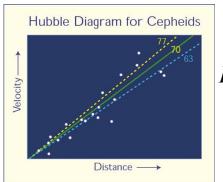
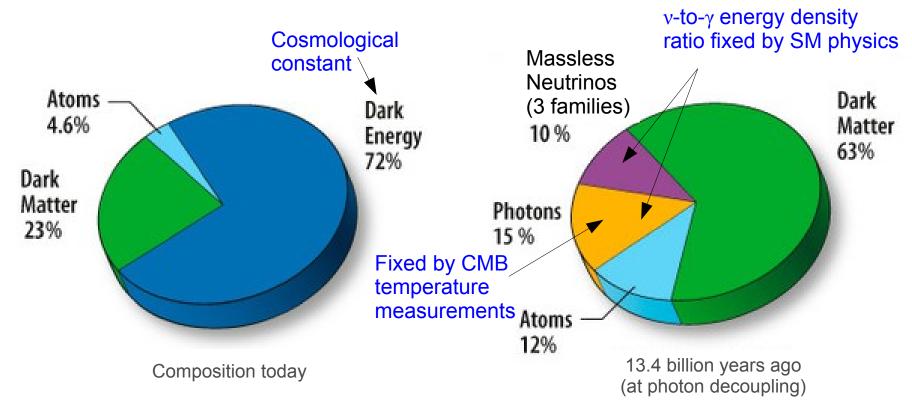

Evidence for sterile neutrinos from precision cosmology?

Yvonne Y. Y. Wong RWTH Aachen


BeNe 2012, Trieste September 17 – 21, 2012

Precision cosmological probes...


Local Hubble expansion rate

 $H_0 = 100 h \text{ km/s/Mpc}$ = 73.8 ± 2.4 km/s/Mpc

The concordance flat Λ CDM model...

The simplest model consistent with present observations.

Plus flat spatial geometry+initial conditions from single-field inflation

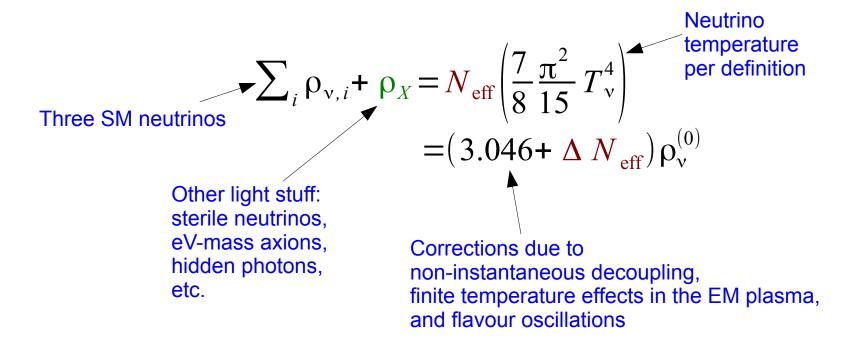
Neutrino energy density (standard picture)...

- Neutrino decoupling at T ~ O(1) MeV. ← Fixed by weak interactions
- After e⁺e⁻ annihilation (T ~ 0.2 MeV):
 - Temperature:

- $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$ Photon temperature,

- Number density per flavour: $n_v = \frac{6}{4} \frac{\zeta(3)}{\pi^2} T_v^3 = \frac{3}{11} n_v^4$ energy density energy density energy density energy density $\rho_v = \frac{7}{8} \frac{\pi^2}{15} T_v^4 = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_v^4$

Assuming instantaneous


number density, &

decoupling

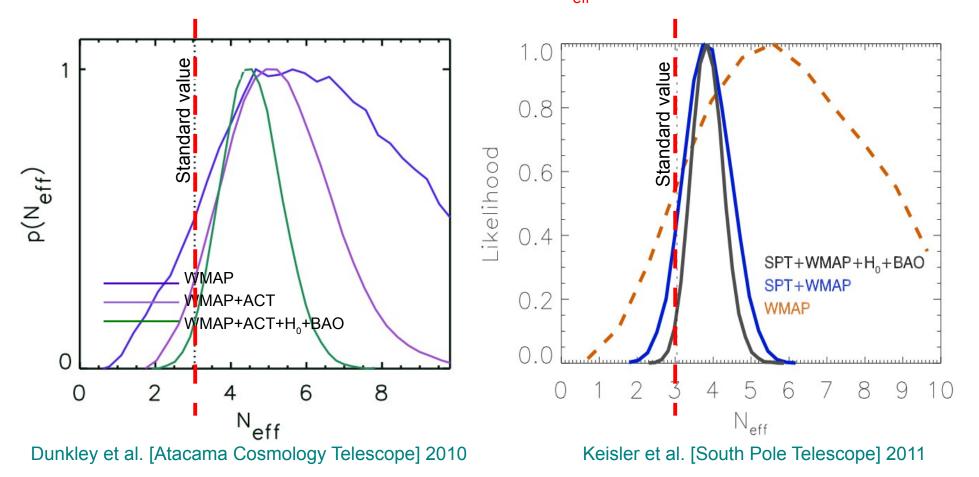
If massive, then at T << m: $\rho_v = m_v n_v$ $\Omega_{v,0} h^2 = \frac{m_v}{94 \text{ eV}}$ Hot dark matter (not within vanilla Λ CDM)

Extending the "neutrino" sector...

 Any particle species whose production is associated with some thermal process and that decoupled while relativistic at relatively late times [T<O(100) MeV] will behave (more or less) like a neutrino as far as cosmological observations are concerned.

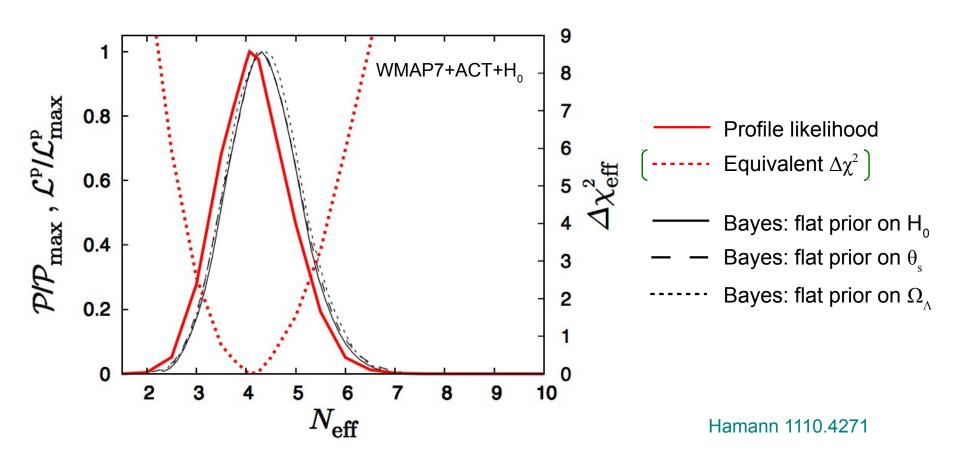
Plan...

Evidence of N_{eff}>3 from CMB and large-scale structure observations.


Connection to the short baseline sterile neutrino.

Bonus slides: Big bang nucleosythesis

1. CMB+large-scale structure...


Evidence for N_{eff} > 3 from CMB+LSS...

Recent CMB+LSS data appear to prefer N_{eff} > 3!

Preference for N_{eff} > 3 is **not** driven by priors...

The profile likelihood also peaks at N_{eff} > 3!

Not limited to ACT, SPT...

W-7=WMAP-7

- Many model+data combinations find N_{eff}>3 at 95% – 99% C.L.
 - Central value N_{eff} ~ 4.

Model	Data	$N_{ m eff}$
$\Lambda \text{CDM} + N_{\text{eff}}$	W-7+BAO+ H_0	$4.34^{+0.86}_{-0.88}$
rr c2 ivi iv eff	W-7+LRG+ H_0	$4.25^{+0.76}_{-0.80}$
	W-7+ACT	5.3 ± 1.3
=	\longrightarrow W-7+ACT+BAO+ H_0	4.56 ± 0.75
>95% C.L.	W-7+SPT	3.85 ± 0.62
	\longrightarrow W-7+SPT+BAO+ H_0	3.85 ± 0.42
	\longrightarrow W-7+ACT+SPT+LRG+ H_0	$4.08^{(+0.71)}_{(-0.68)}$
	\longrightarrow W-7+ACT+SPT+BAO+ H_0	3.89 ± 0.41
	W-7+CL+SPT+BAO+ H_0	(< 3.74)
$N_{ m eff} + f_{ u}$	W-7+CMB+BAO+ H_0	$4.47^{(+1.82)}_{(-1.74)}$
	\longrightarrow W-7+CMB+LRG+ H_0	$4.87^{(+1.86)}_{(-1.75)}$
$N_{\mathrm{eff}} + \Omega_k$	W-7+BAO+ H_0	4.61 ± 0.96
	\longrightarrow W-7+ACT+SPT+BAO+ H_0	4.03 ± 0.45
$N_{\mathrm{eff}} + \Omega_k + f_{ u}$	\longrightarrow W-7+ACT+SPT+BAO+ H_0	4.00 ± 0.43
$N_{ m eff}{+}f_{ u}{+}w$	W-7+CMB+BAO+ H_0	$3.68^{(+1.90)}_{(-1.84)}$
	W-7+CMB+LRG+ H_0	$4.87^{(+2.02)}_{(-2.02)}$
$N_{ ext{eff}} + \Omega_k + f_{ u} +$	$w \rightarrow W-7+CMB+BAO+SN+H_0$	$4.2^{+1.10(+2.00)}_{-0.61(-1.14)}$
	\longrightarrow W-7+CMB+LRG+SN+ H_0	$4.3^{+1.40(+2.30)}_{-0.54(-1.09)}$

Abazajian et al., "Light sterile neutrinos: a white paper", 2012

Not limited to ACT, SPT... but...

W-7=WMAP-7

- Many model+data combinations find N_{eff}>3 at 95% – 99% C.L.
 - Central value $N_{eff} \sim 4$.

 One exception: cluster abundance prefers a more "standard" value:

$$N_{\rm eff}$$
 < 3.74 (95 % C.L.)

(N_{eff} restricted to ≥ 3)

Burenin & Vikhlinin 2012

Model	Data	$N_{ m eff}$
$\Lambda \text{CDM} + N_{eff}$	W-7+BAO+ H_0	$4.34^{+0.86}_{-0.88}$
rr en	W-7+LRG+ H_0	$4.25^{+0.76}_{-0.80}$
	W-7+ACT	5.3 ± 1.3
=	\longrightarrow W-7+ACT+BAO+ H_0	4.56 ± 0.75
>95% C.L.	W-7+SPT	3.85 ± 0.62
	W -7+SPT+BAO+ H_0	3.85 ± 0.42
→= uses	\rightarrow W-7+ACT+SPT+LRG+ H_0	$4.08^{(+0.71)}_{(-0.68)}$
cluster data	\longrightarrow W-7+ACT+SPT+BAO+ H_0	3.89 ± 0.41
	\longrightarrow W-7+CL+SPT+BAO+ H_0	(< 3.74)
$N_{ m eff} + f_ u$	W-7+CMB+BAO+ H_0	$4.47^{(+1.82)}_{(-1.74)}$
	\rightarrow W-7+CMB+LRG+ H_0	$4.87^{(+1.86)}_{(-1.75)}$
$N_{\mathrm{eff}} + \Omega_k$	W-7+BAO+ H_0	4.61 ± 0.96
	\longrightarrow W-7+ACT+SPT+BAO+ H_0	4.03 ± 0.45
$N_{ ext{eff}} + \Omega_k + f_ u$	\longrightarrow W-7+ACT+SPT+BAO+ H_0	4.00 ± 0.43
$N_{ ext{eff}}{+}f_{ u}{+}w$	W-7+CMB+BAO+ H_0	$3.68^{(+1.90)}_{(-1.84)}$
	W-7+CMB+LRG+ H_0	$4.87^{(+2.02)}_{(-2.02)}$
$N_{ ext{eff}} + \Omega_k + f_ u + f_ u$	$w \rightarrow W-7+CMB+BAO+SN+H_0$	$4.2^{+1.10(+2.00)}_{-0.61(-1.14)}$
	\rightarrow W-7+CMB+LRG+SN+ H_0	$4.3^{+1.40(+2.30)}_{-0.54(-1.09)}$

Abazajian et al., "Light sterile neutrinos: a white paper", 2012

Essentially a WMAP result...

W-7=WMAP-7

- Data combinations are not independent.
- All use CMB data from WMAP.
 - → Planck will provide an independent check!

Model	Data	$N_{ m eff}$
$\Lambda \text{CDM} + N_{\text{eff}}$	W-7+BAO+ H_0	$4.34^{+0.86}_{-0.88}$
eff	W-7+LRG+ H_0	$4.25^{+0.76}_{-0.80}$
	W-7+ACT	5.3 ± 1.3
=	\longrightarrow W-7+ACT+BAO+ H_0	4.56 ± 0.75
>95% C.L.	W-7+SPT	3.85 ± 0.62
	\longrightarrow W-7+SPT+BAO+ H_0	3.85 ± 0.42
→= uses	\rightarrow W-7+ACT+SPT+LRG+ H_0	$4.08^{(+0.71)}_{(-0.68)}$
cluster data	\longrightarrow W-7+ACT+SPT+BAO+ H_0	3.89 ± 0.41
	\rightarrow W-7+CL+SPT+BAO+ H_0	(< 3.74)
$N_{ m eff} + f_ u$	W-7+CMB+BAO+ H_0	$4.47^{(+1.82)}_{(-1.74)}$
	\rightarrow W-7+CMB+LRG+ H_0	$4.87^{(+1.86)}_{(-1.75)}$
$N_{\mathrm{eff}} + \Omega_k$	W-7+BAO+ H_0	4.61 ± 0.96
	\longrightarrow W-7+ACT+SPT+BAO+ H_0	4.03 ± 0.45
$N_{\mathrm{eff}} + \Omega_k + f_{ u}$	\longrightarrow W-7+ACT+SPT+BAO+ H_0	4.00 ± 0.43
$N_{\mathrm{eff}} + f_{ u} + w$	W-7+CMB+BAO+ H_0	$3.68^{(+1.90)}_{(-1.84)}$
	W-7+CMB+LRG+ H_0	$4.87^{(+2.02)}_{(-2.02)}$
$N_{\mathrm{eff}} + \Omega_k + f_{\nu} + i$	$w \rightarrow W-7+CMB+BAO+SN+H_0$	$4.2^{+1.10(+2.00)}_{-0.61(-1.14)}$
	\rightarrow W-7+CMB+LRG+SN+ H_0	$4.3^{+1.40(+2.30)}_{-0.54(-1.09)}$

Abazajian et al., "Light sterile neutrinos: a white paper", 2012

How does it work...

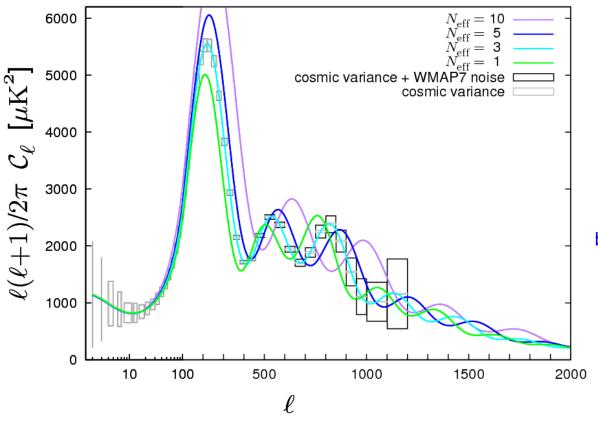
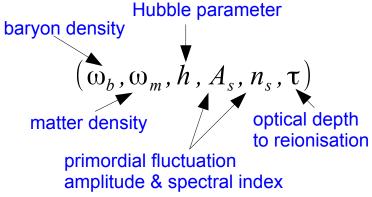
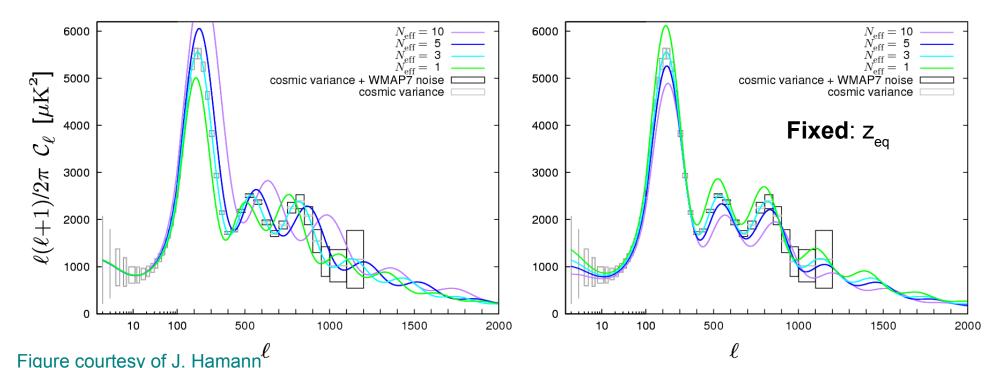
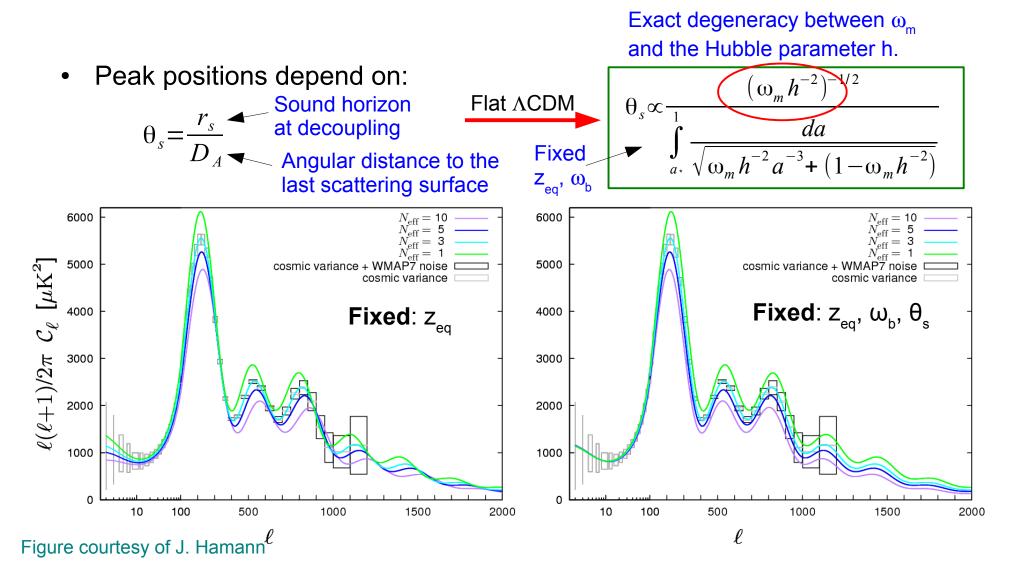



Figure courtesy of J. Hamann

- N_{eff} looks easy to detect..
- But we also use the same data to measure at least 6 other cosmological parameters:

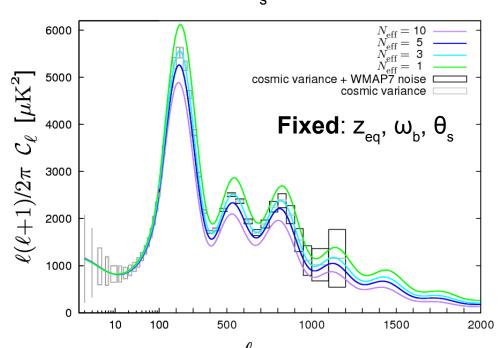


 Plenty of parameter degeneracies!


What the CMB really probes: equality redshift...

 Ratio of 3rd and 1st peaks sensitive to the redshift of matter-radiation equality via the early ISW effect. Exact degeneracy between the physical matter density $\omega_{\rm m}$ and $N_{\rm eff}$.

$$1 + z_{eq} = \frac{\omega_m}{\omega_r} \underbrace{\frac{\omega_m}{\omega_\gamma} \frac{1}{1 + 0.2271 N_{eff}}}_{1 + 0.2271 N_{eff}}$$



What the CMB really probes: sound horizon...

What the CMB really probes: anisotropic stress...

 Apparent (i.e., not physical) partial degeneracies with primordial fluctuation amplitude A_s and spectral index n_s.

- However, free-streaming particles have anisotropic stress.
- First real signature of N_{eff} in the 3rd peak!

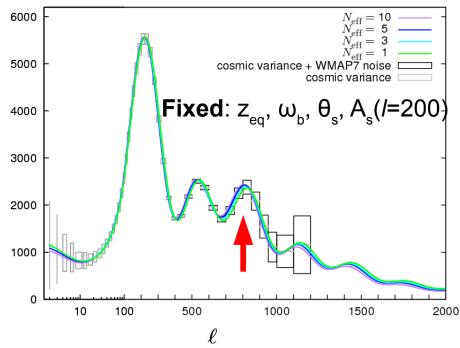
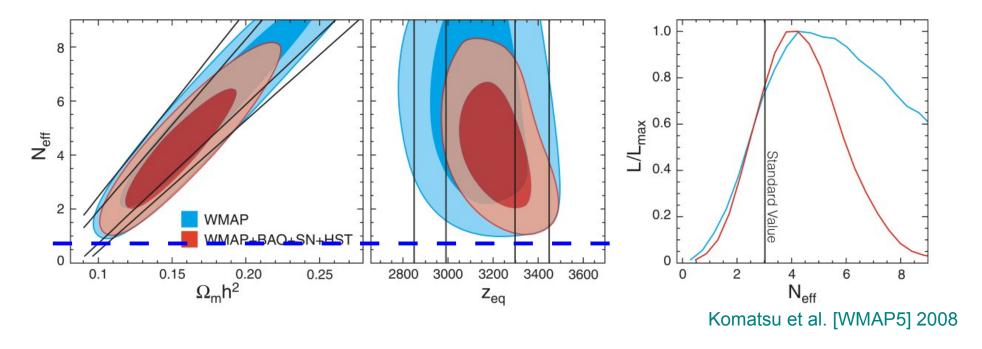



Figure courtesy of J. Hamann

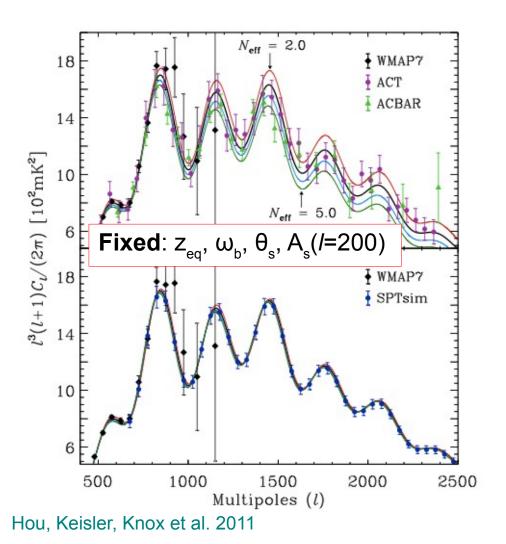
Measurement of the third peak (since WMAP-5) gives lower limit on N_{eff}
 from WMAP alone (without supplementary large-scale structure data).

- **Upper limit** requires combination of WMAP with other observations to break the remaining $N_{\text{eff}} \omega_{\text{m}} h$ parameter degeneracies.
 - Pinning down either ω_m or h will do!

from local (z<0.1) expansion rate measurements

Breaking degeneracies with large-scale structure...

Large-scale matter power spectrum



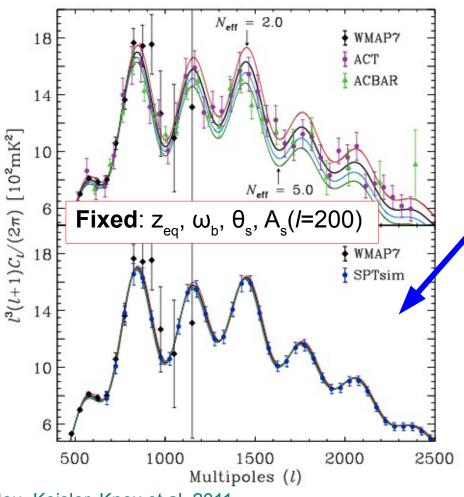
 The shape of the matter power spectrum is additionally sensitive to the baryon fraction:

$$f_b \equiv \frac{\omega_b}{\omega_m} \stackrel{\text{Fixed}}{\longrightarrow} \text{by CMB}$$

- The larger N_{eff}, the smaller
 f_b → more power at large k.
- (Can partially offset this effect with massive neutrinos.)

Breaking degeneracies with the CMB damping tail...

- ACT data available since 2010;
 SPT since 2011; also measured by Planck.
- Probe photon diffusion scale:


$$\theta_d = \frac{r_d}{D_A}$$
 Diffusion scale at decoupling

 Combined with sound horizon measurement:

$$\frac{\theta_d}{\theta_s} = \frac{r_d}{r_s} \propto \omega_m^{1/4}$$
Fixed z_{eq} , ω_b

Breaks (nearly) all N_{eff} degeneracies, robust against low-redshift uncertainties in D_A, e.g., w_{DE}, Ω_k .

Breaking degeneracies with the CMB damping tail...

- The N_{eff} Y_p degeneracy!
- With ω_b fixed by WMAP, the
 Helium fraction Y_p determines the
 free electron density → affects
 photon diffusion length.
- Current strategy:
 - Either fix Y_p at 0.24 → 0.25.
 - Or apply a BBN consistency relation.
- Not an exact degeneracy; can be resolved by Planck.

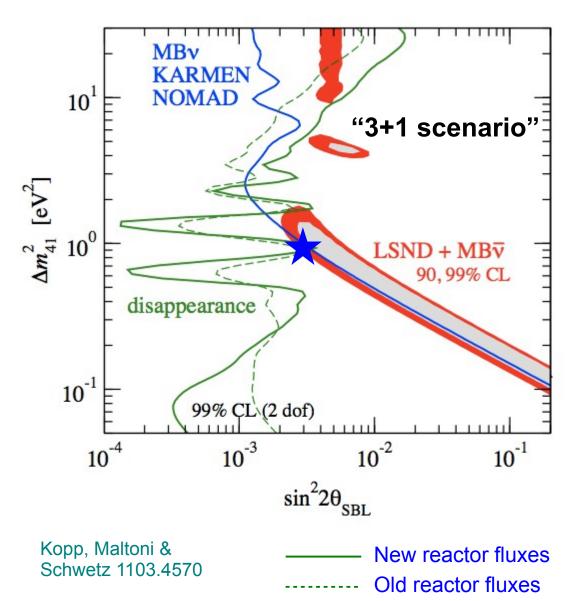
Hou, Keisler, Knox et al. 2011

A quick recap on N_{eff}...

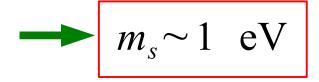
 The WMAP measurement of the acoustic peaks alone does not completely constrain N_{eff} because of parameter degeneracies:

Degeneracies can be broken with measurements of

- CMB damping tail
 Large-scale structure distribution
 Local Hubble expansion rate


 ω_m (Y_p with Planck)
 → ω_m
- Preference for N_{eff}>3 appears to be robust against model assumptions.

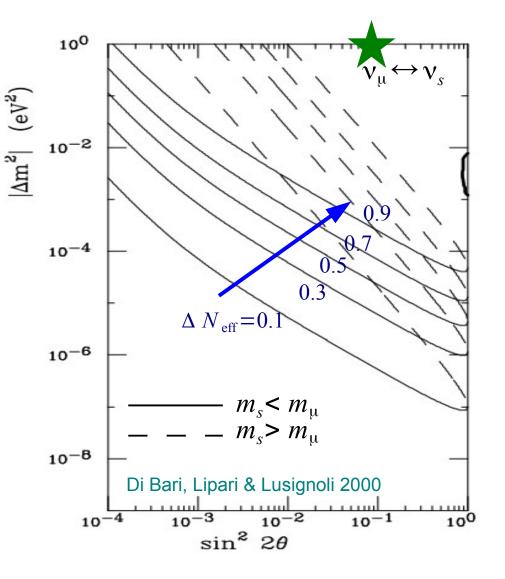
2. Connection to the short baseline sterile neutrino...


Experimental anomalies & the sterile v interpretation...

- Experiments at odds with the standard 3-neutrino interpretation of global neutrino oscillation data:
 - LSND ($\bar{\nu}_{e}$ appearance)
 - MiniBooNE anti-neutrinos (\overline{v}_e appearance)
 - Short baseline reactor experiments (re-evaluation of neutrino fluxes) (v̄ disappearance)

• If interpreted as oscillation signals \rightarrow a 4th (or more) **sterile neutrino** with $\Delta m^2 \sim O(1 \text{ eV}^2)$ and $\sin^2 2\theta > 10^{-3}$.

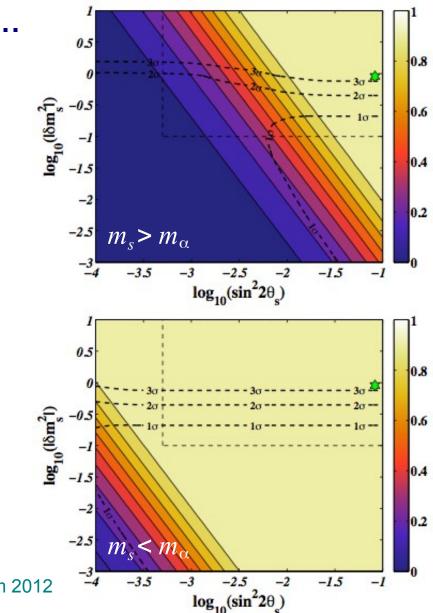
• "3+1" best-fit: $\Delta m_{41}^2 \sim 1 \text{ eV}^2$



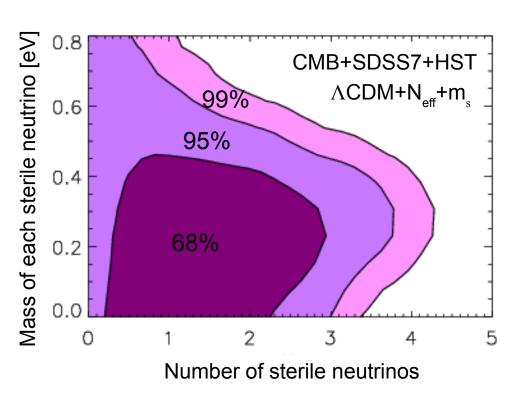
If lightest neutrino mass ~ 0 eV

Light sterile neutrinos and N_{eff}...

• SBL-preferred Δm^2 and mixing favour the **production and** thermalisation of sterile neutrinos in the early universe via $v_{\alpha} \leftrightarrow v_{s}$ oscillations + v_{α} scattering.


- Can easily produce an excess relativistic energy density of ΔN_{eff} ~ 1.
- → Sterile states have the same temperature as the SM neutrinos.

Light sterile neutrinos and N_{eff}...


• SBL-preferred Δm^2 and mixing favour the **production and** thermalisation of sterile neutrinos in the early universe via $v_{\alpha} \leftrightarrow v_{s}$ oscillations + v_{α} scattering.

- Can easily produce an excess relativistic energy density of ΔN_{eff} ~ 1.
- → Sterile states have the same temperature as the SM neutrinos.

Can the short baseline sterile neutrino explain $N_{eff} > 3$?

- Short answer: Not so easy.
- Reason: eV mass neutrinos violate CMB+LSS hot dark matter bounds.

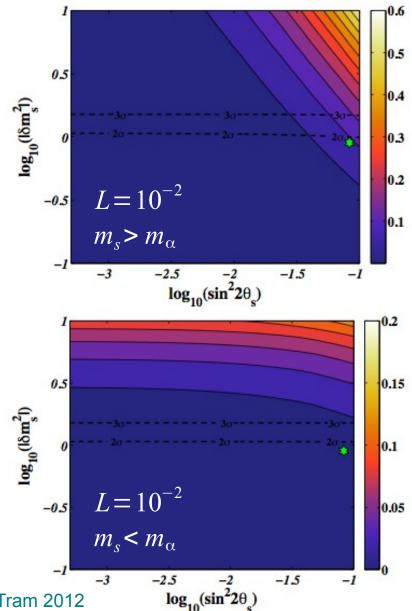
• 3+1 thermalised sterile:

$$m_s < 0.48 \text{ eV} (95\% C.I.)$$

Lab best-fit: $m_s \sim 1$ eV

• 3+2 thermalised sterile:

$$m_{s1} + m_{s2} < 0.9$$
 eV $(95\% C.I.)$


Lab best-fit: $m_{s1} \sim 0.7$ eV, $m_{s2} \sim 0.9$ eV

Is there a way out? Plan A...

 Suppress sterile neutrino thermalisation using, e.g., a large lepton asymmetry (L >> B ~ 10⁻¹⁰).

Foot & Volkas 1995

- Generating a large lepton asymmetry requires new physics.
- If complete suppression, then N_{eff} > 3 must be explained by some other physics (subeV thermal axions, hidden photons, etc.?)

Hannestad, Tamborra & Tram 2012

Grin, Smith, and Kamionkowski, Axion constrains in non-standard thermal histories, arXiv:0711.1352 [astro-ph]; Kawasaki, Nakayama ,and Senami, Cosmological implications of supersymmetric axion models, arXiv:0711.3083 [hep-ph]; Feng, Tu and Yu, Thermal Relics in Hidden Sectors, arXiv:0808.2318 [hep-ph]; **Nelson and Walsh**, Chameleon vector bosons, arXiv:0802.0762 [hep-ph]; Ackermann, Buckley, Carroll, and Kamionkowski, Dark Matter and Dark Radiation, arXiv:0810.5126 [hep-ph]; **Mahato**, Torsion, Dirac Field, Dark Matter and Dark Radiation, gr-qc/0603134; Jäckel, Redondo, and Ringwald, Signatures of a hidden cosmic microwave background, arXiv:0804.4157 [astro-ph]; Hasenkamp, Dark radiation from the axino solution of the gravitino problem, arXiv:1107.4319 [hep-ph]; Kobayashi, Takahashi, Takahashi, and Yamaguchi, Dark Radiation from Modulated Reheating, arXiv:1111.1336 [astro-ph.CO]; Feng, **Rentala and Surujon**, WIMPless Dark Matter from an AMSB Hidden Sector with No New Mass Parameters, arXiv:1111.4479 [hep-ph]; **Hooper, Queiroz, and Gnedin,** Non-Thermal Dark Matter Mimicking An Additional Neutrino Species In The Early Universe, arXiv:1111.6599 [astro-ph.CO]; Menestrina and Scherrer, Dark Radiation from Particle Decays during Big Bang Nucleosynthesis, arXiv:1111.0605 [astro-ph.CO]; Aslanbeigi, Robbers, Foster, Kohri, and Afshordi, Phenomenology of Gravitational Aether as a solution to the Old Cosmological Constant Problem, arXiv:1106.3955 [astro-ph.CO]; Chen and Lin, Cosmon as the Modulon: Non-Gaussianity from Dark Enegry, arXiv:1104.0982 [hep-ph]; Das and Weiner, Late Forming Dark Matter in Theories of Neutrino Dark Energy, astro-ph/0611353; Nakayama, Takahashi, and Yanagida, A theory of extra radiation in the Universe, arXiv:1010.5693 [hep-ph;] **Fischler and Meyers**, Dark Radiation Emerging After Big Bang Nucleosynthesis?, arXiv:1011.3501 [astro-ph.CO]; **Dreiner, Hanussek, Kim, and Sarkar**, Gravitino cosmology with a very light neutralino, arXiv:1111.5715 [hep-ph]; Foot, Mirror dark matter cosmology predictions for Neff[CMB] and Neff[BBN], arXiv:1111.6366 [astro-ph.CO]; Jeong and Takahashi, Light Higgsino from Axion Dark Radiation, arXiv:1201.4816 [hep-ph]; Kaplan, Krnjaic, Rehermann, and Wells, Dark Atoms: Asymmetry and Direct Detection, arXiv:1105.2073 [hep-ph]; Cicoli, Large extra dimensions and light hidden photons from anisotropic string vacua, arXiv:1111.0790 [hep-th];

Is there a way out? Plan B...

- Failing to suppress v_s thermalisation, exploit parameter degeneracies in the CMB+LSS to engineer a good fit.
- No room for play within the Λ CDM model, but extensions of Λ CDM can help to relax the hot dark matter constraint on m_s:
 - Non-standard dark energy equation of state.
 - Modified gravity.
 - Non-flat spatial geometry.
 - Even more massless degrees of freedom.

- ...

Is there a way out? Plan B...

- Failing to suppress v_s thermalisation, exploit parameter degeneracies in the CMB+LSS to engineer a good fit.
- No room for play within the Λ CDM model, but extensions of Λ CDM can help to relax the hot dark matter constraint on m $_{\rm s}$:
 - Non-standard dark energy equation of state.
 - Modified gravity.
 - Non-flat spatial geometry.
 - Even more massless degrees of freedom.

1 x 1 eV sterile neutrino can be reasonably accommodated.

1 x 2eV or 2 x 1 eV is still problematic...

- ...

Is there a way out? Plan B...

Modified gravity scenario to explain accelerated expansion in lieu of dark energy /

An example: accommodating 1eV sterile neutrinos with f(R) gravity:

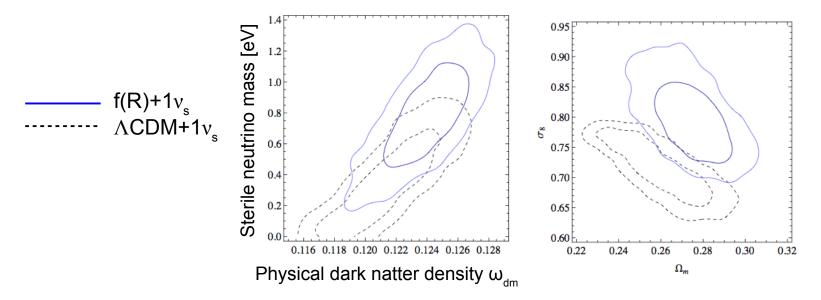
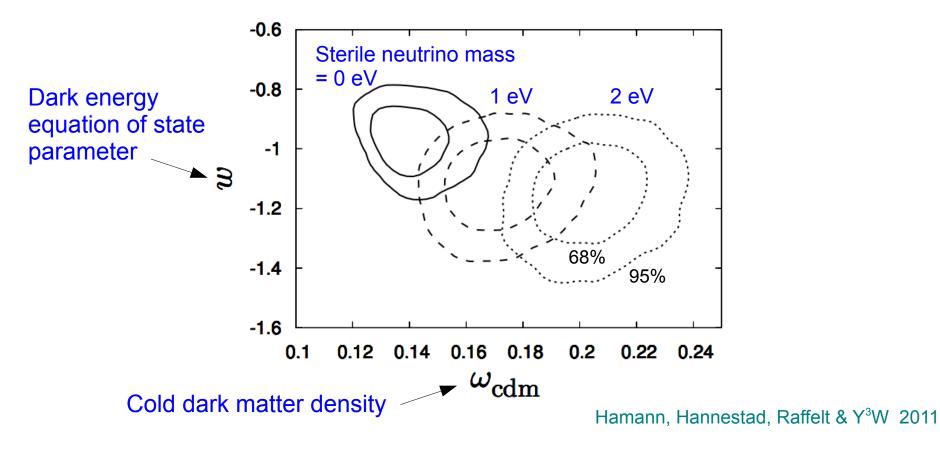



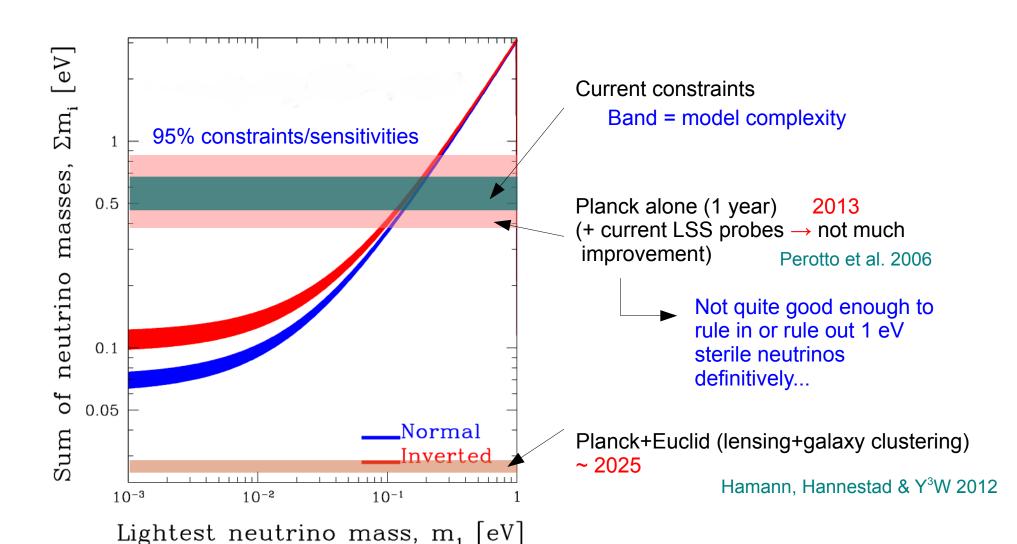
FIG. 1: 1 and 2σ contours of the sterile neutrino mass (left) and σ_8 (right) for the cases with three massless and one massive neutrinos in the Λ CDM model (dashed black) and f(R) gravity (solid blue). $\chi_{\text{eff}}^2 = 3774.1$ and 3767.0, respectively.

Necessary side effects...

 Exploiting parameter degeneracies also implies that other (unrelated) cosmological parameter values will change.

Planck and N_{eff}...

• If N_{eff} is as large as 4, it will be settled almost immediately by Planck (launched May 14, 2009; public data release early 2013).

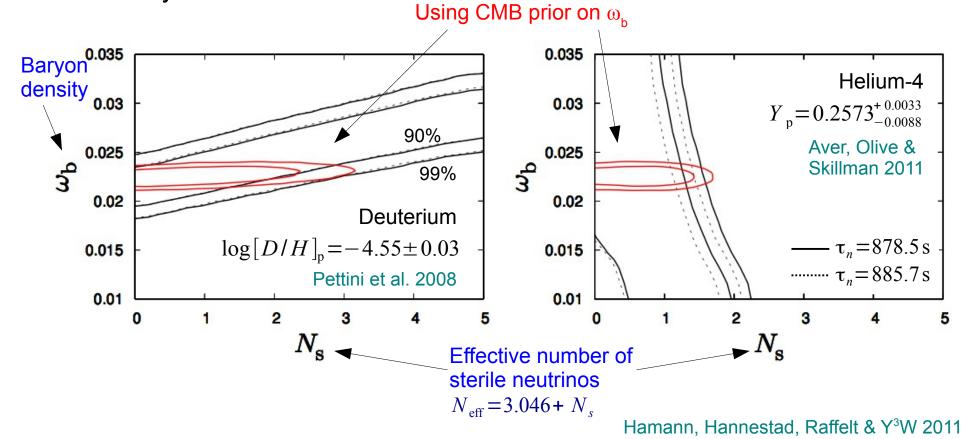

68% sensitivities

Experiment	$f_{ m sky}$	θ_b	$w_T^{-1/2}$	$w_P^{-1/2}$	$\Delta N_{ u}$	$\Delta N_{ u}$	$\Delta N_{ u}$ (free Y)
			$[\mu K']$	$[\mu K']$	TT	TT+TE+EE	TT+TE+EE
Planck	0.8	7'	40	56	0.6	0.20	0.24
ACT	0.01	1.7'	3	4	1	0.47	0.9
ACT + Planck					0.4	0.18	0.24
CMBPOL	0.8	4'	1	1.4	0.12	0.05	0.09

Bashinsky & Seljak 2004

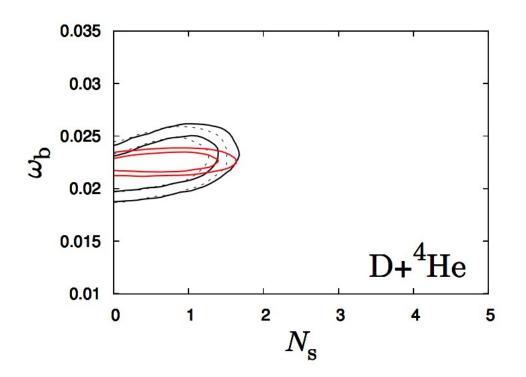
Helium fraction as a free parameter

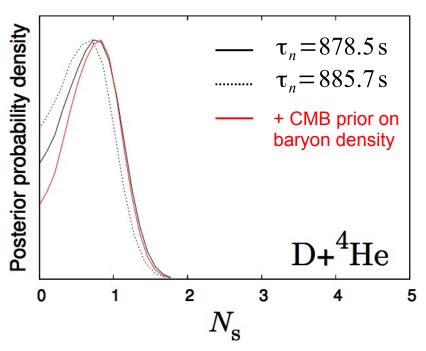
Planck and neutrino mass...


Summary...

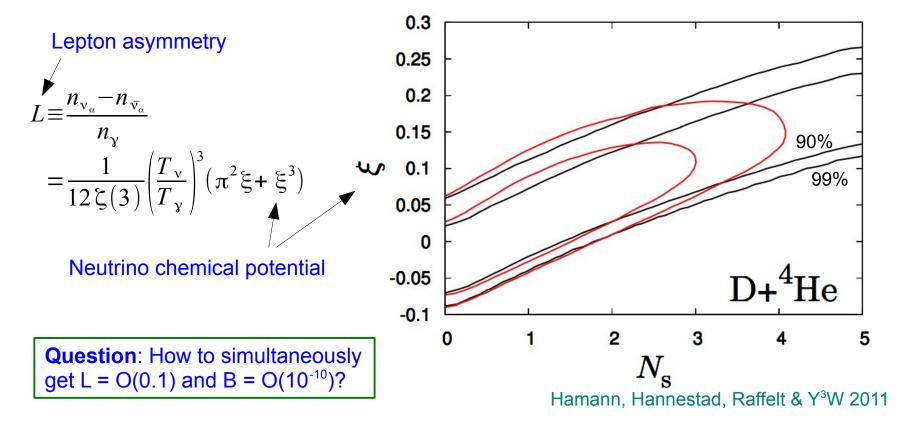
- Current precision cosmological data show a preference for extra relativistic degrees of freedom (beyond 3 neutrinos).
- Sterile neutrino interpretation of short baseline neutrino anomalies does not quite fit into the simplest picture though...
 - 3+2: **Too many** for BBN
 - 3+1, 3+2: **Too heavy** for CMB/LSS
- Non-trivial extensions to ΛCDM can reasonably accommodate 1 x 1 eV fully thermalised sterile neutrino species.
- Planck with tell (at least part of the story).

3. Extra slides: BBN


Evidence for $N_{eff} > 3$ from BBN...


 Light element abundances are sensitive to excess relativistic energy density.

Evidence for $N_{eff} > 3$ from BBN...


- Mild preference for N_{eff} > 3 (or N_s > 0) from Deuterium+Helium-4.
- But N_s = 2 is strongly disfavoured.

Quick fix: degenerate BBN...

- Introduce a neutrino chemical potential (= O(0.1) lepton asymmetry).
- Then even $N_s = 3$ is allowed by BBN.

