### The Lepton Sector and U(2)<sup>5</sup> Flavour Symmetry

**Joel Jones-Pérez** Universitat de València - IFIC

In Collaboration with

R. Barbieri, G. Isidori, P. Lodone, D. Straub (arXiv:1105.2296 [hep-ph]) G. Isidori, G. Blankenburg (arXiv: 1204.0688 [hep-ph])

BeNe, Trieste, 21/09/2012

#### Supersymmetry

#### **Standard particles**

#### SUSY particles



Main reason why we still stick with SUSY: the hierarchy problem.

#### **Natural SUSY = Effective SUSY?**

- Light neutralinos
- Light third generation sfermions
- Not too heavy gluinos
- First two generation squarks: over 2 TeV.
- Everything else: ???

Papucci, Ruderman, Weiler (1110.6926)

#### **Natural SUSY = Effective SUSY?**

- Light neutralinos
- Light third generation sfermions
- Not too heavy gluinos
- First two generation squarks: over 2 TeV.
- Everything else: ???

#### What about flavour?

#### **MFV Framework**

- U(3)<sup>5</sup> framework built in order to suppress New Physics contributions to flavoured processes.
- SUSY masses are forced to be nearly degenerate.
- Flavour off-diagonal contributions are related to CKM and mass hierarchies: y<sub>t</sub>, y<sub>b</sub>.

D'Ambrosio, Giudice, Isidori, Strumia (hep-ph/0207036)

#### **MFV Framework**

- U(3)<sup>5</sup> framework built in order to suppress New Physics contributions to flavoured processes.
- SUSY masses are forced to be nearly degenerate.
- Flavour off-diagonal contributions are related to CKM and mass hierarchies: y<sub>t</sub>, y<sub>b</sub>.

Not so suitable for natural SUSY...

D'Ambrosio, Giudice, Isidori, Strumia (hep-ph/0207036)

# U(2)<sup>5</sup> framework in quark/squarks

#### arXiv:1105.2296 [hep-ph]

### U(2)<sup>3</sup> Framework

 $U(2)_Q \otimes U(2)_u \otimes U(2)_d$ 

$$Q^{(2)} = (Q_1, Q_2) \sim (\bar{2}, 1, 1)$$
$$u_R^{c(2)} = (u_{R,1}^c, u_{R,2}^c)^T \sim (1, 2, 1)$$
$$d_R^{c(2)} = (d_{R,1}^c, d_{R,2}^c)^T \sim (1, 1, 2)$$

#### U(2)<sup>3</sup> Framework

 $U(2)_Q \otimes U(2)_u \otimes U(2)_d$ 

$$Q^{(2)} = (Q_1, Q_2) \sim (\bar{2}, 1, 1)$$
$$u_R^{c(2)} = (u_{R,1}^c, u_{R,2}^c)^T \sim (1, 2, 1)$$
$$d_R^{c(2)} = (d_{R,1}^c, d_{R,2}^c)^T \sim (1, 1, 2)$$

 $W_q = y_t Q_3 t_R^c H_u + y_b Q_3 b_R^c H_d$ 

## U(2)<sup>3</sup> Spurions

 $\begin{array}{ll} \Delta Y_u & \sim & (2, \bar{2}, 1) \\ \Delta Y_d & \sim & (2, 1, \bar{2}) \end{array}$ 

$$Y_u = \begin{pmatrix} \Delta Y_u & 0 \\ 0 & 1 \end{pmatrix} y_t \qquad \qquad Y_d = \begin{pmatrix} \Delta Y_d & 0 \\ 0 & 1 \end{pmatrix} y_b$$

Hierarchy between  $y_{f_2}$  and  $y_{f_3}$  should be related to suppression in  $\Delta Y_f$ .

## U(2)<sup>3</sup> Spurions

$$\begin{array}{lll} \Delta Y_u & \sim & (2,2,1) \\ \Delta Y_d & \sim & (2,1,\bar{2}) \\ V & \sim & (2,1,1) \end{array}$$

$$Y_u = \left(\begin{array}{c|c} \Delta Y_u & x_t V \\ \hline 0 & 1 \end{array}\right) y_t \qquad \qquad Y_d = \left(\begin{array}{c|c} \Delta Y_d & x_b V \\ \hline 0 & 1 \end{array}\right) y_b$$

Hierarchy between  $V_{cb}$  and  $V_{tb}$  should be related to suppression in *V*.

#### **Explicit Parametrization**

 $Y_u = \begin{pmatrix} \Delta Y_u & x_t V \\ 0 & 1 \end{pmatrix} y_t \qquad Y_d = \begin{pmatrix} \Delta Y_d & x_b V \\ 0 & 1 \end{pmatrix} y_b$ 

 $V = \epsilon \left( \begin{array}{c} 0 \\ 1 \end{array} \right)$ 

 $\Delta Y_f = \begin{pmatrix} c_f & s_f e^{i\alpha_f} \\ -s_f e^{-i\alpha_f} & c_f \end{pmatrix} \Delta Y_f^{\text{diag}}$ 

#### **CKM Matrix**

 $V_{\rm CKM} = (U_{uL}^{\dagger} \cdot U_{dL})$ 

$$\begin{array}{ccc} c_{u}c_{d} + s_{u}s_{d} e^{i(\alpha_{d} - \alpha_{u})} & -c_{u}s_{d} e^{-i\alpha_{d}} + s_{u}c_{d} e^{-i\alpha_{u}} & s_{u}se^{-i(\alpha_{u} - \xi)} \\ c_{u}s_{d} e^{i\alpha_{d}} - s_{u}c_{d} e^{i\alpha_{u}} & c_{u}c_{d} + s_{u}s_{d} e^{i(\alpha_{u} - \alpha_{d})} & c_{u}se^{i\xi} \\ -s_{d}s e^{i(\alpha_{d} - \xi)} & -sc_{d}e^{-i\xi} & 1 \end{array}\right)$$

$$|s| = 0.0410 \pm 0.0004$$

$$s_u = 0.0916 \pm 0.005$$

$$s_d = -0.22 \pm 0.02$$

$$\cos(\alpha_u - \alpha_d) = -0.13 \pm 0.2$$

#### **CKM Matrix**

 $V_{\rm CKM} = (U_{uL}^{\dagger} \cdot U_{dL})$ 

$$\begin{array}{cccc} c_{u}c_{d} + s_{u}s_{d} e^{i(\alpha_{d} - \alpha_{u})} & -c_{u}s_{d} e^{-i\alpha_{d}} + s_{u}c_{d} e^{-i\alpha_{u}} & s_{u}se^{-i(\alpha_{u} - \xi)} \\ c_{u}s_{d} e^{i\alpha_{d}} - s_{u}c_{d} e^{i\alpha_{u}} & c_{u}c_{d} + s_{u}s_{d} e^{i(\alpha_{u} - \alpha_{d})} & c_{u}se^{i\xi} \\ -s_{d}s e^{i(\alpha_{d} - \xi)} & -sc_{d}e^{-i\xi} & 1 \end{array}$$

 $\Rightarrow \epsilon \sim \lambda_{\rm CKM}^2$ 

$$|s| = 0.0410 \pm 0.0004$$

$$s_u = 0.0916 \pm 0.005$$

$$s_d = -0.22 \pm 0.02$$

$$\cos(\alpha_u - \alpha_d) = -0.13 \pm 0.2$$

#### What about SUSY?

Soft Masses: Unbroken Limit:

$$m_{\tilde{f}}^2 = \begin{pmatrix} m_{f_h}^2 & 0 & 0 \\ 0 & m_{f_h}^2 & 0 \\ 0 & 0 & m_{f_l}^2 \end{pmatrix}$$

Same spurions that generated the Yukawa structure shall generate the soft mass structure.

#### **Soft Masses**

$$m_{\tilde{Q}}^{2} = m_{Q_{h}}^{2} \left( \begin{array}{c|c} 1 + V^{*}V^{T} + \Delta Y_{u}^{*}\Delta Y_{u}^{T} + \Delta Y_{d}^{*}\Delta Y_{d}^{T} & x_{Q}^{*}V^{*} \\ \hline x_{Q}V^{T} & m_{Q_{l}}^{2}/m_{Q_{h}}^{2} \end{array} \right)$$

$$m_{\tilde{u}}^2 = m_{u_h}^2 \begin{pmatrix} 1 + \Delta Y_u^T \Delta Y_u^* & x_u^* \Delta Y_u^T V^* \\ x_u V^T \Delta Y_u^* & m_{u_l}^2 / m_{u_h}^2 \end{pmatrix}$$

# U(2)<sup>5</sup> framework in leptons/sleptons

arXiv: 1204.0688 [hep-ph]

#### **U(2)<sup>5</sup> and Neutrinos**

Keep same spurion structure.

#### $V_e \sim V \qquad \Delta Y_e \sim \Delta Y_d$

#### **U(2)<sup>5</sup> and Neutrinos**

Keep same spurion structure.

 $V_e \sim V \qquad \Delta Y_e \sim \Delta Y_d$  $\epsilon_e = \epsilon \qquad s_e = s_d$ 

#### **U(2)<sup>5</sup> and Neutrinos**

Keep same spurion structure.

 $V_e \sim V \qquad \Delta Y_e \sim \Delta Y_d$  $\epsilon_e = \epsilon \qquad s_e = s_d$ 

Does not work!!!

Neutrino oscillation data:

 $s_{12}^2 = 0.30 \pm 0.013$  $s_{13}^2 = 0.023 \pm 0.0023$  $\delta_P = 240^{\circ +102^{\circ}}_{-74^{\circ}}$ 

 $s_{23}^2 = 0.41 \pm 0.03$  $\oplus 0.59 \pm 0.02$ 

 $\Delta m_{\rm sol}^2 = (7.50 \pm 0.185) \times 10^{-5} \text{ eV}^2$  $|\Delta m_{\rm atm}^2| = (2.47 \pm 0.07) \times 10^{-3} \text{ eV}^2$ 

http://www.nu-fit.org

Neutrino mass matrix:

$$\mathcal{L}^{\nu} = (m_{\nu})_{ij} \, \bar{\nu}_L^{ci} \nu_L^j$$

Neutrino mass matrix:

$$\mathcal{L}^{\nu} = (m_{\nu})_{ij} \, \bar{\nu}_L^{ci} \nu_L^j$$

**Relation with angles:** 

 $M_{\nu}^2 = m_{\nu}^{\dagger} m_{\nu} = U_{\rm PMNS} (m_{\nu}^2)^{\rm diag} U_{\rm PMNS}^{\dagger}$ 

Neutrino mass matrix:

$$\mathcal{L}^{\nu} = (m_{\nu})_{ij} \, \bar{\nu}_L^{ci} \nu_L^j$$

**Relation with angles:** 

$$M_{\nu}^{2} = m_{\nu}^{\dagger} m_{\nu} = U_{\rm PMNS} (m_{\nu}^{2})^{\rm diag} U_{\rm PMNS}^{\dagger}$$
$$M^{2} \sim m^{2} \qquad L + \Delta m^{2} = m$$

$$M_{\nu}^2 \approx m_{
m light}^2 \cdot I + \Delta m_{
m atm}^2 \cdot \eta$$

Neutrino mass matrix:

$$\mathcal{L}^{\nu} = (m_{\nu})_{ij} \, \bar{\nu}_L^{ci} \nu_L^j$$

**Relation with angles:** 

$$M_{\nu}^2 = m_{\nu}^{\dagger} m_{\nu} = U_{\rm PMNS} (m_{\nu}^2)^{\rm diag} U_{\rm PMNS}^{\dagger}$$

$$M_{\nu}^{2} \approx m_{\text{light}}^{2} \cdot I + \Delta m_{\text{atm}}^{2} \cdot \eta$$
$$\eta_{[\text{n.h.}]} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & s_{23}^{2} & s_{23}c_{23} \\ 0 & s_{23}c_{23} & c_{23}^{2} \end{pmatrix} \quad \eta_{[\text{i.h.}]} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23}^{2} & -s_{23}c_{23} \\ 0 & -s_{23}c_{23} & s_{23}^{2} \end{pmatrix}$$

#### **Going back to MFV**



#### **Going back to MFV**

 $U(3)^{5}$ 

 $U(2)^5$  $Y_u, Y_d, Y_e$ 

#### **Going back to MFV**

 $U(3)^{5}$ 

 $U(2)^5$  $Y_u, Y_d, Y_e$ 

 $O(3)_L$  $m_{
u}$ 

## U(3)<sup>5</sup> -> U(2)<sup>5</sup> Spurions

 $Y_e^{(0)} \sim (1, 1, 1, 3, \bar{3})$ 

$$Y_e^{(0)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} y_{\tau}^{(0)}$$

 $\mathbf{L}_L Y_e^{(0)} \mathbf{e}_R^c \to y_{\tau}^{(0)} L_3 e_3^c$ .

### U(3)<sup>5</sup> -> U(2)<sup>5</sup> Spurions

 $Y_e^{(0)} \sim (1, 1, 1, 3, \overline{3})$  $X \sim (1, 1, 1, 8, 1)$ 

$$X = \begin{pmatrix} \Delta_L & V \\ V^{\dagger} & x \end{pmatrix}$$

$$Y_e^{(1)} = (1+X)Y_e^{(0)} \to \left(\begin{array}{cc} 0 & V \\ 0 & 1 \end{array}\right)y_{\tau}$$

## U(3)<sup>5</sup> -> U(2)<sup>5</sup> Spurions

 $Y_e^{(0)} \sim (1, 1, 1, 3, \bar{3})$   $X \sim (1, 1, 1, 8, 1)$  $\Delta \hat{Y}_e \sim (1, 1, 1, 3, \bar{3})$ 

 $\Delta \hat{Y}_e = \left(\begin{array}{ccc} \Delta Y_e & 0\\ \hline 0 & 0 \end{array}\right)$ 

(Big Assumption 1)

 $Y_e = (1+X)(Y_e^{(0)} + \Delta \hat{Y}_e) \rightarrow \left(\begin{array}{c|c} \Delta Y_e & V \\ \hline 0 & 1 \end{array}\right) y_\tau$ 

# U(3)<sub>L</sub> -> O(3)<sub>L</sub> Spurion

We shall break  $U(3)_{L} \rightarrow O(3)_{L}$  in neutrino sector.

One more spurion:

 $m_{\nu}^{(0)} \sim (1, 1, 1, 6, 1)$ 

 $m_{\nu}^{(0)} \propto \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$ 

(Big Assumption 2)

# U(3)<sub>L</sub> -> O(3)<sub>L</sub> Spurion

We shall break  $U(3)_{L} \rightarrow O(3)_{L}$  in neutrino sector. One more spurion:

 $m_{\nu}^{(0)} \sim (1, 1, 1, 6, 1)$ 

 $m_{\nu} = m_{\nu}^{(0)} + Xm_{\nu}^{(0)} + m_{\nu}^{(0)}X^{T}$ 

$$m_{\nu} = \bar{m}_{\nu_{1}} \begin{bmatrix} I + e^{i\phi_{\nu}} \begin{pmatrix} -\sigma\epsilon & \gamma\epsilon^{2} & 0\\ \gamma\epsilon^{2} & -\delta\epsilon & r\epsilon\\ 0 & r\epsilon & 0 \end{bmatrix} \end{bmatrix}$$

# U(3)<sub>L</sub> -> O(3)<sub>L</sub> Spurion

We shall break  $U(3)_{L} \rightarrow O(3)_{L}$  in neutrino sector. One more spurion:

 $m_{\nu}^{(0)} \sim (1, 1, 1, 6, 1)$ 

 $m_{\nu} = m_{\nu}^{(0)} + Xm_{\nu}^{(0)} + m_{\nu}^{(0)}X^{T}$ 

$$m_{\nu} = \bar{m}_{\nu_{1}} \begin{bmatrix} I + e^{i\phi_{\nu}} \begin{pmatrix} -\sigma\epsilon & \gamma\epsilon^{2} & 0\\ \gamma\epsilon^{2} & -\delta\epsilon & r\epsilon\\ 0 & r\epsilon & 0 \end{bmatrix} \end{bmatrix}$$

(Big Assumption 3?)

$$m_{\nu} = \bar{m}_{\nu_{1}} \begin{bmatrix} I + e^{i\phi_{\nu}} \begin{pmatrix} -\sigma\epsilon & \gamma\epsilon^{2} & 0\\ \gamma\epsilon^{2} & -\delta\epsilon & r\epsilon\\ 0 & r\epsilon & 0 \end{bmatrix}$$

Rotation to basis where  $Y_e$  is diagonal:

$$M_{\nu}^{2} = \bar{m}_{\nu_{1}}^{2} \begin{pmatrix} 1 - 2\epsilon\sigma \\ -2s_{e}\epsilon(\sigma - \delta) e^{i\alpha_{e}} & 1 - 2\epsilon\delta \\ -2\epsilon s_{e}r e^{i\alpha_{e}} & 2\epsilon r & 1 \end{pmatrix} + O(\epsilon^{2}, s_{e}^{2}\epsilon)$$

# U(2)<sup>5</sup> framework in leptons/sleptons

Phenomenology

arXiv: 1204.0688 [hep-ph]
Mass Differences:

$$\Delta m_{\rm atm}^2 = \tilde{m}_{\nu_1}^2 \left( 2\sigma - \delta + [\delta^2 + 4r^2]^{1/2} \right) \epsilon$$

#### Mass Differences:

$$\Delta m_{\rm atm}^2 = \tilde{m}_{\nu_1}^2 \left( 2\sigma - \delta + [\delta^2 + 4r^2]^{1/2} \right) \epsilon$$

 $\epsilon$  determines scale of neutrino masses

#### Mass Differences:

$$\Delta m_{\rm atm}^2 = \tilde{m}_{\nu_1}^2 \left( 2\sigma - \delta + [\delta^2 + 4r^2]^{1/2} \right) \epsilon$$

$$\zeta^{2} = \frac{\Delta m_{\rm sol}^{2}}{\Delta m_{\rm atm}^{2}} = \frac{2\sigma - \delta - [\delta^{2} + 4r^{2}]^{1/2}}{2\sigma - \delta + [\delta^{2} + 4r^{2}]^{1/2}}$$

#### Mass Differences:

$$\Delta m_{\rm atm}^2 = \tilde{m}_{\nu_1}^2 \left( 2\sigma - \delta + [\delta^2 + 4r^2]^{1/2} \right) \epsilon$$

$$\zeta^{2} = \frac{\Delta m_{\rm sol}^{2}}{\Delta m_{\rm atm}^{2}} = \frac{2\sigma - \delta - [\delta^{2} + 4r^{2}]^{1/2}}{2\sigma - \delta + [\delta^{2} + 4r^{2}]^{1/2}}$$

$$2\sigma - \delta - [\delta^2 + 4r^2]^{1/2} \sim \epsilon$$





# Neutrino Mixing: θ<sub>23</sub>

$$M_{\nu}^{2} = \bar{m}_{\nu_{1}}^{2} \begin{pmatrix} 1 - 2\epsilon\sigma \\ -2s_{e}\epsilon(\sigma - \delta) e^{i\alpha_{e}} & 1 - 2\epsilon\delta \\ -2\epsilon s_{e}r e^{i\alpha_{e}} & 2\epsilon r & 1 \end{pmatrix} + O(\epsilon^{2}, s_{e}^{2}\epsilon)$$

# Neutrino Mixing: θ<sub>23</sub>

$$M_{\nu}^{2} = \bar{m}_{\nu_{1}}^{2} \begin{pmatrix} 1 - 2\epsilon\sigma \\ -2s_{e}\epsilon(\sigma - \delta) e^{i\alpha_{e}} & 1 - 2\epsilon\delta \\ -2\epsilon s_{e}r e^{i\alpha_{e}} & 2\epsilon r & 1 \end{pmatrix} + O(\epsilon^{2}, s_{e}^{2}\epsilon)$$

$$\frac{s_{23}}{c_{23}} \approx \frac{\delta \pm [\delta^{2} + 4r^{2}]^{1/2}}{2r}$$

# Neutrino Mixing: $\theta_{13}$

$$M_{\nu}^{2} = \bar{m}_{\nu_{1}}^{2} \begin{pmatrix} 1 - 2\epsilon\sigma \\ -2s_{e}\epsilon(\sigma - \delta) e^{i\alpha_{e}} & 1 - 2\epsilon\delta \\ -2\epsilon s_{e}r e^{i\alpha_{e}} & 2\epsilon r & 1 \end{pmatrix} + O(\epsilon^{2}, s_{e}^{2}\epsilon)$$

$$\frac{(M_{\nu}^2)_{31}}{(M_{\nu}^2)_{32}} = \frac{s_{13}}{c_{13}} \frac{1}{s_{23}} e^{i\delta_F}$$

## Neutrino Mixing: $\theta_{13}$

Charged lepton mass basis:

$$M_{\nu}^{2} = \bar{m}_{\nu_{1}}^{2} \begin{pmatrix} 1 - 2\epsilon\sigma \\ -2s_{e}\epsilon(\sigma - \delta) e^{i\alpha_{e}} & 1 - 2\epsilon\delta \\ -2\epsilon s_{e}r e^{i\alpha_{e}} & 2\epsilon r & 1 \end{pmatrix} + O(\epsilon^{2}, s_{e}^{2}\epsilon)$$

 $s_{13}e^{i\delta_P} = s_e s_{23}e^{\alpha_e + \pi}$ 

## Neutrino Mixing: $\theta_{13}$

$$M_{\nu}^{2} = \bar{m}_{\nu_{1}}^{2} \begin{pmatrix} 1 - 2\epsilon\sigma \\ -2s_{e}\epsilon(\sigma - \delta) e^{i\alpha_{e}} & 1 - 2\epsilon\delta \\ -2\epsilon s_{e}r e^{i\alpha_{e}} & 2\epsilon r & 1 \end{pmatrix} + O(\epsilon^{2}, s_{e}^{2}\epsilon)$$



## Neutrino Mixing: $\theta_{12}$

### Is $\theta_{12}$ unpredictable?

$$M_{\nu}^2 = m_{\nu}^{\dagger} m_{\nu} = U_{\rm PMNS} (m_{\nu}^2)^{\rm diag} U_{\rm PMNS}^{\dagger}$$

Expand on  $s_{13}$  and  $\zeta^2$ ...

## Neutrino Mixing: $\theta_{12}$

#### Is $\theta_{12}$ unpredictable?

 $(M_{\nu}^{2})_{21} = \Delta m_{\rm atm}^{2} \left[ s_{13}c_{13}s_{23}e^{i\delta} + c_{13}c_{23}s_{12}c_{12}\zeta^{2} - \mathcal{O}(s_{13}\zeta^{2}) \right]$  $(M_{\nu}^{2})_{31} = \Delta m_{\rm atm}^{2} \left[ s_{13}c_{13}c_{23}e^{i\delta} - c_{13}s_{23}s_{12}c_{12}\zeta^{2} - \mathcal{O}(s_{13}\zeta^{2}) \right]$  $(M_{\nu}^{2})_{32} = \Delta m_{\rm atm}^{2} \left[ c_{13}^{2}s_{23}c_{23} - s_{23}c_{23}c_{12}^{2}\zeta^{2} + \mathcal{O}(s_{13}\zeta^{2}) \right]$ 

### **Neutrino Mixing:** $\theta_{12}$

#### Is $\theta_{12}$ unpredictable?

$$\begin{split} &(M_{\nu}^{2})_{21} &= \Delta m_{\rm atm}^{2} \left[ s_{13}c_{13}s_{23}e^{i\delta} + c_{13}c_{23}s_{12}c_{12}\zeta^{2} - \mathcal{O}(s_{13}\zeta^{2}) \right] \\ &(M_{\nu}^{2})_{31} &= \Delta m_{\rm atm}^{2} \left[ s_{13}c_{13}c_{23}e^{i\delta} - c_{13}s_{23}s_{12}c_{12}\zeta^{2} - \mathcal{O}(s_{13}\zeta^{2}) \right] \\ &(M_{\nu}^{2})_{32} &= \Delta m_{\rm atm}^{2} \left[ c_{13}^{2}s_{23}c_{23} - s_{23}c_{23}c_{12}^{2}\zeta^{2} + \mathcal{O}(s_{13}\zeta^{2}) \right] \\ &(M_{\nu}^{2})_{11} &= m_{\nu_{1}}^{2} + \Delta m_{\rm atm}^{2} \left( s_{13}^{2} + c_{13}^{2}s_{12}^{2}\zeta^{2} \right) \\ &(M_{\nu}^{2})_{22} &= m_{\nu_{1}}^{2} + \Delta m_{\rm atm}^{2} \left( c_{13}^{2}s_{23}^{2} + c_{23}^{2}c_{12}^{2}\zeta^{2} - \mathcal{O}(s_{13}\zeta^{2}) \right) \\ &(M_{\nu}^{2})_{33} &= m_{\nu_{1}}^{2} + \Delta m_{\rm atm}^{2} \left( c_{13}^{2}c_{23}^{2} + s_{23}^{2}c_{12}^{2}\zeta^{2} + \mathcal{O}(s_{13}\zeta^{2}) \right) \end{split}$$

One would expect it to be generic, O(1)...

### **Neutrinoless Double Beta Decay**

Large values for  $m_{_{light}}$  and  $m_{_{\beta\beta}}$ 



### **Lepton Flavour Violation**



### **Lepton Flavour Violation**



## Conclusions

### Conclusions

 U(2)<sup>5</sup> framework, compatible with Effective SUSY, has been built.

In quark sector, flavour tensions can be eliminated

### Conclusions

 U(2)<sup>5</sup> framework cannot reproduce neutrino data, need a U(3)<sup>5</sup> -> U(2)<sup>5</sup> breaking.

• We can predict value of  $s_{13}$  from that of  $s_{23}$ , and fit in quark sector.

 Main predictions: large neutrino masses, large neutrinoless double beta decay, LFV.



### Supersymmetry

What do we need to solve the hierarchy problem?

 $\mu \lesssim 210~{\rm GeV}$ 

 $m_{\tilde{g}} \lesssim 950 {
m ~GeV}$ 

 $\sqrt{m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2 + A_t^2} \lesssim 620 \text{ GeV}$ 

Papucci, Ruderman, Weiler (1110.6926)

### Supersymmetry



### U(2)<sup>3</sup> Framework for Small tanβ

 $U(2)_Q \otimes U(2)_u \otimes U(2)_d \otimes U(1)_b$ 

$$\begin{array}{ccc} d_R^{c(2)} & \to & e^{i\beta} \, d_R^{c(2)} \\ b_R^c & \to & e^{i\beta} \, b_R^c \end{array}$$

$$y_b \to e^{-i\beta} y_b$$

**Small Spurion** 

### **Diagonalization Matrices**

$$U_{fL}Y_f U_{fR}^{\dagger} = Y_f^{\text{diag}}$$



 $U_{uL} = \begin{pmatrix} c_u & s_u e^{i\alpha_u} & -s_u s_t e^{i(\alpha_u + \phi_t)} \\ -s_u e^{-i\alpha_u} & c_u c_t & -c_u s_t e^{i\phi_t} \\ 0 & s_t e^{-i\phi_t} & c_t \end{pmatrix}$ 

 $s_t/c_t = x_t\epsilon$ 

### **Input to CKM Fit**

| $ V_{ud} $        | 0.97425(22)                           | $f_K$                     | $(155.8 \pm 1.7) \text{ MeV}$ |
|-------------------|---------------------------------------|---------------------------|-------------------------------|
| $ V_{us} $        | 0.2254(13)                            | $\hat{B}_K$               | $0.724 \pm 0.030$             |
| $ V_{cb} $        | $(40.89 \pm 0.70) \times 10^{-3}$     | $\kappa_\epsilon$         | $0.94\pm0.02$                 |
| $ V_{ub} $        | $(3.97 \pm 0.45) \times 10^{-3}$      | $f_{B_s}\sqrt{\hat{B}_s}$ | $(291 \pm 16) \text{ MeV}$    |
| $\gamma_{ m CKM}$ | $(74 \pm 11)^{\circ}$                 | ξ                         | $1.23\pm0.04$                 |
| $ \epsilon_K $    | $(2.229 \pm 0.010) \times 10^{-3}$    |                           |                               |
| $S_{\psi K_S}$    | $0.673 \pm 0.023$                     |                           |                               |
| $\Delta M_d$      | $(0.507 \pm 0.004)  \mathrm{ps}^{-1}$ |                           |                               |
| $\Delta M_s$      | $(17.77 \pm 0.12)  \mathrm{ps}^{-1}$  |                           |                               |

### **Flavour Tension in the SM**



Buras, Guadagnoli (0901.2056 [hep-ph]) Altmannshofer *et al* (0909.1333 [hep-ph])

### **Flavour Tension in the SM**

#### UT fit without $S_{\psi Ks}$ :





### **Flavour Tension in the SM**

#### UT fit without $\varepsilon_{\kappa}$ :



 $W_L^{d\dagger} m_{\tilde{O}}^2 W_L^d = (m_{\tilde{O}}^2)^{\text{diag}}$ 

$$W_L^d = \begin{pmatrix} c_d & \kappa^* & -\kappa^* s_L e^{i\gamma} \\ -\kappa & c_d & -c_d s_L e^{i\gamma} \\ 0 & s_L e^{-i\gamma} & 1 \end{pmatrix}$$

$$W_L^{d\dagger} \ m_{\tilde{Q}}^2 \ W_L^d = (m_{\tilde{Q}}^2)^{\text{diag}}$$



 $\kappa = c_d V_{td} / V_{ts}$ 

No new phases on the (1-2) sector

 $W_L^{d\dagger} m_{\tilde{Q}}^2 W_L^d = (m_{\tilde{Q}}^2)^{\text{diag}}$ 



 $\kappa = c_d V_{td} / V_{ts}$  No new phases on the (1-2) sector  $s_L e^{-i\gamma} = \epsilon e^{i\xi} (x_b + x_Q)$ 

New phase on the (1-3) and (2-3) sectors!

 $W_L^{d\dagger} m_{\tilde{O}}^2 W_L^d = (m_{\tilde{O}}^2)^{\text{diag}}$ 



 $\kappa = c_d V_{td}/V_{ts}$  No new phases on the (1-2) sector  $s_L e^{-i\gamma} = \epsilon e^{i\xi} (x_b + x_Q)$ 

New phase on the (1-3) and (2-3) sectors!

### **New SUSY Contributions**

 $\epsilon_K = \epsilon_K^{\mathrm{SM(tt)}} \times (1 + x^2 F_0) + \epsilon_K^{\mathrm{SM(tc+cc)}}$  $S_{\psi K_S} = \sin\left(2\beta + \arg\left(1 + xF_0e^{-2i\gamma}\right)\right)$  $\frac{\Delta M_d}{\Delta M_s} = \frac{\Delta M_d^{\rm SM}}{\Delta M_s^{\rm SM}}$ 

 $x = \frac{c_d^2 s_L^2}{|V_{t_c}|^2}$ 

### **Fit with SUSY Contribution**



 $(\chi^2/N_{\rm d.o.f.})_{\rm SM} = 9.8/5$   $(\chi^2/N_{\rm d.o.f.})_{\rm SUSY} = 0.7/2$ 

## Fit to $\mathbf{F}_{0}$ and $\mathbf{x}$



х
### **Predictions from Fit**



#### $0.02 < F_0 < 0.15$

Light spectrum for third generation sfermions!

## **Predictions from Fit**



# **Neutrinoless Double Beta Decay**

| Bounds                                                               |                        |  |
|----------------------------------------------------------------------|------------------------|--|
| Experiment                                                           | Bound (eV), C.L.       |  |
| $\begin{bmatrix} \text{KamLAND-Zen} (^{136}\text{Xe}) \end{bmatrix}$ | < 0.3 - 0.6, 90%       |  |
| CUORICINO $(^{130}\text{Te})$                                        | < 0.19 - 0.68, 90%     |  |
| $NEMO3 (^{100}Mo)$                                                   | < 0.7 - 2.8,  90%      |  |
| Heidelberg-Moscow $(^{76}Ge)$                                        | $0.32 \pm 0.03,\ 68\%$ |  |
| Prospects                                                            |                        |  |
| Experiment                                                           | Reach $(eV)$           |  |
| $  KamLAND-Zen (^{136}Xe)  $                                         | 0.062                  |  |
| CUORE $(^{130}\text{Te})$                                            | 0.062                  |  |
| NEXT $(^{136}Xe)$                                                    | 0.071                  |  |
| EXO $(^{136}$ Xe)                                                    | 0.072                  |  |

#### **Slepton Mass Matrix**

 $\tilde{m}_{LL}^2 = \begin{pmatrix} 1 & c_3'' \epsilon^2 & 0 \\ c_3''^* \epsilon^2 & 1 + c_3 \epsilon & c_3' \epsilon \\ 0 & c_3'^* \epsilon & 1 + c_2 |y_\tau|^2 \end{pmatrix} \tilde{m}_L^2$ 

We need a cancellation

### **Slepton Mixing**



$$\begin{aligned} \mathcal{R}_{13}^{\tilde{\nu}} &= -s_e \, s_L^e \, e^{i(\gamma - \alpha_e)} \\ \mathcal{R}_{23}^{\tilde{\nu}} &= -c_e \, s_L^e \, e^{i\gamma} \\ \mathcal{R}_{33}^{\tilde{\nu}} &= 1 \end{aligned}$$

# LFV

$$\left(\frac{\mathcal{B}(\mu \to e\gamma)}{\mathcal{B}(\tau \to \mu\gamma)}\right)^{\chi^{\pm}}$$

$$= \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{\Gamma_{\tau}}{\Gamma_{\mu}} \left|\frac{\mathcal{R}_{23}^{\tilde{\nu}}\mathcal{R}_{13}^{\tilde{\nu}*}}{\mathcal{R}_{33}^{\tilde{\nu}}\mathcal{R}_{23}^{\tilde{\nu}*}}\right|^{2}$$
$$= 5.1 s_{e}^{2} s_{L}^{e 2}$$

$$\left(\frac{\mathcal{B}(\tau \to e\gamma)}{\mathcal{B}(\tau \to \mu\gamma)}\right)^{\chi^{\pm}} \approx \left|\frac{\mathcal{R}_{33}^{\tilde{\nu}}\mathcal{R}_{13}^{\tilde{\nu}*}}{\mathcal{R}_{33}^{\tilde{\nu}}\mathcal{R}_{23}^{\tilde{\nu}*}}\right|^{2} \approx s_{e}^{2}$$

 $\sim$ 

 $\sim$ 

## **Lepton Flavour Violation**



## **Dynamical Two-Site Model**



Third generation Higgs

First + second generation

U(2) symmetry

# **Dynamical Two-Site Model**

| Chiral field       | $G_1^{\mathrm{SM}}$             | $G_2^{ m SM}$                   |
|--------------------|---------------------------------|---------------------------------|
| $\chi_h$           | $(3, 2, \frac{1}{6})$           | $(\overline{3},2,-\frac{1}{6})$ |
| $	ilde{\chi}_h$    | $(\overline{3},2,-\frac{1}{6})$ | $(3,2,rac{1}{6})$              |
| $\chi_\ell$        | $(1, 2, \frac{1}{2})$           | $(1, 2, -\frac{1}{2})$          |
| $	ilde{\chi}_\ell$ | $(1,2,-\frac{1}{2})$            | $(1,2,rac{1}{2})$              |

$$Y_u, Y_d \sim \begin{pmatrix} \epsilon_{\ell} & \epsilon_{\ell} & \epsilon_{h} \\ \epsilon_{\ell} & \epsilon_{\ell} & \epsilon_{h} \\ \epsilon_{\ell}\epsilon_{h} & \epsilon_{\ell}\epsilon_{h} & 1 \end{pmatrix}$$