ell}_i$
1	$(1, 2; 1, 1)_{(-1/2, 0)}$	ϕ_i	1	$(1,2;1,1)_{(1/2,0)}$	$ar{\phi}_i$
6	$(\overline{3},1;1,1)_{(1/3,2/3)}$	$\bar{\delta}_i$	6	$(3,1;1,1)_{(-1/3,-2/3)}$	δ_i
14	$(1,1;1,1)_{(1/2,*)}$	s_i^+	14	$(1,1;1,1)_{(-1/2,*)}$	s_i^-
16	$({f 1},{f 1};{f 1},{f 1})_{(0,1)}$	$ar{n}_i$	13	$(1,1;1,1)_{(0,-1)}$	n_i
5	$(1,1;1,2)_{(0,1)}$	$\bar{\eta}_i$	5	$(1,1;1,2)_{(0,-1)}$	η_i
10	$(1,1;1,2)_{(0,0)}$	h_i	2	$(1,2;1,2)_{(0,0)}$	y_i
6	$(1, 1; 4, 1)_{(0, *)}$	f_i	6	$\left(1,1;\overline{4},1 ight)_{\left(0,st ight)}$	\bar{f}_i
2	$(1,1;4,1)_{(-1/2,-1)}$	f_i^-	2	$(1,1;\overline{4},1)_{(1/2,1)}$	\bar{f}_i^+
4	$({f 1},{f 1};{f 1},{f 1})_{(0,\pm 2)}$	Xi	32	$(1,1;1,1)_{(0,0)}$	s_i^0
2	$\left(\overline{3},1;1,1 ight)_{(-1/6,2/3)}$	\bar{v}_i	2	$(3,1;1,1)_{(1/6,-2/3)}$	v_i

An explicit example

Model definition and spectrum

#	irrep	label		#	irrep	label
3	$(3,2;1,1)_{(1/6,1/3)}$	q_i		3	$\left(\overline{3},1;1,1\right)_{(-2/3-1/3)}$	$ar{u}_i$
3	$(1, 1; 1, 1)_{(1,1)}$	\bar{e}_i		8	$(1,2;1,1)_{(0,*)}$	m_i
3 + 1	$\left(\overline{3},1;1,1\right)_{(1/3-1/3)}$	$ar{m{d}}_i$		1	$(3,1;1,1)_{(-1/3,1/3)}$	d_i
<mark>3</mark> + 1	$(1, 2; 1, 1)_{(-1/2, -1)}$	ℓ_i		1	$(1,2;1,1)_{(1/2,1)}$	$\bar{\ell}_i$
1	$(1,2;1,1)_{(-1/2,0)}$	ϕ_i		1	$(1,2;1,1)_{(1/2,0)}$	$ar{\phi}_i$
6	$(\overline{3},1;1,1)_{(1/3,2/3)}$	$\bar{\delta}_i$		6	$(3,1;1,1)_{(-1/3,-2/3)}$	δ_i
14	$(1,1;1,1)_{(1/2,*)}$	s_i^+		14	$(1,1;1,1)_{(-1/2,*)}$	s_i^-
16	$(1,1;1,1)_{(0,1)}$	$ar{n}_i$		13	$(1,1;1,1)_{(0,-1)}$	n_i
5	$(1,1;1,2)_{(0,1)}$	$ar\eta_i$		5	$(1,1;1,2)_{(0,-1)}$	η_i
10 6	spectrum =	= 3 ge	en	ero	itions + vecto	or-like
2	$(1,1;4,1)_{(-1/2,-1)}$	f_i^-		2	$(1,1;\mathbf{\overline{4}},1)_{(1/2,1)}$	\bar{f}_i^+
4	$({\bf 1},{\bf 1};{\bf 1},{\bf 1})_{(0,\pm 2)}$	Xi		32	$(1,1;1,1)_{(0,0)}$	s_i^0
2	$\left(\overline{3},1;1,1 ight)_{(-1/6,2/3)}$	\bar{v}_i		2	$(3,1;1,1)_{(1/6,-2/3)}$	v_i

An explicit example

Model definition and spectrum

#	irrep	label		#	irrep	label
3	$(3,2;1,1)_{(1/6,1/3)}$	q_i		3	$(\overline{3},1;1,1)_{(-2/3-1/3)}$	$ar{u}_i$
3	$(1, 1; 1, 1)_{(1,1)}$	\bar{e}_i		8	$(1, 2; 1, 1)_{(0,*)}$	m_i
3+1	$(\overline{3}, 1; 1, 1)_{(1/3 - 1/3)}$	$ar{d}_i$		1	$(3,1;1,1)_{(-1/3,1/3)}$	d_i
3+1	$(1,2;1,1)_{(-1/2,-1)}$	ℓ_i		1	$(1,2;1,1)_{(1/2,1)}$	$\bar{\ell}_i$
1	$(1, 2; 1, 1)_{(-1/2,0)}$	ϕ_i		1	$(1,2;1,1)_{(1/2,0)}$	$ar{\phi}_i$
6	$(\bar{3}, 1; 1, 1)$	$ar{\delta}_i$		6	$(3,1;1,1)_{(-1/3,-2/3)}$	δ_i
14	$(1,1;1,1)_{(1/2,n)}$	s_i^+		14	$(1,1;1,1)_{(-1/2,*)}$	s_i^-
16	$(1,1;1,1)_{(0,1)}$	Tā i		13	$(1,1;1,1)_{(0,-1)}$	n_i
5	$(1,1;1,2)_{(0,1)}$	Ť.		5	$(1,1;1,2)_{(0,-1)}$	η_i
10 6	spectrum =	= 3 ge	n	era	tions + vecto	or-like
2	$(1, 1; 4, 1)_{(-1/2, -1)}$	f_i^-		2	$(1,1;\overline{4},1)^{(0,-)}_{(1/2,1)}$	\bar{f}_i^+
4	$(1, 1; 1, 1)_{(0, \pm 2)}$	Xi		32	$(1,1;1,1)_{(0,0)}$	s_i^0
2	$\left(\overline{3},1;1,1 ight)_{(-1/6,2/3)}$	\bar{v}_i		2	$(3,1;1,1)_{(1/6,-2/3)}$	v_i

An explicit example

Model definition and spectrum

Model definition and spectrum

#	irrep	label		#	irrep	label
3	$(3,2;1,1)_{(1/6,1/3)}$	q_i		3	$(\overline{3},1;1,1)_{(-2/3-1/3)}$	$ar{u}_i$
3	$(1,1;1,1)_{(1,1)}$	\bar{e}_i		8	$(1, 2; 1, 1)_{(0,*)}$	m_i
<mark>3</mark> + 1	$\left(\overline{3},1;1,1\right)_{(1/3-1/3)}$	$ar{d}_i$		1	$(3,1;1,1)_{(-1/3,1/3)}$	d_i
3 + 1	$(1,2;1,1)_{(-1/2,-1)}$	ℓ_i		1	$(1, 2; 1, 1)_{(1/2, 1)}$	$-\bar{\ell}_i$
1	$(1, 2; 1, 1)_{(-1/2, 0)}$	ϕ_i		1	$(1,2;1,1)_{(1/2,0)}$	$\bar{\phi}_i$
6	$(\overline{3},1;1,1)_{(1/3,2/3)}$	$\bar{\delta}_i$		6	$(3,1;1,1)_{(-1/3,-2/3)}$	δ_i
14	$(1,1;1,1)_{(1/2,*)}$	s_i^+		14	$(1, 1, 1, 1)_{(-1/2, *)}$	s_i^-
16	$(1, 1; 1, 1)_{(0,1)}$	\bar{n}_i		13	$(1, 1; 1, 1)_{(0, -1)}$	n_i
5	(1, 1; 1, B - L allo)	ws to di	sС	rimin	ate	γ_i
10	(1,1;1,1)					V _i
6				Jinui		\bar{r}_i
-	• betw	een <mark>ne</mark>	eut	rinos	and other singlets	
2	(1,1;4,1)	• 1	1		(1/21)	f_i^+
4	$(1, 1; 1, 1)_{(0,\pm 2)}$	χ_i		32	$(1,1;1,1)_{(0,0)}$	s_i^0
2	$\left(\overline{3},1;1,1 ight)_{(-1/6,2/3)}$	\bar{v}_i		2	$(3,1;1,1)_{(1/6,-2/3)}$	v_i

Model definition and spectrum

#	irrep	label		#	irrep	label
3	$(3,2;1,1)_{(1/6,1/3)}$	q_i		3	$(\overline{3},1;1,1)_{(-2/3,-1/3)}$	$ar{u}_i$
3	$(1, 1; 1, 1)_{(1,1)}$	\bar{e}_i		8	$(1, 2; 1, 1)_{(0,*)}$	m_i
<mark>3</mark> + 1	$(\overline{3},1;1,1)_{(1/3-1/3)}$	$ar{d}_i$		1	$(3,1;1,1)_{(-1/3,1/3)}$	d_i
<mark>3</mark> + 1	$(1,2;1,1)_{(-1/2,-1)}$	ℓ_i		1	$(1,2;1,1)_{(1/2,1)}$	$\bar{\ell}_i$
1	$(1,2;1,1)_{(-1/2,0)}$	crucial	:		2,0)	$ar{\phi}_i$
6	$(\overline{\bf 3},{f 1};{f 1},{f 1})_{(1/3,2/3)}$	existen	δ_i			
14	$(1, 1; 1, 1)_{(1/2, *)}$	with q_B	<i>L</i> =	$= \pm 2$	/2,*)	s_i^-
16	$(1,1;1,1)_{(0,1)}$	101		10	$(\bigstar, \bigstar, \bigstar, \bigstar, \bigstar'(0,-1)$	n_i
5	$(1,1;1,2)_{(0,1)}$	$\bar{\eta}_i$		5	$(1,1;1,2)_{(0,-1)}$	η_i
10	$(1,1;1,2)_{(0,0)}$	h_i	/	2	$(1,2;1,2)_{(0,0)}$	y_i
6	$({\bf 1},{\bf 1};{\bf 4},{\bf 1})_{(0,*)}$	f _i		6	$\left(1,1;\overline{4},1 ight)_{\left(0,st ight)}$	\bar{f}_i
2	$(1,1;4,1)_{(-1/2,-1)}$	f_i^-		2	$(1,1;\overline{4},1)_{(1/2,1)}$	\bar{f}_i^+
4	$(1, 1; 1, 1)_{(0, \pm 2)}$	χ_i^{μ}		32	$(1,1;1,1)_{(0,0)}$	s_i^0
2	$\left(\overline{3},1;1,1 ight)_{(-1/6,2/3)}$	\bar{v}_i		2	$(3,1;1,1)_{(1/6,-2/3)}$	v_i

Model definition and spectrum

Spectrum in MSSM vacua

Decoupling of exotics

Spectrum in MSSM vacua

Decoupling of exotics

We have checked that:

• exotics' mass matrices have full rank with

 $s_i = G_{\text{SM}} \times \text{SU}(4)$ singlets with $q_{B-L} = 0$ or ± 2

Spectrum in MSSM vacua

Decoupling of exotics

We have checked that:

• exotics' mass matrices have full rank with

 $s_i = G_{\text{SM}} \times \text{SU}(4)$ singlets with $q_{B-L} = 0$ or ± 2

 $\mathbf{2} s_i$ VEVs are consistent with supersymmetry

Spectrum in MSSM vacua

Decoupling of exotics

We have checked that:

• exotics' mass matrices have full rank with

 $s_i = G_{\rm SM} imes {
m SU}(4)$ singlets with $q_{B-L} = 0$ or ± 2

- $\mathbf{2} s_i$ VEVs are consistent with supersymmetry
- \bullet there are $\tilde{s}_i \subset s_i$ configurations where all exotics are massive and there is one pair of almost massless Higgs (i.e. $\mu \sim m_{3/2}$) due to an approximate U(1)_R symmetry

Spectrum in MSSM vacua

We have checked that:

• exotics' mass matrices have full rank with

 $s_i = G_{\rm SM} imes {
m SU}(4)$ singlets with $q_{B-L} = 0$ or ± 2

- $\mathbf{2} s_i$ VEVs are consistent with supersymmetry
- there are s_i ⊂ s_i configurations where all exotics are massive and there is one pair of almost massless Higgs (i.e. μ ~ m_{3/2}) due to an approximate U(1)_R symmetry
- \blacktriangleright Have obtained an MSSM vacuum with R parity

What is a (`right-handed') neutrino?

 $<\!\!<$ 4D GUTs: $\bar{\nu}$ member of 16-plet

 $SO(10) \rightarrow SU(3) \times SU(2) \times U(1)_{Y} \times U(1)_{B-L}$ 16 $\rightarrow (3,2)_{1/6,1/3} \oplus (\overline{3},1)_{-2/3,-1/3} \oplus (\overline{3},1)_{1/3,-1/3}$

 $\rightarrow (\mathbf{3}, \mathbf{2})_{1/6, 1/3} \oplus (\mathbf{3}, \mathbf{1})_{-2/3, -1/3} \oplus (\mathbf{3}, \mathbf{1})_{1/3, -1/3} \\ \oplus (\mathbf{1}, \mathbf{1})_{1, \mathbf{1}} \oplus (\mathbf{1}, \mathbf{2})_{-1/2, -\mathbf{1}} \oplus (\mathbf{1}, \mathbf{1})_{0, \mathbf{1}}$

What is a (`right-handed') neutrino?

 $<\!\!\! < \!\!\! < \!\!\! = 4D$ GUTs: $\bar{\nu}$ member of 16-plet

 $\begin{array}{rcl} SO(10) & \rightarrow & SU(3) \times SU(2) \times U(1)_Y \times U(1)_{B-L} \end{array}$

$$\begin{array}{rcl} \mathbf{16} & \to & (\mathbf{3},\mathbf{2})_{1/6,\mathbf{1/3}} \oplus (\overline{\mathbf{3}},\mathbf{1})_{-2/3,-\mathbf{1/3}} \oplus (\overline{\mathbf{3}},\mathbf{1})_{1/3,-\mathbf{1/3}} \\ & \oplus (\mathbf{1},\mathbf{1})_{1,1} \oplus (\mathbf{1},\mathbf{2})_{-1/2,-\mathbf{1}} \oplus (\mathbf{1},\mathbf{1})_{0,1} \end{array}$$

Higher-dimensional GUTs/Strings:

 $ar{
u}=G_{
m SM}$ singlet which is odd under matter parity

What is a (`right-handed') neutrino?

4D GUTs: $\bar{\nu}$ member of 16-plet

 $\begin{array}{lll} SO(10) & \rightarrow & SU(3) \times SU(2) \times U(1)_Y \times U(1)_{B-L} \end{array}$

$$\begin{array}{rcl} \mathbf{16} & \to & (\mathbf{3},\mathbf{2})_{1/6,\mathbf{1/3}} \oplus (\overline{\mathbf{3}},\mathbf{1})_{-2/3,-\mathbf{1/3}} \oplus (\overline{\mathbf{3}},\mathbf{1})_{1/3,-\mathbf{1/3}} \\ & \oplus (\mathbf{1},\mathbf{1})_{1,\mathbf{1}} \oplus (\mathbf{1},\mathbf{2})_{-1/2,-\mathbf{1}} \oplus (\mathbf{1},\mathbf{1})_{0,\mathbf{1}} \end{array}$$

Higher-dimensional GUTs/Strings:

 $ar{v}$ = $G_{
m SM}$ singlet which is odd under matter parity

remark: we get 49 neutrinos in the example

$$\begin{split} n_i \& \bar{n}_i &= (\mathbf{1}, \mathbf{1}; \mathbf{1}, \mathbf{1})_{0, \neq 1} \\ \bar{\eta}_1 &= \left(\begin{array}{c} \bar{n}_{17} \\ \bar{n}_{18} \end{array} \right) , \dots \bar{\eta}_5 &= \left(\begin{array}{c} \bar{n}_{25} \\ \bar{n}_{26} \end{array} \right) ; \ \eta_1 &= \left(\begin{array}{c} n_{14} \\ n_{15} \end{array} \right) , \dots \eta_3 &= \left(\begin{array}{c} n_{22} \\ n_{23} \end{array} \right) \\ \{\nu_i\}_{i=1}^{49} &= \{n_i\}_{i=1}^{26} \cup \{\bar{n}_i\}_{i=1}^{23} \end{split}$$

An explicit example

See-saw couplings

See-saw couplings

 \ll see-saw couplings: $W_{\text{see-saw}} = Y_{\nu}^{ij} \bar{\phi} \ell_i \bar{\nu}_j + M_{ij} \bar{\nu}_i \bar{\nu}_j$

See-saw couplings

 \ll see-saw couplings: $W_{\text{see-saw}} = Y_{\nu}^{ij} \bar{\phi} \ell_i \bar{\nu}_j + M_{ij} \bar{\nu}_i \bar{\nu}_j$

 \ll in string models M, $Y_{\nu} \sim \langle s_{\uparrow}^n \rangle$

See-saw couplings

- $<\!\!>$ see-saw couplings: $W_{\text{see-saw}} = Y_{\nu}^{ij} \bar{\phi} \ell_i \bar{\nu}_j + M_{ij} \bar{\nu}_i \bar{\nu}_j$
- \ll in string models $M, Y_{\nu} \sim \langle s^n \rangle$
- ➡ see-saw mass matrix

$$W_{\text{see-saw}} \xrightarrow{\phi_u \to v} (v, \bar{v}) \begin{pmatrix} 0 & y_v v \\ y_v v & M \end{pmatrix} \begin{pmatrix} v \\ \bar{v} \end{pmatrix} \simeq \frac{y_v^2 v^2}{M} v v + M \bar{v} \bar{v}$$

See-saw neutrinos from the heterotic string

	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	\widetilde{s}^6	\widetilde{s}^{6}	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	26	~6	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		ő	ő	ŏ	ŏ	õ	ŏ	ő	ŏ	ŏ	ŏ	õ	ő	ő	ő	õ	ő	ő	õ	ŏ	ŏ	ŏ	õ	ő	
		0	0	0	ō	0	0	0	0	0	ō	0	0	Ő	0	0	0	Ő	0	Ő	ō	0	0	0	
		Ő	0	0	0	0	0	0	0	0	0	0	0	Ő	0	0	0	Ő	0	0	0	0	0	0	
		0	0	~6	~6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	L	0	0	~6	~6	0	0	0	0	0	ő	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
=		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0	0	0	ő	0	0	0	0	ő	ő	0	0	0	0	0	0	0	ő	ő	ŏ	0	0	0	
		ő	ő	ő	ŏ	ő	ő	ő	ő	ő	ŏ	ő	ő	ő	ő	ő	ő	ő	õ	ŏ	ő	ő	ő	ő	
		ő	ő	ő	ŏ	ő	ő	ő	ő	ő	ŏ	ő	ő	ő	ő	ő	ő	ő	õ	ŏ	ő	ő	ő	ő	
		ő	ő	ő	ŏ	ő	ő	ő	ő	ő	ŏ	ő	ő	ő	ő	ő	ő	ő	õ	ŏ	ő	ő	ő	ő	
	1	0	0	0	ō	0	0	0	0	0	ō	0	0	Ő	0	0	0	Ő	0	Ő	ō	0	0	0	
		0	0	0	ō	0	0	0	0	0	ō	0	0	Ő	0	0	0	Ő	0	Ő	ō	0	0	0	
	1	0	0	0	ō	0	0	0	0	0	ō	0	0	Ő	0	0	0	Ő	0	Ő	ō	0	0	0	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	/	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

 $M_{nn} =$

An explicit example

See-saw neutrinos from the heterotic string

 \tilde{s}^6 \tilde{s}^5 \tilde{s}^5 \tilde{s}^6 \tilde{s}^6 0 0 0 0 0 0 0 0 0 \tilde{s}_{5} \tilde{s}^6 76 \tilde{s}^5 \tilde{s}^6 \tilde{s}^6 \tilde{s}^3 \widetilde{s}^3 \tilde{s}^3 0 0 0 0 0 0 0 0 0 0 0 \tilde{s}^6 \tilde{s}^6 \tilde{s}^6 \tilde{s}^6 \tilde{s}^6 <u>~</u>6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~6 8 \tilde{s}^3 \tilde{s}^3 \tilde{s}^3 \tilde{s}^3 ~3 0 0 0 0 0 0 0 0 0 $\frac{0}{\tilde{s}^3}$ 0 0 0 \tilde{s}^{3} \tilde{s}^3 \tilde{s}^{3} \widetilde{s}^6 \tilde{s}^6 0 0 0 \tilde{s}^6 \tilde{s}^6 \tilde{s}^6 \tilde{s}^6 0 0 75 75 0 0 0 0 0 0 0 0 0 0 0 0 ~3 ~3 \tilde{s}^3 \tilde{s}_{6} <u>~</u>6 ~6 s 0 ~3 \tilde{s}^6 **~6** <u>~</u>6 0 0 0 0 0 0 0 0 0 0 0 0 0 \tilde{s}^{6} \tilde{s}^{6} \widetilde{s}^6 \tilde{s}^6 \tilde{s}^6 \tilde{s}^6 \tilde{s}^6 ~6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \tilde{s}^6 0 ~6 ~6 ~6 \tilde{s}^6 $\frac{0}{\tilde{s}^6}$ ~6 ~6 ~6 ~6 0 0 0 0 0 0 0 0 0 0 0 0 $\frac{0}{\tilde{s}^6}$ \tilde{s}^{5} \tilde{s}^{5} 0 \tilde{s}^5 \tilde{s}^6 **~6** \tilde{s}^3 \tilde{s}^{6} **~6** \tilde{s}^3 <u>~</u>6 \tilde{s}^6 0 0 0 0 0 0 0 0 0 0 0 0 $\overset{0}{\widetilde{s}^4} \overset{3}{\widetilde{s}^3} \overset{3}{\widetilde{s}^6} \overset{6}{\widetilde{s}^6}$ $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ s^{6} \\ s^{6} \\ s^{6} \end{array}$ \tilde{s}^5 \tilde{s}^6 \tilde{s}^3 \tilde{s}^6 \tilde{s}^3 \tilde{s}^5 <u>s</u>5 0 \tilde{s}^6 \tilde{s}^6 0 \tilde{s}^5 0 0 0 0 0 0 0 0 0 \widetilde{s}^{5} \widetilde{s}^{4} \widetilde{s}^4 \widetilde{s}^4 \tilde{s}^5 \tilde{s}^6 \tilde{s}^6 \widetilde{s}^4 \widetilde{s}^4 \widetilde{s}^4 \tilde{s}^4 0 0 0 0 0 0 0 0 0 0 0 0 \tilde{s}^2 \tilde{s}^2 \tilde{s}^6 ~5 s \tilde{s}^{5} \tilde{s}^2 \tilde{s}^2 \tilde{s}^2 0 0 0 0 0 0 0 0 0 0 0 0 ~6 \$6 \widetilde{s}^5 0 \tilde{s}^2 \tilde{s}^2 0 ~5 \tilde{s}^2 \tilde{s}^2 0 0 0 0 0 0 0 0 0 0 0 \tilde{s}^{5} \tilde{s}^5 \tilde{s}^5 \tilde{s}^5 \tilde{s}^5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \tilde{s}^6 ~5 \$ ~5 s \tilde{s}^5 ~5 s⁵ ~5 \$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \tilde{s}^{6} $\widetilde{s}^{3}_{\widetilde{s}^{3}}$ \tilde{s}^3 \widetilde{s}^4 \tilde{s}^6 \tilde{s}^5 \tilde{s}^5 \tilde{s}^2 \tilde{s}^3 \tilde{s}^5 \tilde{s}^5 \widetilde{s}^5 \tilde{s}^5 0 0 0 0 0 0 0 0 0 0 0 0 0 ~4 \tilde{s}^{6} \tilde{s}^2 \tilde{s}^3 ~6 s ~5 ~5 ~3 \tilde{s}^{5} ~5 ~5 ~5 0 0 0 0 0 0 0 0 0 0 0 0 0 \tilde{s}^5 \tilde{s}^6 \tilde{s}^6 \tilde{s}^3 \widetilde{s}^6 \tilde{s}^6 \tilde{s}^3 ~5 ~5 \tilde{s}^6 0 0 \widetilde{s}^6 0 0 0 0 0 0 0 0 0 \tilde{s}^5 \tilde{s}^6 \tilde{s}^6 \tilde{s}^3 \tilde{s}^6 \tilde{s}^6 \tilde{s}^3 \tilde{s}_{5} \tilde{s}_{5} \tilde{s}^6 \widetilde{s}^6 0 0 0 0 0 0 0 0 0 0 0 \tilde{s}^5 \tilde{s}^6 \tilde{s}^6 \tilde{s}^3 ~6 8 \tilde{s}^6 \tilde{s}^3 \tilde{s}^{5} \tilde{s}^{5} \tilde{s}^{5} \tilde{s}^{5} $\tilde{s}^{6}_{\tilde{s}^{6}}$ ~6 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~5 \$ \tilde{s}^6 \tilde{s}^3 \tilde{s}^6 \tilde{s}^3 \tilde{s}^6 0 **~**6 ~6 0 0 0 0 0 0 0 0 0 0 0 0 \tilde{s}^3 \tilde{s}^{3} \tilde{s}^5 \tilde{s}^3 \tilde{s}^3 \tilde{s}^6 \tilde{s}^6 \tilde{s}^6 \tilde{s}^6 0 0 ~6 \tilde{s}^6 0 0 0 0 0 0 0 0 0 0 ~6 8 ~6 8 ~6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 $M_{n\bar{n}} =$

An explicit example

See-saw neutrinos from the heterotic string

1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	\widetilde{s}^{6}	\widetilde{s}^{6}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	\widetilde{s}^{6}	\widetilde{s}^{6}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	\widetilde{s}^{6}	\widetilde{s}^{6}	0	0	\tilde{s}^5	\tilde{s}^5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\tilde{s}^5	\tilde{s}^5	\tilde{s}^5	\tilde{s}^5
	0	\widetilde{s}^{6}	\widetilde{s}^{6}	0	0	\tilde{s}^5	\tilde{s}^5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\tilde{s}^5	\tilde{s}^5	\tilde{s}^5	\tilde{s}^5
	0	0	0	\tilde{s}^5	\widetilde{s}^{5}	0	0	0	0	\widetilde{s}^{6}	\tilde{s}^6	0	\tilde{s}^6	\widetilde{s}^6	0	0	\widetilde{s}^6	\tilde{s}^6	\widetilde{s}^6	\widetilde{s}^{6}	\widetilde{s}^{6}	\tilde{s}^6	0	0	0	0
	0	0	0	\tilde{s}^5	\tilde{s}^5	0	0	0	0	\widetilde{s}^{6}	\tilde{s}^6	0	\tilde{s}^6	\tilde{s}^6	0	0	\tilde{s}^6	\tilde{s}^6	\widetilde{s}^6	\tilde{s}^6	\tilde{s}^6	\tilde{s}^6	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\widetilde{s}^{6}	\widetilde{s}^{6}	\widetilde{s}^{6}	\widetilde{s}^{6}	0	0	0	0	0	0
	0	0	0	0	0	\widetilde{s}^{6}	\widetilde{s}^{6}	0	0	0	\widetilde{s}^4	0	0	\widetilde{s}^4	0	0	0	0	0	0	\widetilde{s}^4	\widetilde{s}^4	0	0	0	0
	0	0	0	0	0	\tilde{s}^6	\widetilde{s}^{6}	0	0	\widetilde{s}^4	0	0	\widetilde{s}^4	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	\tilde{s}^6	\widetilde{s}^6	0	0	0	\widetilde{s}^4	0	0	\widetilde{s}^4	0	0	0	0	0	0	\widetilde{s}^4	\widetilde{s}^4	0	0	0	0
	0	0	0	0	0	\widetilde{s}^{6}	\widetilde{s}^{6}	0	0	\widetilde{s}^4	0	0	\widetilde{s}^4	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	<i>s</i> ⁰	sb	0	s ^b	0	0	0	0	0	0	0	0	0	0	0	0	0	so	s ^b	so	s ⁰
	0	0	0	0	0	sb	sb	0	sb	0	0	0	0	0	0	0	0	0	0	0	0	0	sb	sb	sb	sb
	0	0	0	0	0	sb	sb	0	sb	0	0	0	0	0	0	0	0	0	0	0	0	0	sb	sb	sb	sb
	0	0	0	0	0	\tilde{s}^{6}	\tilde{s}^{6}	0	\widetilde{s}^{6}	0	0	0	0	0	0	0	0	0	0	0	0	0	\tilde{s}^6	\widetilde{s}^{6}	\widetilde{s}^{6}	\tilde{s}^{6}
	0	0	0	0	0	\tilde{s}^6	\tilde{s}^6	0	0	\tilde{s}^4	0	0	\tilde{s}^4	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	\widetilde{s}^{6}	\widetilde{s}^{6}	0	0	\widetilde{s}^4	0	0	\widetilde{s}^4	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	\tilde{s}^5	\tilde{s}^5	0	0	0	0	0	0	0	0	0	0	0	\widetilde{s}^{6}	\widetilde{s}^{6}	\widetilde{s}^{6}	\tilde{s}^6	0	0	0	0	0	0
	0	0	0	\tilde{s}^5	\tilde{s}^5	0	0	0	0	0	0	0	0	0	0	0	\tilde{s}^6	\tilde{s}^6	\tilde{s}^6	\tilde{s}^6	0	0	0	0	0	0
	0	0	0	\tilde{s}^5	\tilde{s}^5	0	0	0	0	0	0	0	0	0	0	0	\tilde{s}^6	\tilde{s}^6	\tilde{s}^6	\tilde{s}^6	0	0	0	0	0	0
	0	0	0	\tilde{s}^5	\tilde{s}^5	0	0	0	0	0	0	0	0	0	0	0	\widetilde{s}^6	\tilde{s}^6	\widetilde{s}^{6}	\tilde{s}^6	0	0	0	0	0	0

 $M_{\bar{n}\bar{n}} =$

See-saw neutrinos from the heterotic string

$$\mathcal{M}_{\bar{\nu}\bar{\nu}} = \begin{pmatrix} \mathcal{M}_{\bar{n}\bar{n}} & \mathcal{M}_{n\bar{n}}^T \\ \mathcal{M}_{n\bar{n}} & \mathcal{M}_{nn} \end{pmatrix}$$

See-saw neutrinos from the heterotic string

$$\mathcal{M}_{ar{v}ar{v}} = \left(egin{array}{cc} \mathcal{M}_{ar{n}ar{n}} & \mathcal{M}_{ar{n}ar{n}}^T \ \mathcal{M}_{ar{n}ar{n}} & \mathcal{M}_{ar{n}ar{n}} \end{array}
ight)$$

See-saw neutrinos from the heterotic string

$$\mathcal{M}_{\bar{v}\bar{v}} = \begin{pmatrix} \mathcal{M}_{\bar{n}\bar{n}} & \mathcal{M}_{n\bar{n}}^T \\ \mathcal{M}_{n\bar{n}} & \mathcal{M}_{nn} \end{pmatrix}$$

Note: the zeros get filled in at higher order

See-saw neutrinos from the heterotic string

$$\mathcal{M}_{\bar{v}\bar{v}} = \begin{pmatrix} \mathcal{M}_{\bar{n}\bar{n}} & \mathcal{M}_{n\bar{n}}^T \\ \mathcal{M}_{n\bar{n}} & \mathcal{M}_{nn} \end{pmatrix}$$

Note: the zeros get filled in at higher order

 $Y_{\nu} = (Y_{\bar{n}}, Y_{\nu})$

See-saw neutrinos from the heterotic string

$$\mathcal{M}_{\bar{v}\bar{v}} = \begin{pmatrix} \mathcal{M}_{\bar{n}\bar{n}} & \mathcal{M}_{n\bar{n}}^T \\ \mathcal{M}_{n\bar{n}} & \mathcal{M}_{nn} \end{pmatrix}$$

Note: the zeros get filled in at higher order

 $Y_{\nu} = (Y_{\bar{n}}, Y_{\nu})$

bottom-line:

 Y_{ν} and M exist with M & $m_{\nu} = v^2 Y_{\nu}^T M^{-1} Y_{\nu}$ having full rank

An explicit example

-See-saw couplings

Heterotic see-saw

Buchmüller et al. (2007b) ; Buchmüller et al. (2007a) ; Lebedev et al. (2007) ; Kappl et al. (2011)

 \sim there are O(100) neutrinos (= R parity odd SM singlets)

An explicit example

Heterotic see-saw

Buchmüller et al. (2007b) ; Buchmüller et al. (2007a) ; Lebedev et al. (2007) ; Kappl et al. (2011)

 \sim there are O(100) neutrinos (= R parity odd SM singlets)

 $\rightarrow O(100)$ contributions to the (effective) neutrino mass operator

Heterotic see-saw

Buchmüller et al. (2007b) ; Buchmüller et al. (2007a) ; Lebedev et al. (2007) ; Kappl et al. (2011)

- \sim there are O(100) neutrinos (= R parity odd SM singlets)
- → O(100) contributions to the (effective) neutrino mass operator
- effective suppression of the see-saw scale

Heterotic see-saw

Buchmüller et al. (2007b) ; Buchmüller et al. (2007a) ; Lebedev et al. (2007) ; Kappl et al. (2011)

- \sim there are O(100) neutrinos (= R parity odd SM singlets)
- $\rightarrow O(100)$ contributions to the (effective) neutrino mass operator
- ➡ effective suppression of the see-saw scale
- $(\sqrt{\Delta m_{\rm atm}^2} \simeq 0.04 \, {\rm eV} \, \& \, \sqrt{\Delta m_{\rm sol}^2} \simeq 0.008 \, {\rm eV})$

Main conclusion:

See-saw is a generic feature in heterotic MSSM vacua

Heterotic see-saw

Buchmüller et al. (2007b) ; Buchmüller et al. (2007a) ; Lebedev et al. (2007) ; Kappl et al. (2011)

- \sim there are O(100) neutrinos (= R parity odd SM singlets)
- $\rightarrow O(100)$ contributions to the (effective) neutrino mass operator
- ➡ effective suppression of the see-saw scale
- $(\sqrt{\Delta m_{\rm atm}^2} \simeq 0.04 \, {\rm eV} \, \& \, \sqrt{\Delta m_{\rm sol}^2} \simeq 0.008 \, {\rm eV})$

Main conclusion:

See-saw is a generic feature in heterotic MSSM vacua

Giedt et al. (2005)

Feldstein and Klemm (2012)

see talks by Altarelli & de Gouvea for discussion on anarchy

Anarchy: statistical preference for

• large mixing angles

Possible implications

Possible implications

Possible implications

Feldstein and Klemm (2012)

see talks by Altarelli & de Gouvea for discussion on anarchy

Anarchy: statistical preference for

- large mixing angles
- mild hierarchies

Possible implications

Feldstein and Klemm (2012)

see talks by Altarelli & de Gouvea for discussion on anarchy

- Anarchy: statistical preference for
 - large mixing angles
 - mild hierarchies

Possible implications

Eisele (2008) ; Ellis and Lebedev (2007)

Relaxation of leptogenesis constraints: bound on the lighest right-handed neutrino mass gets about one order of magnitude weaker than in the three neutrino case

Summary

See-saw is generic in explicit heterotic MSSM models

Summary

- See-saw is generic in explicit heterotic MSSM models
- Effective suppression of see-saw scale

Summary

- See-saw is generic in explicit heterotic MSSM models
- Effective suppression of see-saw scale

- Possible implications:
 - `anarchical spectrum' with large mixing angles and small mass hierarchies
 - relaxation of cosmological bounds on mass of lightest right-handed neutrino
 - ...

Mille grazie!

References I

Wilfried Buchmüller, Koichi Hamaguchi, Oleg Lebedev, Saul Ramos-Sánchez, and Michael Ratz. Seesaw neutrinos from the heterotic string. *Phys. Rev. Lett.*, 99:021601, 2007a.

- Wilfried Buchmüller, Koichi Hamaguchi, Oleg Lebedev, and Michael Ratz. Supersymmetric standard model from the heterotic string. II. *Nucl. Phys.*, B785:149–209, 2007b.
- Mu-Chun Chen, Michael Ratz, Christian Staudt, and Patrick K.S. Vaudrevange. The mu term and neutrino masses. 2012.
- Keith R. Dienes. String theory and the path to unification: A Review of recent developments. *Phys.Rept.*, 287:447–525, 1997. doi: 10.1016/S0370-1573(97)00009-4.
- S. Dimopoulos, S. Raby, and Frank Wilczek. Supersymmetry and the scale of unification. *Phys. Rev.*, D24:1681–1683, 1981.

Marc-Thomas Eisele. Leptogenesis With Many Neutrinos. *Phys. Rev.*, D77:043510, 2008.

References II

John R. Ellis and Oleg Lebedev. The seesaw with many right-handed neutrinos. *Phys. Lett.*, B653:411–418, 2007.

- Brian Feldstein and William Klemm. Large Mixing Angles From Many Right-Handed Neutrinos. *Phys.Rev.*, D85:053007, 2012. doi: 10.1103/PhysRevD.85.053007.
- Murray Gell-Mann, Pierre Ramond, and Richard Slansky. Complex spinors and unified theories. In P. van Nieuwenhuizen and D. Z. Freedman, editors, *Supergravity*, page 315. North Holland, Amsterdam, 1979.
- Joel Giedt, G. L. Kane, Paul Langacker, and Brent D. Nelson. Massive neutrinos and (heterotic) string theory. *Phys. Rev.*, D71:115013, 2005.
- Rolf Kappl, Bjoern Petersen, Stuart Raby, Michael Ratz, Roland Schieren, and Patrick K.S. Vaudrevange. String-derived MSSM vacua with residual R symmetries. *Nucl.Phys.*, B847: 325–349, 2011. doi: 10.1016/j.nuclphysb.2011.01.032.

References III

Oleg Lebedev, Hans Peter Nilles, Stuart Raby, Saúl Ramos-Sánchez, Michael Ratz, Patrick K. S. Vaudrevange, and Akin Wingerter. The heterotic road to the MSSM with R parity. *Phys. Rev.*, D77:046013, 2007.

Hyun Min Lee, Stuart Raby, Michael Ratz, Graham G. Ross, Roland Schieren, Kai Schmidt-Hoberg, and Patrick K.S. Vaudrevange. A unique Z_4^R symmetry for the MSSM. *Phys.Lett.*, B694:491–495, 2011. doi: 10.1016/j.physletb.2010.10.038.

Peter Minkowski. mu → e gamma at a rate of one out of 1-billion muon decays? *Phys. Lett.*, B67:421, 1977.

T. Yanagida. Horizontal gauge symmetry and masses of neutrinos. In O. Sawada and A. Sugamoto, editors, *Proceedings of the Workshop on The Unified Theory and the Baryon Number in the Universe*, page 95. KEK, Tsukuba, Japan, 1979.