Large θ_{13} and a Novel Origin of CP Violation in SUSY SU(5) x T²

K.T. Mahanthappa, University of Colorado, Boulder

in collaboration with M.-C. Chen under preparation; arXiv:1107.3856; Phys. Lett. B681 (2009) 444; Phys. Lett. B652 (2007) 34

BENE 2012, Trieste, Italy, September 16-22, 2012

Where Do We Stand?

- Exciting Time in v Physics: recent hints of large θ_{13} from T2K, MINOS, Double Chooz, and Daya Bay
- Latest 3 neutrino global analysis (including recent results from reactor experiments):

$$P(\nu_a \to \nu_b) = \left| \left\langle \nu_b | \nu, t \right\rangle \right|^2 \simeq \sin^2 2\theta \, \sin^2 \left(\frac{\Delta m^2}{4E} L \right)$$

Fogli, Lisi, Marrone, Montanino, Palazzo, Rotunno, 2012

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5} \text{ eV}^2$ (NH or IH)	7.54	7.32 - 7.80	7.15-8.00	6.99 - 8.18
$\sin^2 \theta_{12} / 10^{-1}$ (NH or IH)	3.07	2.91-3.25	2.75-3.42	2.59-3.59
$\Delta m^2/10^{-3} \text{ eV}^2 \text{ (NH)}$	2.43	2.33-2.49	2.27-2.55	2.19-2.62
$\Delta m^2 / 10^{-3} \mathrm{eV}^2$ (IH)	2.42	2.31-2.49	2.26-2.53	2.17 - 2.61
$\sin^2 \theta_{13} / 10^{-2}$ (NH)	2.41	2.16 - 2.66	1.93-2.90	1.69 - 3.13
$\sin^2 \theta_{13} / 10^{-2}$ (IH)	2.44	2.19-2.67	1.94-2.91	1.71 - 3.15
$\sin^2 \theta_{23} / 10^{-1}$ (NH)	3.86	3.65 - 4.10	3.48-4.48	3.31 - 6.37
$\sin^2 \theta_{23} / 10^{-1}$ (IH)	3.92	3.70 - 4.31	$3.53 - 4.84 \oplus 5.43 - 6.41$	3.35 - 6.63
δ/π (NH)	1.08	0.77 - 1.36		
δ/π (IH)	1.09	0.83 - 1.47	—	

Origin of Mass Hierarchy and Mixing

- Several models have been constructed based on
 - GUT Symmetry [SU(5), SO(10)] ⊕ Family Symmetry G_F
- Family Symmetries G_F based on continuous groups:
 - U(1)
 - SU(2)
 - SU(3)

GUT Symmetry SU(5), SO(10), ...

(T', SU(2), ...)

- Recently, models based on discrete family symmetry groups have been constructed
 - A₄ (tetrahedron)
 - T´ (double tetrahedron)
 - S₃ (equilateral triangle)
 - S₄ (octahedron, cube)
 - A₅ (icosahedron, dodecahedron)
 - <u>\</u>27
 - Q₄

Motivation: Tri-bimaximal (TBM) neutrino mixing

Discrete gauge anomaly constraints: Araki, Kobayashi, Kubo, Ramos-Sanchez, Ratz, Vaudrevange (2008)

Tri-bimaximal Neutrino Mixing

• Neutrino Oscillation Parameters $P(\nu_a \rightarrow \nu_b) = |\langle \nu_b | \nu, t \rangle|^2 \simeq \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4E}L\right)$

$$U_{MNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Latest Global Fit (3σ)

Fogli, Lisi, Marrone, Montanino, Palazzo, Rotunno, 2012

 $\sin^2 \theta_{atm} = 0.386 \ (0.331 - 0.637) \qquad \qquad \sin^2 \theta_{\odot} = 0.307 \ (0.259 - 0.359)$

 $\sin^2 \theta_{13} = 0.0241 \ (0.0169 - 0.0313)$

Tri-bimaximal Mixing Pattern

Harrison, Perkins, Scott (1999)

$$U_{TBM} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix} \qquad \sin^2 \theta_{\rm atm, TBM} = 1/2 \qquad \sin^2 \theta_{\odot, TBM} = 1/3 \\ \sin \theta_{13, TBM} = 0.$$

Leading Order: TBM (from symmetry) + Corrections (dictated by symmetry)

Group Theory of T´

- Smallest Symmetry to realize TBM \Rightarrow Tetrahedral group A₄
- tetrahedral group A4: Ma, Rajasekaran (2001); Babu, Ma, Valle (2003)
 - even permutations of four objects: S: (1234) \rightarrow (4321), T: (1234) \rightarrow (2314)
 - geometrically -- invariant group of tetrahedron
 - does NOT give rise to CKM mixing: V_{ckm} = 1
 - all CG coefficients real
- Double covering of tetrahedral group A₄:

Frampton & Kephart, (1994)

• in-equivalent representations:

A4: 1, 1', 1", 3 (vectorial)
other: 2, 2', 2" (spinorial)
$$\longrightarrow$$
 TBM for neutrinos
2 +1 assignments for quarks
• generators:
 $S^2 = R, T^3 = 1, (ST)^3 = 1, R^2 = 1$ R=1: 1, 1', 1", 3
R=-1: 2, 2', 2"

• generators: in 3-dim representations, T-diagonal basis

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2\omega & 2\omega^2 \\ 2\omega^2 & -1 & 2\omega \\ 2\omega & 2\omega^2 & -1 \end{pmatrix} \qquad \qquad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}$$

• product rules:

$$1^{0} \equiv 1, \ 1^{1} \equiv 1', \ 1^{-1} \equiv 1''$$

$$1^{a} \otimes r^{b} = r^{b} \otimes 1^{a} = r^{a+b} \quad \text{for } r = 1, 2 \quad a, b = 0, \pm 1$$

$$1^{a} \otimes 3 = 3 \otimes 1^{a} = 3$$

$$2^{a} \otimes 2^{b} = 3 \oplus 1^{a+b}$$

$$2^{a} \otimes 3 = 3 \otimes 2^{a} = 2 \oplus 2' \oplus 2''$$

$$3 \otimes 3 = 3 \oplus 3 \oplus 1 \oplus 1' \oplus 1''$$

- intrinsic complex CG coefficients in T' (complexity independent of choice of basis for generators)
- spinorial x spinorial \supset vector:

J. Q. Chen & P. D. Fan, J. Math Phys 39, 5519 (1998)

$$2 \otimes 2 = 2' \otimes 2'' = 2'' \otimes 2' = 3 \oplus 1$$
$$3 = \begin{pmatrix} \left(\frac{1-i}{2}\right) (\alpha_1 \beta_2 + \alpha_2 \beta_1) \\ i\alpha_1 \beta_1 \\ \alpha_2 \beta_2 \end{pmatrix}$$

• spinorial x vector \supset spinorial:

$$2\otimes 3 = 2\oplus 2'\oplus 2''$$

$$2 = \begin{pmatrix} (1+i)\alpha_2\beta_2 + \alpha_1\beta_1\\ (1-i)\alpha_1\beta_3 - \alpha_2\beta_1 \end{pmatrix}$$

A Novel Origin of CP Violation

M.-C.Chen, K.T. M Phys. Lett. B681, 444 (2009)

- Conventionally:
 - explicit CP violation: complex Yukawa couplings
 - spontaneous CP violation: complex Higgs VEVs
- Complex CG coefficients in $T' \Rightarrow$ explicit CP violation
 - real Yukawa couplings, real Higgs VEVs
 - CP violation determined entirely by complex CG coefficients
 - no additional parameters needed ⇒ extremely predictive model!

$$\mathcal{L}_{\rm FF} = \frac{1}{M_x \Lambda} \begin{bmatrix} \mathcal{L}_{\rm FF} = \frac{1}{\overline{M_5}} \begin{bmatrix} \lambda_1 H_5 H_5 \overline{F} \overline{F} \overline{F} \\ \lambda_2 H_5 H_5 \overline{F} \overline{F} \eta \end{bmatrix}, \quad (6)$$

where M_x is the cutoff scale at which the lepton number violation operator $HH\overline{F}\overline{F}$ is generated, where M_x is the cutoff scale at which the lepton number violation operator $HH\overline{F}\overline{F}$ is generated, $(z_1, z_2 \sqrt{\tilde{n}}) \tilde{t} \tilde{e}^4 \Lambda$ is the cutoff scale; above which the ${}^{(d)}T$ symmetry is exact. The parameters y's and λ 's while Λ is the cutoff scale, above which $z_1 e z_2 Tz_3 y x_1 p e^{\pm y}$ (is exact.) The parameters, y(b) and λ 's are the coupling constants. The vacuum expectation values (VEV's) of various SU(5) singlet scalar $\begin{array}{c} \begin{array}{c} z = x_{5} + y_{4} \otimes 3 = 3 \oplus 3 \oplus 1 \oplus 1' \oplus 1'' \\ z = x_{5} + y_{4} \otimes 3 = 3 \oplus 3 \oplus 1 \oplus 1' \oplus 1'' \oplus 1'' \\ \end{array}$ $\begin{array}{c} \begin{array}{c} HHLL \\ (d)_{T} \longrightarrow G_{TST^{2}} : \\ \end{array} \\ \begin{array}{c} z = x_{5} + y_{4} \otimes 3 = 3 \oplus 3 \oplus 1 \oplus 1' \oplus 1'' \\ \vdots \\ 1 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} y_{7} & y_{7} \\ (d)_{T} & y_$ (7)(8)(9)(10)(11)where G_{TST^2} using the product rules: sentation is given by $[9]_{3}$ $[1''_{3}]_{3}$ $[1''_{3}]_{3}$ $[1''_{3}]_{3}$ $[1''_{4}]_{3}$ $[1''_{4}]_{4}$ where G_{TST²} devlotes the student open the state of th (12)(12)9

while $G_{\rm T}$ and $G_{\rm S}$ denote subgroup generated by the elements T and S respectively. (Our notation is the same as in Ref. [10]). The details concerning vacuum alignment of these VEV's will be

Tri-bimaximal Neutrino Mixing

• Neutrino Masses: triplet flavon contribution

$$3_{S} = \frac{1}{3} \begin{pmatrix} 2\alpha_{1}\beta_{1} - \alpha_{2}\beta_{3} - \alpha_{3}\beta_{2} \\ 2\alpha_{3}\beta_{3} - \alpha_{1}\beta_{2} - \alpha_{2}\beta_{1} \\ 2\alpha_{2}\beta_{2} - \alpha_{1}\beta_{3} - \alpha_{3}\beta_{1} \end{pmatrix} \qquad \qquad 1 = \alpha_{1}\beta_{1} + \alpha_{2}\beta_{3} + \alpha_{3}\beta_{2}$$

Neutrino Masses: singlet flavon contribution

$$1 = \alpha_1 \beta_1 + \alpha_2 \beta_3 + \alpha_3 \beta_2$$

• resulting mass matrix:

$$M_{\nu} = \frac{\lambda v^{2}}{M_{x}} \begin{pmatrix} 2\xi_{0} + u & -\xi_{0} & -\xi_{0} \\ -\xi_{0} & 2\xi_{0} & u - \xi_{0} \\ -\xi_{0} & u - \xi_{0} & 2\xi_{0} \end{pmatrix} \qquad U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$
$$V_{\nu}^{\text{T}} M_{\nu} V_{\nu} = \text{diag}(u + 3\xi_{0}, u, -u + 3\xi_{0}) \frac{v_{u}^{2}}{M_{x}}$$
Form diagonalizable:
-- no adjustable parameters

-- neutrino mixing from CG coefficients!

$$\frac{HHLL}{M}\left(\frac{\langle \xi \rangle}{\Lambda} + \frac{\langle \eta \rangle}{\Lambda}\right)$$

$$\frac{(\xi \rangle}{\Lambda} + \frac{\langle \eta$$

$$(v_S + \delta v_{S1}, v_S + \delta v_{S2}, v_S + \delta v_{S3}), \quad \langle \varphi_T \rangle = (\psi_T + \delta v_{T1}, \delta v_{T2}, \delta v_{T3}),$$

The Model

M.-C.Chen, K.T.M., under preparation; Phys. Lett. B652, 34 (2007); Phys. Lett. B681, 444 (2009)

• Symmetry: SUSY SU(5) x T'

• Particle Content $10(Q, u^c, e^c)_L$ $\overline{5}(d^c, \ell)_L$ $\omega = e^{i\pi/6}$

	T_3	T_a	\overline{F}	N	H_5	$H'_{\overline{5}}$	Δ_{45}	ϕ	ϕ'	ψ	ψ'	ζ	ζ'	ξ	η	$\eta^{\prime\prime}$	S
SU(5)	10	10	$\overline{5}$	1	5	$\overline{5}$	45	1	1	1	1	1	1	1	1	1	1
T'	1	2	3	3	1	1	1'	3	3	2'	2	1"	1'	3	1	1''	1
Z_{12}	ω^5	ω^2	ω^5	ω^7	ω^2	ω^2	ω^5	ω^3	ω^2	ω^6	ω^9	ω^9	ω^3	ω^{10}	ω^{10}	ω^{10}	ω^{10}
Z'_{12}	ω	ω^4	ω^8	ω^5	ω^{10}	ω^{10}	ω^3	ω^3	ω^6	ω^7	ω^8	ω^2	ω^{11}	1	1	1	ω^2

- additional $Z_{12} \times Z'_{12}$ symmetry:
 - predictive model: only 11 operators allowed up to at least dim-7
 - vacuum misalignment: neutrino sector vs charged fermion sector
 - mass hierarchy: lighter generation masses allowed only at higher dim
 - forbids Higgsino mediated proton decay

The Model

• Superpotential: only 11 operators allowed

$$\begin{split} \mathcal{W}_{\text{Yuk}} &= \mathcal{W}_{TT} + \mathcal{W}_{TF} + \mathcal{W}_{\nu} \\ \mathcal{W}_{TT} &= y_t H_5 T_3 T_3 + \frac{1}{\Lambda^2} H_5 \left[y_{ts} T_3 T_a \psi \zeta + y_c T_a T_b \phi^2 \right] + \frac{1}{\Lambda^3} y_u H_5 T_a T_b \phi'^3 \quad \text{up type quarks} \\ \mathcal{W}_{TF} &= \frac{1}{\Lambda^2} y_b H_5' \overline{F} T_3 \phi \zeta + \frac{1}{\Lambda^3} \left[y_s \Delta_{45} \overline{F} T_a \phi \psi \zeta' + y_d H_{\overline{5}'} \overline{F} T_a \phi^2 \psi' \right] \quad \text{down type quarks} \\ \mathcal{W}_{\nu} &= \lambda_1 NNS + \frac{1}{\Lambda^3} \left[H_5 \overline{F} N \zeta \zeta' \left(\lambda_2 \xi + \lambda_3 \eta + \lambda_4 \eta'' \right) \right] \quad \text{neutrino masses} \end{split}$$

 $\Lambda:$ scale above which T' is exact

Reality of Yukawa couplings: ensured by degrees of freedom in field redefinition

	$\tau(p \to e^+ \pi^0) > 8.2 \times 10^{33} \text{ years}$ (90% CL, SuperK 2009) (1)		
	$\tau(p \to \overline{\nu}K^+) > 2.3 \times 10^{33} \text{ years}$ (90% CL, SuperK 2005) (2)]
The Model	$V_{e,R}^{\dagger} M_e V_{e,L} = \operatorname{diag}(m_e, m_{\mu}, m_{\tau})$ $V_{\nu,L}^T M_{\nu} V_{\nu,L} = \operatorname{diag}(m_1, m_2, m_3)$		
 Abelian subgroups of T[^] 	$\begin{array}{c c} V_{u,R}^{\dagger} M_{u} V_{u,T} = \operatorname{diag}(m_{u}, m_{c}, m_{t}) \\ V_{u,R}^{\dagger} T_{3}^{*} T_{a} = \overline{F} N^{*} M_{5}^{*} H_{5}^{*} \Delta_{45} & \phi & \phi' \\ V_{d_{1}R}^{\dagger} M_{\nu} V_{d,L} = \operatorname{diag}(m_{d}, m_{s}, m_{b}) \\ \overline{SU(5)}_{d_{1}R}^{\dagger} 10 & \overline{5} & \overline{5} & 45 & 1 & 1 \end{array}$	$\psi \psi' \zeta$	ζ'
G_T	$T = \begin{bmatrix} 30(3) & 10 & 10 & 3 & 1 & 3 & 3 & 43 & 1 & 1 \\ T'^0 & 1 & 2 & 3 & 3 & 1 & 2^{2\pi i/8} & 1' & 3 & 3 \\ \hline T'^0 & 1 & 2 & 3 & 3 & 1 & 1' & 3 & 3 \\ \hline T'^0 & 1 & 2 & 3 & 3 & 1 & 1' & 3 & 3 & 1' & 3 & 3 & 1' & 1'$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1' ω^3
G_S, G_{TST^2}	$S = \frac{1}{3} \begin{pmatrix} -1 & 2\omega & \frac{2}{2}\omega^2 \\ 2\omega^2 & -1 & 2\omega \\ 2\omega & 2\omega^2 & -1 \end{pmatrix} \stackrel{\tilde{H}}{TST^2} = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$	$\frac{\omega^4 \omega^6 \omega^2}{1}$	
 T´ Breaking neutrino sector → 	$ \begin{array}{c c} \sqrt{m_1}\sqrt{y_T} _{T'} & \overline{y_t}H_{5}T_{3}T_{3} + \frac{1}{\Lambda^2}H_{5}O[\overline{y_t}yD_{3}T_{3}\psi\zeta\eta\varphi] \hat{y_c}T_{a}T_{b}\varphi^2] + \frac{1}{\Lambda^2} \\ & \left \sqrt{m_1} _{\overline{V}} _{\sqrt{m_3}} _{\overline{V}} = \frac{1}{\Lambda^2} \frac{2 \sqrt{m_2} _{T}}{y_s} for (3\xi_0 + \eta_0)(3\xi_0 - \eta_0) < 0 \\ & exact tri-binary intral ranking \overline{\Lambda^3} y_s \Delta_{45}FT_a \phi \psi \zeta' + y_d H_{\overline{5}'}F \\ \end{array} \right $	$\left. \frac{1}{\Lambda^3} y_u H_5 T_a T_b \phi'^3 \right.$ $\left. \frac{1}{T_a} \phi^2 \psi' \right] ,$	(1) (2)
$T' \rightarrow 0$	$\mathcal{W}_{\nu} = \lambda_{1} N N S_{0} + \eta_{0} \frac{1}{\lambda_{1}^{2}} \left[\frac{1}{\delta_{0} + \eta_{0}} \frac{1}{\lambda_{1}^{2}} \left[\frac{1}{\delta_{0} + \eta_{0}} \frac{1}{\lambda_{1}^{2}} \left[\frac{1}{\delta_{0} + \eta_{0}} \frac{1}{\lambda_{1}^{2}} \frac{1}{\delta_{0} - \lambda_{1}} \frac{1}{\delta_{0} - \lambda_{$		(3)
$T'-\mathrm{inv}$	$m_{2} = \eta_{2}^{2} \underbrace{\begin{pmatrix} \zeta_{0}\zeta_{0}\rho_{u} \end{pmatrix}^{2}}_{2\xi_{0}\Lambda} + \eta_{0} & -\xi_{0} & -\xi_{0} + \eta_{0}'' \\ M_{D} = \begin{pmatrix} -\xi_{0} & -\xi_{0} & -\xi_{0} + \eta_{0} \\ (-3\xi_{0} + \eta_{0})^{2} & (\zeta_{0}^{2}\xi_{0}\rho_{u})^{2} & \eta_{0}'' & -\xi_{0} + \eta_{0} \\ (-3\xi_{0} + \eta_{0})^{2} & (\zeta_{0}^{2}\xi_{0}\rho_{u})^{2} & \eta_{0}'' & -\xi_{0} + \eta_{0} \\ \chi_{1} = u\Lambda & \langle \eta \rangle = u\Lambda & \langle \eta \rangle = u\Lambda \end{pmatrix} \zeta_{0}\zeta_{0}'' \chi_{1}$ wariant:	$u \equiv h_D v_u ,$ (1)	(4)
T' –	$\langle \eta'' \rangle = \eta_0' \langle \zeta_0' \rangle = \zeta_0' \Lambda \qquad \langle \eta'' \rangle = \eta_0'' \Lambda$	(2)	

The Model

• charged fermion sector

$$T' \to G_{TST^2}: \qquad \langle \phi' \rangle = \phi_0 \Lambda \begin{pmatrix} 1\\ 1\\ 1 \\ 1 \end{pmatrix}$$
$$T' \to G_T: \qquad \langle \phi \rangle = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \phi_0 \Lambda, \ \langle \psi \rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix} \psi_0 \Lambda$$

 $T' \rightarrow \text{nothing:} \qquad \langle \psi' \rangle = \psi'_0 \Lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$T' \to G_S$$
: $\langle \zeta \rangle = \zeta_0 \Lambda, \quad \langle \zeta' \rangle = \zeta'_0 \Lambda$

15

$\begin{array}{c} \text{current bound:} & \langle m \rangle \equiv \left \sum_{i=1,2,3}^{2} m_i U_{ie}^2 \right \\ \text{current bound:} & \langle m \rangle \equiv \left \sum_{i=1,2,3}^{2} m_i U_{ie}^2 \right \\ \end{array} \right. \tag{3}$
$ ilde{\ell} = ilde{I}, 2, 3 \ ilde{ extsf{ extsf{ ilde{H}}}} = ilde{I}, 2, 3 \ ilde{ extsf{ ilde{H}}} = ilde{ extsf{ i$
Up Quark Sector
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
• top mass: allowed by T'
• lighter family acquire masses thru operators with higher dimensionality $_{2}(\zeta_{0}\zeta_{0}'v_{u})^{2}(\zeta_{0}\zeta_{0}'v_{u})^{2}$
• dynamical origin of mass hierarchy $m_2 = \eta_0^{n_2 \cdot s_0 \cdot \frac{s_0}{2} \cdot u} \eta_0^{-\frac{s_0}{2} \cdot s_0 \cdot \frac{s_0}{2} \cdot s_$
• symmetry breaking: $m_{3} = 4\eta_{3} \cdot s_{\xi_{0}} + \eta_{0} - s_{0} + \eta_{0} + \eta_{0} - s_{0} + \eta_{0} + \eta$
$T' \to G_T \qquad \langle \phi \rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \phi_0 \Lambda , \ \langle \psi \rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \psi_0 \Lambda \qquad T' \to G_S : \ \langle \zeta \rangle = \zeta_0 \Lambda \qquad \langle \zeta' \rangle = \xi'_0 \Lambda \langle \zeta' \rangle \text{elegnents involving} \\ \text{Ist family; true to all}$
$T' \to G_{TST^2}: \qquad \qquad \langle \phi' \rangle = \phi'_0 \Lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \qquad$
• Mass matrix: $M = \begin{pmatrix} i\phi_0'^3 & \frac{1-i}{2}\phi_0'^3 & 0 \\ \frac{1-i}{2}\phi_0'^3 & \frac{1-i}{2}\phi_0'^3 & 0 \end{pmatrix}$ both vector and spinorial provides d
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & $
17

Model Predictions

M.-C.Chen, K.T.M., Phys. Lett. B652, 34 (2007); Phys. Lett. B681, 444 (2009)

• Charged Fermion Sector (7 parameters)

$$M_{u} = \begin{pmatrix} ig & \frac{1-i}{2}g \\ \frac{1-i}{2}g & g + (1-\frac{i}{2})h \\ 0 & k \end{pmatrix} y_{t}v_{u}$$

$$V_{cb}$$

$$M_{d}, M_{e}^{T} = \begin{pmatrix} 0 & (1+i)b & 0 \\ -(1-i)b & (1,-3)c & 0 \\ b & 1 \end{pmatrix} y_{b}v_{d}\phi_{0}$$

$$V_{ub}$$

$$V_{ub}$$

$$\theta_{c} \simeq |\sqrt{m_{d}/m_{s}} - e^{i\alpha}\sqrt{m_{u}/m_{c}}| \sim \sqrt{m_{d}/m_{s}},$$

$$\theta_{12}^{e} \simeq \sqrt{\frac{m_{e}}{m_{\mu}}} \simeq \frac{1}{3}\sqrt{\frac{m_{d}}{m_{s}}} \sim \frac{1}{3}\theta_{c}$$

$$Georgi-Jarlskog relations \Rightarrow V_{d,L} \neq I$$

$$SU(5) \Rightarrow M_{d} = (M_{e})^{T}$$

$$\Rightarrow \text{ corrections to TBM related to } \theta_{c}$$

• model parameters:

7 parameters in charged fermion sector

$$b \equiv \phi_0 \psi'_0 / \zeta_0 = 0.00304 \qquad y_t / \sin \beta = 1.25$$

$$c \equiv \psi_0 \zeta'_0 / \zeta_0 = -0.0172 \qquad y_b \phi_0 \zeta_0 / \cos \beta \simeq 0.011$$

$$k \equiv y' \psi_0 \zeta_0 = -0.0266 \qquad \tan \beta = 10$$

$$g \equiv \phi'^3_0 = 1.45 \times 10^{-5}$$

19

Numerical Results

• Experimentally: $m_u: m_c: m_t = \theta_c^{7.5}: \theta_c^{3.7}: 1$ $m_d: m_s: m_b = \theta_c^{4.6}: \theta_c^{2.7}: 1$ CKM Matrix and Quark CPV measures: $|V_{CKM}| = \begin{pmatrix} 0.974 & 0.227 & 0.00412\\ 0.227 & 0.973 & 0.0412\\ 0.00718 & 0.0408 & 0.999 \end{pmatrix}$ predicting: 9 masses, 3 mixing angles, 1 CP Phase; all agree with exp within 3σ **CPV** entirely from **CG** coefficients Direct measurements @ 3o $\gamma \equiv \arg\left(\frac{-V_{ud}V_{ub}^*}{V_{cd}V_{ub}^*}\right) = \delta_q = 45.6^o ,$ (CKMFitter, ICHEP2012) $\sin 2\beta = 0.691^{+0.060}_{-0.047}$ $J \equiv \text{Im}(V_{ud}V_{cb}V_{ub}^*V_{cs}^*) = 2.69 \times 10^{-5}$, γ (degree) = 66^{+36}_{-30} 0.20 excluded area has GL > 68.3.95 % excluded area has CL > 68.3.95 % α (degree) = 89^{+21}_{-13} GLW₊ADS GLW+ADS Recent LHCb result on 0.15 **GGS**Z 0.15 gamma angle: New results push () 0.10 ²⁰ the combined bestfit value to a lower value of r_B . Combined Combined value for gamma 0.05 0.05 preliminary going down! preliminary 40 60 80 100 120 140 60 80 100 120 140 160 γ (D(*)K(*)) (deg) γ (D(*)K(*)) (deg)

Model Predictions

 $\eta_0^{[0,22]} = 0$ $\begin{array}{c} V_{1,R}^{\dagger}M, V_{d,L} = \underset{m_{d}}{\operatorname{diag}}(m_{d}, m_{d}) \\ \Gamma_{3}T, U_{2}^{\dagger}T_{2}^{\dagger} \mathcal{Y}_{0}^{\dagger}T_{0}^{\dagger} \mathcal{Y}_{0}^{\dagger} \mathcal{Y}_{0$ (1) $f_{u}H_{5}T_{a}T_{b}\phi^{\prime}$ (\$) $\begin{array}{c} \text{current bound:} & 1 \langle m \rangle = \psi + \frac{1}{2} & \frac{1}{$ $\eta'_{(3)}$ SAufa A. 10 DO X 2 D 2 D HIF DE CARE 10 39 0 DO Sn1 η 9 لىبى ω^{10} ,10 $\sqrt{m_{3}}$ $|_{...} = 22 \sqrt{m_{2}}$ in 62645 Cempny Figenvectors Metemp $\mathbb{E}_{20} = \mathbb{E}_{20} = \mathbb{E}$ $\frac{1}{\eta_{0}^{2}} = 0, \frac{1}{\eta_{1}^{2}} = 0, \frac{1}{\eta_$ $= \eta_{0} + \eta_{1} + \eta_{1} + \eta_{2} + \eta_{3} + \eta_{4} + \eta_{5} + \eta$ Mort KSO SOM $\frac{1}{3} = \frac{1}{3} = \frac{1}$ $U_{MNS} = V_{L} = V_$ new contribution does not $\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{$ $f_{\text{conjugate[vece]].vecnu;}^{\text{mns}}$ $\mathbf{y}_{23} = [\mathbf{Conjugate}[\mathbf{vece}]] \cdot \mathbf{vecnu};$ ${}^{0}\kappa = 0$ related to 000 Outl6461//MatrixFormmat $S_{124\overline{67}/Mathrows}^{0}$ $\begin{array}{c} \mu_{c} & -0.8238 - 0.02750\% \frac{5}{2} \frac{9}{13} + \kappa \frac{\theta_{c}}{3} \frac{9}{2} \frac{9}{2} \frac{-0.082389098}{9} \frac{9}{2} \frac{9}{2} \frac{9}{2} \frac{1}{2} 3 \frac{1}{10} \frac{1}{10} \frac{1}{2} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{$ $0.-509098140.+0030234192 \pm -0.157141 + 0$ $= + \theta_{13}^{\nu} (+ 10 \frac{10}{25} 00867 + 4.64282 \eta_{8}^{\prime\prime} \neq 0^{-61} \pm 0.500 + 500$

Numerical Results: Neutrino Sector

- Diagonalization matrix for charged leptons: $\begin{pmatrix} 0.997e^{i177^{\circ}} & 0.0823e^{i131^{\circ}} & 1.31 \times 10^{-5}e^{-i45^{\circ}} \\ 0.0823e^{i41.8^{\circ}} & 0.997e^{i176^{\circ}} & 0.000149e^{-i3.58^{\circ}} \\ 1.14 \times 10^{-6} & 0.000149 & 1 \end{pmatrix}$
- MNS Matrix

 $|U_{MNS}|= egin{pmatrix} 0.824259 & 0.542816 & 0.161084 \ 0.264063 & 0.609846 & 0.747234 \ 0.500867 & 0.577441 & 0.644743 \end{pmatrix}$

- Neutrino Masses:
 - $m_1 = 0.0036 \text{ eV}$ $m_2 = 0.0093 \text{ eV}$ $m_3 = 0.051 \text{ eV}$

 $\sin^2 \theta_{12} = 0.30$ $\sin^2 \theta_{23} = 0.43$ $\sin^2 \theta_{13} = 0.026$

3 independent parameters in neutrino sector

predicted 3 masses and 3 angles: all agree with exp within $I\sigma$

• Leptonic CP violation from CG coefficients:

prediction for Dirac CP phase: δ = 197 degrees (in standard parametrization)

Two Majorana CPV measures:

 $S_1 \equiv \operatorname{Im}\left\{U_{\text{MNS, e1}}U_{\text{MNS, e3}}^*\right\} = 0.034 \qquad S_2 \equiv \operatorname{Im}\left\{U_{\text{MNS, e2}}U_{\text{MNS, e3}}^*\right\} = -0.029$

Proton Decay in SUSY SU(5) x T´ Model

- proton decay mediated by color triplet Higgsinos (dim-5 operators)
 - generally gives too fast decay rate
 - Z₁₂ x Z₁₂ forbid (vertices in circles)

- no Higgsino mediated proton decay
- Planck induced operators: Yukawa suppressed
- proton decay mediated by gauge boson (dim-6 operators)
 - non-minimal Higgs content, model prediction is within current experimental limits

Summary

- SUSY SU(5) x T' : near tri-bimaximal lepton mixing & realistic CKM matrix
- complex CG coefficients in T': origin of CPV both in quark and lepton sectors
- Z₁₂ x Z₁₂': only 10 parameters in Yukawa sector
 - dynamical origin of mass hierarchy (including mb vs mt)
 - forbid Higgsino-mediated proton decay
- realistic theta13: generated by 1" flavon in neutrino sector

$$\sin\theta_{13}^{\rm MNS} \simeq \frac{\theta_c}{3\sqrt{2}} + \theta_{13}^{\nu} + \kappa \frac{\theta_c}{3}$$

• CP phases from CG:

quark CP phase: $\gamma = 45.6$ degrees

leptonic Dirac CP phase: $\delta = 197$ degrees (global fit: ~180 degrees)

Vacuum Alignment

- Z₁₂ x Z₁₂' symmetry: too restrictive
 - resort to extra dimensions (5D)
 - in the bulk: Z₁₂ x Z₁₂' symmetric
 - on the boundary branes: $Z_{12} \times Z_{12}'$ explicitly broken
- Neutrino sector:
 - invariants: $B_1^{\nu} = \xi^2$, $B_2^{\nu} = \eta^2$, $T_1^{\nu} = \xi^3$, $T_2^{\nu} = \xi^2 \eta$, $T_3^{\nu} = \eta^3$ $B_3^{\nu} = S^2$,
 - superpotential: $T_4^{\nu} = S^3$, $T_5^{\nu} = \xi^2 S$, $T_6^{\nu} = \eta^2 S$, $T_7^{\nu} = \eta S^2$, $T_8 = \eta'' \xi^2$

$$\mathcal{W}_{\nu}^{flavon} = \sum_{i} m_{i}' B_{i} + \sum_{j} p_{j}' T^{j}$$

• supersymmetric minima:

$$F_{\xi_1} = F_{\xi_2} = F_{\xi_3} = 2(m'_1 + p_5 s_0 + p_2 \eta_0 + p_8 \eta''_0) = 0 \qquad \langle \xi \rangle = \xi_0 \Lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \langle \eta'' \rangle = \eta''_0 \Lambda$$

$$F_{\eta} = p_7 s_0^2 + 2m'_2 \eta_0 + 2p_6 \eta_0 s_0 + 3p_3 \eta_0^2 + 3p_2 \xi_0^2 = 0$$

$$F_s = 3p_4 s_0^2 + 2p_7 \eta_0 s_0 + p_6 \eta_0^2 + 3p_5 \xi_0^2 = 0 \qquad \langle \eta \rangle = \eta_0 \Lambda \qquad \langle S \rangle = S_0$$

(1)

Vacuum Alignment

• charged fermion sector:

• invariants $B_1 = \phi^2, \quad B_2 = \phi'^2, \quad B_3 = \phi \phi', \quad B_4 = \zeta N$

$$\begin{split} T_1 &= \phi^3, \ T_2 = \phi'^3, \ T_3 = \phi^2 \phi', \ T_4 = \phi'^2 \phi, \ T_5 = N^3, \ T_6 = \zeta^3, \ T_7 = \phi^2 \zeta \\ T_8 &= \phi'^2 \zeta, \ T_9 = \phi \phi' \zeta, \ T_{10} = \phi^2 N, \ T_{11} = \phi'^2 N, \ T_{12} = \phi \phi' N, \ T_{13} = \psi'^2 \phi \\ T_{14} &= \psi'^2 \phi', \ T_{15} = \psi^2 \phi, \ T_{16} = \psi^2 \phi', \ T_{17} = \psi \psi' \phi, \ T_{18} = \psi \psi' \phi', \ T_{19} = \psi \psi' \zeta \end{split}$$

• superpotential

$$\mathcal{W}_{c}^{flavon} = \sum_{i} m_{i}^{\prime\prime} B_{i} + \sum_{i} \mu_{j}^{\prime\prime} T^{j}$$

 Supersymmetric minima: envision parameter space that satisfy minimization conditions (F=0)