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We consider the parameterization of seismic source based on the concept of stress glut 
tensor. We describe techniques for determination of seismic source integral characteristics 
from analysis of surface wave records. We treat the problem of the nonuniqueness of the 
moment tensor inversion for shallow earthquakes from long period surface wave data. 

  
I. Parameterization of seismic source 
 

The description of seismic source we will consider is based on the formalism developed 
by Backus and Mulcahy, 1976. 
 
Statement of the problem.  
Motion equation 

,u i i j j f i          (1.1) 
Hook’s law for isotropic medium 

ijkkijij 2         (1.2)   
Initial conditions 

,u u 0 t 0          (1.3) 
Boundary conditions 

0|
0Sjij n          (1.4) 

Here u – displacement vector; ij – elements of symmetric 3x3 stress tensor; i,j=1,2,3 and the 

summation convention for repeated subscripts is used; 
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 ; ij – elements of 

symmetric 3x3 strain tensor and )(5.0 ,, ijjiij uu ;   - density; fi – components of 
external force; nj – components of the normal to the free surface S0.  
 
Solution of the problem (1.1)-(1.4) can be given by formula 

yjij

T

i dVftGdtu ),(),,(),(
0

yyxx       (1.5) 

or 

u t d H t f dVi

T

ij j y( , ) ( , , ) ( , )x x y y
0

d

      (1.6) 

Here  Gij is the Green’s function,  

H t Gij ij

t

( , , ) ( , , )x y x y
0

,         (1.7) 

x  and 0 < t < T are the space region and time interval where  is not identically zero. f
 

Seismic sources  
 We will consider internal sources only (earthquakes). In this case any external forces 
are absent. We must then set 0f in equation (1.1), so that the only solution that satisfies 
the homogeneous initial (1.3) and boundary (1.4) conditions, as well as Hook’s law (1.2) will 
be .  Non-zero displacements cannot arise in the medium, unless at least one of the 
above conditions is not true. 

0u

Following Backus and Mulcahy, 1976, we assume seismic motion to be caused by a departure 
from ideal elasticity (from Hook’s law) within some volume of the medium at some time 
interval 0 < t < T. 
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Let u(x,t) be the actual displacements, (x,t) - correspondent stresses, if Hook’s law is 
valid, s(x,t) - actual stresses. 
Let the difference  

(x,t) = (x,t) - s(x,t),         (1.8) 
called the stress glut tensor or moment tensor density, is not identically zero for 0 < t < T  and 
x  

we define as source duration, and  - source region. Within this region and time interval 
(and only there) the tensor is not identically zero as well. ),( tx

Replacing (x,t) by s(x,t) in equation (1.1), using definition (1.8) and the absence of 
external forces ( 0f ) we can rewrite the motion equation (1.1) in form 

,u si i j j  
or 

,u i i j j g i

i j j

ndition 

tensor m.  

         (1.9) 
where 
g i ,  .         (1.10) 

Equation (1.10) defines the equivalent force g.  Using formula (1.6) with fi replaced by gi , 
definition (1.10) and Gauss theorem we have for displacements 

u t d H t dVi

T

ij k jk y( , ) ( , , ) ( , ),x x y y
0

,      (1.11) 

where Hij  is differentiated with respect to yk . 
If the inelastic motions are concentrated at a surface , then 

u t d H t di

T

ij k jk y( , ) ( , , ) ( , ),x x y y
0

.      (1.12) 

Relation of stress glut (moment tensor density) with classic definition of moment tensor M : 

y

T

dVtdt ),(
0

yM  .        (1.13) 

Normalizing moment tensor we define seismic moment M0 :  

M=M0m , where tensor m is normalized by co 2 2m , m
3

1,

T )tr(
ji

ijmm T is 

transposed 
 
Stress glut moment for special types of seismic sources 
1. Discontinuity of displacement u at a surface in isotropic medium (stress is continuous): 

)].,()(),()([
)(),(),(

tuntun
ntut

ijji

ijkkij

xxxx
xxx

     (1.14) 

Here n(x) is the normal to the surface and seismic disturbances are given by formula 
(1.12). 
2. In the case of tangential (shear) dislocation we have 

0kk nu and formula (1.14) takes form 
)].,()(),()([),( tuntunt ijjiij xxxxx     (1.15) 

3. Instant point tangential dislocation occurred in the point x=0 at time t=0: 
),()(),( 0 xx tmMt ijij        (1.16) 

where ijjiij ananm  , a u u/| |  and  .||0 uM  
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Phenomena of matrix m  
Trm = 0. The eigenvalues of matrix m are: 1, -1 and 0. The eigenvector correspondent to 1 
defines the direction of maximum extension, and the eigenvector correspondent to -1 defines 
the direction of maximum compression. Such a source is called double-couple. 

 
As it follows from formula (1.12) an instant point double-couple excites a 

displacement field of the form 
klliki mtHMtu ),,(),( ,0 0xx .        (1.17) 

We have for Fourier transforms H(x,y, ) and G(x,y, ) from equation (1.7): 

),,(
i
1),,( yxGyxH ,        (1.18) 

where i is the imaginary unit, and  is angular frequency. 
As result the spectrum of displacements is given by formula 

),,(
i
1),( ,0 0xx likkli GmMu .       (1.19) 

 
Relation between the displacement field and stress glut moments 
 We assume that the time derivative of stress glut tensor can be presented in form: 

mxx ),(),( tft ,         (1.20) 
where  is non-negative function and m is a uniform normalized moment tensor.  f t( , )x
The moment  of spatial degree l and temporal degree n with respect to point q and 
instant of time  is a tensor of order l and is given by formula 

),(),(
...1

qnl
kk l

f

0
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111
dttqxqxtfdVf n

kkkk
V

nl
kk lll

xq ,    (1.21) 

k1,…,kl=1,2,3. 
Replacing Hij(x,y,t- ) in equation (1.11) by its Taylor series in powers of y and in powers of 

we get: 

 0yyx0x ),,()0,(
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Using formulae (1.18) and (1.22) we have following equation for the spectrum of 
displacements: 

0yyx0x ),,())(i0,(
!!
)1(),(

1

1
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ij

kkk

nnl
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l n
jk

n

i Gfm
nl

u
l

l yyy
.  (1.23) 

Here we assume that the point y=0 and the instant t=0 belong to the source region and the 
time of the source activity respectively. 
 When the spectra of displacements ui(x, ) and Green’s function Gij(x,y, ) have been 
low pass filtered, the terms in equation (1.23) start to decrease with l and n increasing at least 
as rapidly as ( T)l+n  (T is the source duration, and T<1), and one might then restrict to 
considering finite sums only. 
 We will take into account in the following sections only the first terms in formula 
(1.23) for . 2nl
 
II. Source inversion in moment tensor approximation 
 

The first term in (1.23) corresponding to l=0, n=0, describes the spectra of displacements 
ui(x, ) excited by an instant point source (compare with formula (1.19) taking into account 
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that seismic moment is equal to zero moment of function f(x,t):  M0=f(0,0)). For a source with 
nonzero size and duration this term approximates ui(x, ) with high accuracy for  periods 
much longer then source duration. Performing the inversion of long period seismic waves we 
describe the earthquake by an instant point source. As it was mentioned in previous section, 
an instant point source can be given by moment tensor - a symmetric 3x3 matrix M . Seismic 

moment  is defined by equation M0 M0
1

2 tr( )TM M , where M  is transposed moment 

tensor , and .  Moment tensor of any event can be presented in the 

form  M , where matrix  is normalized by condition . 

T

Tm m

M

M

tr( )T

,
M M Mij

i j

2

1

3

m m0 tr( ) 2
We’ll consider a double-couple instant point source (a pure tangential dislocation) at a 

depth h. Such a source can be given by 5 parameters: double-couple depth, its focal 
mechanism which is characterizing by three angles: strike, dip and slip or by two orthogonal 
unit vectors (direction of principal tension T and direction of principal compression P) and 
seismic moment . Four of these parameters we determine by a systematic exploration of 
the four dimensional parametric space, and the 5-th parameter  - solving the problem of 
minimization of the misfit between observed and calculated surface wave amplitude spectra 
for every current combination of all other parameters. 

M0

M0

Under assumptions mentioned above the relation between the spectrum of  displacements 
 and moment tensor M  can be  expressed  by formula (1.19) rewritten below in 

slightly different form:  
ui ( , )x

)],,([
i
1),( yxx ij

l
jli GMu

y
                               (2.1) 

i,j = 1,2,3 and the  summation  convention for repeated subscripts is used. Gij ( , , )x y  in 
equation (2.1) is the spectrum of Green function for the chosen model of medium and wave 
type (see Levshin, 1985; Bukchin, 1990), y - source location. We will discuss the inversion of 
surface wave spectra, so Gij ( , , )x y is the spectrum of surface wave Green function. We 
assume that the paths from the earthquake source to seismic stations are relatively simple and 
are well approximated by weak laterally inhomogeneous model (Woodhouse, 1974; Babich et 
al., 1976). The surface wave Green function in this approximation is determined by the near 
source and near receiver velocity structure, by the mean phase velocity of wave, and by 
geometrical spreading. We assume that waves propagate from the source to station along 
great circles. Under these assumptions the amplitude spectrum | | defined by formula 
(2.1) does not depend on the average phase velocity of the wave. In such a model the errors in 
source location do not affect the amplitude spectrum (Bukchin, 1990). The average phase 
velocities of surface waves are usually not well known. For this reason as a rule we use only 
amplitude spectra of surface waves for determining source parameters under consideration. 
We use observed surface wave phase spectra only for very long periods. Correcting the 
spectra for attenuation we use laterally homogeneous model for quality factor.  

ui ( , )x

 
Surface wave amplitude spectra inversion 
     If all characteristics of the medium are known, the representation (2.1) gives us a system of 
equations for parameters defined above. Let us consider now a grid in the space of these 4 
parameters. Let the models of the media be given. Using formula (2.1)  we  can  calculate  the  
amplitude spectra of surface waves at the points of  observation for every possible 
combination of values of the varying  parameters.  Comparison of calculated and observed 
amplitude spectra give us a residual for every point of observation, every wave and every ( )i
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frequency . Let  be any observed value of the spectrum, i = 1,…,N; -   

corresponding residual of | |. We define the normalized amplitude residual by 
formula  

u i( ) ( , )x

u
amp
( )i

i( ) ( , )x

2/1N

1

2
N

1i

) T T

2

amp

i

)

amp |,()
i

iuh xP,T .  (2.2) 

 
The optimal values of the parameters that minimize amp we consider as estimates of these 
parameters. We search them by a systematic exploration of the four-dimensional parameter 
space. To characterize the degree of resolution of every of these source characteristics we 
calculate partial residual functions. Fixing the value of one of varying parameters we put in 
correspondence to it a minimal value of the residual amp on the set of all possible values of 
the other parameters. In this way we define one residual function on scalar argument and two 
residual functions on vector argument corresponding to the scalar and two vector varying 
parameters: , and h h P P ) . The value of the parameter for which the 
corresponding function of the residual attains its minimum we define as estimate of this 
parameter. At the same time these functions characterize the degree of resolution of the 
corresponding parameters. From geometrical point of view these functions describe the lower 
boundaries of projections of the 4-D surface of functional on the coordinate planes. A 
sketch illustrating the definition of partial residual functions is given in figure 1.  
 
 

 
 
Here one of 4 parameters is picked out as ‘parameter 1’, and one of coordinate axis 
corresponds to this parameter. Another coordinate axis we consider formally as 3-D space of 
the rest 3 parameters. Plane  is orthogonal to the axis ‘parameter 1’ and cross it in a point p0 
. Curve L is the intersection of the plane and the surface of functional . As one can see 
from the figure the point (p0) belong to the boundary of projection of the surface of 
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functional and at the same time it corresponds to a minimal value of the residual on the 
set of all possible values of the other 3 parameters while ‘parameter 1’ is equal to the value 
p0. 
So, as it is accepted in engineering we characterize our surface by its 4 projections on 

the vertical axis, and within the pair differ from each other by the 

rpose we use very long period phase spectra of surface waves or 
olarities of first arrivals. 

var  
ery wave and every frequency . We define the 

normalized phase residual by formula  

coordinate planes. 
    It is well known that the focal mechanism cannot be uniquely determined from surface 
wave amplitude spectra. There are four different focal mechanisms radiating the same surface 
wave amplitude spectra. These four equivalent solutions represent two pairs of mechanisms 
symmetric with respect to 
opposite direction of slip.  
     To get a unique solution for the focal mechanism we have to use in the inversion additional 
observations. For these pu
p
 
Joint inversion of surface wave amplitude and phase spectra 
   Using formula (2.1) we can calculate for chosen frequency range the phase spectra of 
surface waves at the points of observation for every possible combination of values of the 

ying  parameters. Comparison of calculated and observed phase spectra give us a residual 

ph for every point of observation, ev
( )i

 

p h p hh
i

i
, , ) / N

N /

T P
1 2

1

1 2

.      (2.3) 

We determine the joint residual 
 

by formula 
1 1 1( ) ( )p h a m p .        (2.4) 

To characterize the resolution of source characteristics we calculate partial residual functions 
 the same way as was described above. 

Jo

he full number of 
observed po n we dete

in
 

int inversion of surface wave amplitude spectra and P wave polarities 
Calculating radiation pattern of P waves for every current combination of parameters we 

compare it with observed polarities. The misfit obtained from this comparison we use to 
calculate a joint residual of surface wave amplitude spectra and polarities of P wave first 
arrivals. Let a m p be the residual of surface wave amplitude spectra, p - the residual of P 
wave first arrival polarities (the number of wrong polarities divided by t

larities), the rmine the joint residual by formula 
1 1 1( ) ( )p a m p .       (2.5) 

For this type of inversion we calculate partial residual functions to characterize the resolution 
of 

rities a smoothing procedure (see Lasserre et 
al.

ed polariti

parameters under determination in the same way as it was described for two first types. 
Before inversion we apply to observed pola
, 2001), which we will describe here briefly. 
Let us consider a group of observed polarities (+1 for compression and -1 for dilatation) 

radiated in directions deviating from any medium one by a small angle. This group is 
presented in the inversion procedure by one polarity prescribing to this medium direction. If 
the number of one of two types of polarities from this group is significantly larger then the 
number of opposite polarities, then we prescribe this polarity to this medium direction. If no 
one of two polarity types can be considered as preferable, then all these polarities will not be 
used in the inversion. To make a decision for any group of n observ es we calculate 
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the sum m n n , where n+ is the number of compressions and n n n  is the number 
of dilatations. We consider one of polarity types as preferable if |m| is larger then its standard 
deviation in the case when +1 and -1 appear randomly with this same probability 0.5. In this 

ndom value distribu  the binomial low. For its average we have 
M n( ) 0 r dispersion D n n( ) .

case n+ ted following
o

 is a ra
n.5 , and f 0 25 . Random value m is a linear function of n+ 

such that m n n2 . So following equations are valid fo
and for the standard deviation  of value m  

r the average, for the dispersion, 

M m M n n n n( ) ( )2 m D n n( ) ( )0 ,   D 4 ,   and  ( )m n . 
esult, if the uaAs a r  ineq lity m n|  is valid then we prescribe +1 to the medium direction if 
 and -1 if m 0 , m 0 . 

cond moments approximation. Characteristics of source shape and evolution in 
me. 

u

e time
c occurs at various points within the source region, i.e., 

racteristics of the source can be expressed by 

when equation (1.20) is valid such 

f total degree 
(both in space and time) 0, 1, and 2 with respect to point q and instant of time 

d q dt

dt

fi aracte  source. Source location 
is estimated by the

    (3.2) 
ei

Similarly, the temp

 
III. Se
ti
 
     We present here a technique based on the description of seismic source distribution in 
space and in time by integral moments (see Bukchin et al., 1994; B kchin, 1995; Gomez, 
1997 a, b). We assume that the time derivative of stress glut tensor can be represented in 
form (1.20). Following Backus and Mulcahy, 1976 we will define the source region by the 
condition that function f t( , )x  is not identically zero and the source duration is th  
interval when nonelasti  motion f t( , )x  
is different from zero. 
     Spatial and temporal integral cha
corresponding moments of the function f t( , )x  (Backus, 1977a; Bukchin et al., 1994). These 
moments can be estimated from the seismic records using the relation between them and the 
displacements in seismic waves, which we will consider later. In general case stress glut rate 
moments of spatial degree 2 and higher are not uniquely determined by the displacement field 
(Pavlov, 1994; Das & Kostrov, 1997). But in the case 
uniqueness takes place (Backus, 1977b; Bukchin, 1995). 
    Following equations define the spatio-temporal moments of function f t( , )x o

f dV f t
V

( , ) ( , )0 0

0

x

f dV f
V

( , ) ( ) ( , )0 1

0

x

f dVi
V

( , ) ( , ) (1 1

0

q x

t f dV f t xi
V

i i
( , ) ( ) ( , )( )1 0

0

q x

t t dt) f dV f( , ) ( ) ( , )(0 2 x

f t x q t dti i)( )( )

(

,

t t )2

V 0

f dV f t x q x q dtij
V

i i j j
0

q x

     Using these moments we will de ne integral ch ristics of the

( , ) ( ) ( , )( )( )2 0

 spatial centroid qc  of the field f t( , )x  defined as 
q fc

( )  ,       0( ) /1 0
0

, M
where M f0

0 0( , )  is the scalar s smic moment. 
oral centroid c  is es utimated by the form la 

c
( ) ( )     (3.3) /f M,0 1

00  .                                
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t estimated by 2The source duration is , where 
   (3.4) 

The spatial extent of the source is described by matrix W, 

 source size in the direction of unit vector r is estimated by value , defined by 
formula 

f 

ast eigenvalue, and the square of the length of the major 

order (1,1) the mean velocity v 
of the instant , 1989  is esti ated as 

 ,                                        (3.7) 

mate, and 99% confidence axis 
ngth is 3 times larger then correspondent integral estimate.  

 

f M,( )
c( ) /0 2

0  .                              

W f q( )
c( ) /2 0

0
, M  .                                   (3.5) 

The mean 2lr

lr
2 r WrT ,                                           (3.6) 

where r T is the transposed vector r. From (3.5) and (3.6) we can estimate the principal axes o
the source. There directions are given by the eigenvectors of the matrix W. The square of the 
length of the minor semi-axis is equal to the le
semi-axis is equal to the greatest eigenvalue. 
     In the same way, from the coupled space time moment of 

spatial centroid (Bukchin ) m
v w /
where  w f q( )

c c( , ) /1 1
0

, M  . 
     The relation between integral estimates and real characteristics of source duration and 
spatial extent depends on the distribution of moment rate density in time and over the fault. 
Figure 2 illustrates this relation in the case of Gaussian distributions. In this case 99% 
confidence duration is 2.5 times larger then the integral esti
le

 
 

Fig. 2. Relation between integral estimates and real characteristics of source duration and 
atial extent. sp

  
       Now we will consider the low frequency part of the spectra of the ith component of 
displacements in Love or Rayleigh wave ui ( , )x . It is assumed that the frequency  is 
small, so that the duration of the source is small in comparison with the period of the wave, 
and the source size is small as compared with the wavelength. It is assu  that the origin of 
coordinate system is located in the point of spatial centroid .e. q 0c ) and that time is 
measured from the instant of temporal centroid, so that 

med
i qc (

c 0 . With this choice the first 
degr s with he ee moment  respect to t spatia 0 tem in t=0 ar ro, 
i.e. 0  and .  

l origin x= and to the poral orig e ze
f 0( ) ( )1 0, f ,( ) ( )0 1 0 0

  



 10

      Under this assumptions, taking into account in formula (1.23) only the first terms for 
 we can express the relation between the spectrum of displacements  and the 

spatio-temporal moments of the function by following formula (Bukchin,1995) 
2nl ui ( , )x

f t( , )x

u M M G f M Gi jl
l

ij mn jl
m n l

ij( , )
i

( , , )
i

( ) ( , , )( , )x x 0 0 x 0
1 1

20
2 0

y y y y
 

f M G f M Gm jl
m l

ij jl
l

ij
( , ) ( , )( , ) ( , , )

i
( ) ( , , )1 1 0 20

2
00 x 0

y y y
x 0 ,    (3.8) 

i,j,l,m,n = 1,2,3 and the  summation  convention for repeated subscripts is used.  Gij ( , , )x y  
in equation (3.8) is the spectrum of Green function for the chosen model of medium and wave 
type. We assume that the paths from the earthquake source to seismic stations are well 
approximated by weak laterally inhomogeneous model. Under this assumption, as it was 
mentioned above, the amplitude spectrum | ui ( , )x | defined by formula (3.8) does not depend 
on the average phase velocity of the wave, and the errors in source location do not affect the 
amplitude spectrum. 
     If all characteristics of the medium, depth of the best point source and seismic moment 
tensor are known (determined, for example, using the spectral domain of longer periods) the 
representation (3.8) gives us a system of linear equations for moments of the function 

of total degree 2. But as we mentioned considering moment tensor approximation the 
average phase velocities of surface waves are usually not well known. For this reason, we use 
only amplitude spectrum of surface waves for determining these moments, in spite of non-
linear relation between them. 

f t( , )x

     Let us consider a plane source. All moments of the function of total degree 2 can be 
expressed in this case by formulas (3.2)-(3.7) in terms of 6 parameters: - estimate of 
source duration, l

f t( , )x
t

max - estimate of maximal mean size of the source (the length of the major 
axis),  l - estimate  of  the angle between the major axis and strike axis, lmin - estimate of 
minimal mean size of the source (the length of the minor axis), v - estimate of the absolute 
value of instant centroid mean velocity v and v -  the angle between v and strike axis. 
     Using the Bessel inequality for the moments under discussion we can obtain the following 
constrain for the parameters considered above (Bukchin, 1995): 

1sincos
2
min

2

2
max

2
22

ll
tv ,                             (3.9) 

where is the angle between major axis of the source and direction of v. 
Assuming that the source is a plane fault and representation (1.20) is valid let us consider a 
grid in the space of 6 parameters defined above. These parameters have to follow inequality 
(3.9). Let models of the media be given and the moment tensor be fixed as well as the depth 
of the best point source. Let the fault plane (one of two nodal planes) be identified. Using  
formula (3.8)  we  can  calculate  the  amplitude spectra of surface waves at the points of 
observation for every possible combination of values of the varying  parameters. Comparison 
of calculated and observed amplitude spectra give us a residual for every point of 
observation, every wave and every frequency 

( )i

. Let  be any observed value of the 
spectrum, i = 1,…,N; - corresponding residual of | |. We define the normalized 
amplitude residual by formula  

u i( ) ( , )r
u i( ) ( ,r( )i )

2/1N

1

2
N

1

2
minmax |,(),,,,

i

i

i

i
l ullt rvv .  (3.10) 

The optimal values of the parameters that minimize  we consider as estimates of these 
parameters. We search them by a systematic exploration of the six dimensional parameter 
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space. To characterize the degree of resolution of every of these source characteristics we 
calculate partial residual functions in the same way as was described in previous section. We 
define 6 functions of the residual corresponding to the 6 varying parameters: t t ) , 

, , l l
m a x m a x ) l l

m in m in )
l l ) , )vv and )vv

. The optimal values of the 
parameters that minimize the residual we consider as estimates of these parameters. At the 
same time these functions characterize the degree of resolution of the corresponding 
parameters.  
 
IV. Example of application 

 
We illustrate the technique by its application to a study of the recent strong earthquake  

(Mw = 8.6) occurred to the West of the coast of Northern Sumatra on 11 April 2012. 
 
At the first step inverting long period (from 200 s to 300 s) records of fundamental Love 

and Rayleigh modes we obtained parameters characterizing the event in point instant double-
couple approximation: seismic moment, focal mechanism, and source depth. The records 
were processed by the frequency-time and polarization analysis package FTAN (Lander, 
1989). We selected Love and Rayleigh fundamental mode records of a good quality from 11 
stations of  GEOSCOPE seismic network. Their azimuthal distribution is given in figure 3.  

 

 
 

Fig.3. Distribution of stations (triangles) used for moment tensor inversion. The square marks 
the epicenter. 
 

To improve the resolution we used polarities of direct P-waves as additional information. 
In the source region and under the receivers, we used the 3SMAC model (Ricard et al. 1996) 
for the crust and the PREM model below. We used the quality factor given by the PREM 
model for attenuation correction. The moment tensor describing the source in instant point 
source approximation is obtained by joint inversion of surface wave amplitude spectra and 
first arrival polarities at worldwide stations (Lasserre et al. 2001). The solution gives a focal 
mechanism shown in figure 4. The source depth resolution curve is shown in the same figure. 
The estimate of source depth takes values from 35 to 40 km. The estimated value of seismic 
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moment is equal to 0.88·1022 N·m. It corresponds to the magnitude value Mw = 8.6. The 
resolution maps for the principal stress axes are shown in figure 5. 

 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 

Fig. 4. Double-couple solution and source depth resolution curve. 
 

 
Fig. 5. Resolution maps for the principal stress axes 

 
Determining 2-nd moments of moment tensor density we started from the assumption that 

the nodal plane with strike angle equal to 106° is the fault plane. We fixed focal mechanism 
and seismic moment obtained in instant point source approximation. The source depth is 
recomputed when determining the source 2nd-order moments. Its final estimate takes value  
40 km.  

The duration and the geometry of the source is estimated from the amplitude spectra of 
fundamental Love and Rayleigh modes recorded at stations shown in figure 3 in the period 
band from 200 to 300 seconds.  

 
 

The residual functions for the integral estimates of the source are given in figure 6. 

  



 13

The inversion yields the integral estimate of duration being about 40 s, a characteristic 
source length (major axis length) of 125 km. The minor axis length is poorly resolved, lying 
between 0 and 50 km. The average instant centroid velocity estimate is about 3 km/s. The 
angles giving the major axis and velocity vector orientations are measured clockwise on the 
footwall starting from the strike axis. They are consistent with each other and correspondent 
residual functions attain their minimum values at 0° and 180° correspondingly. 

 

 
 

Fig. 6. Residual functions for source integral characteristics. 
 

The propagation of rupture may be characterized by directivity ratio d proposed by 
McGuire (2002). This parameter is defined as the ratio of the average velocity of the instant 
centroid over the apparent rupture velocity equal to lmax/ t. For a unilateral rupture where slip 
nucleates at one end of a rectangular fault and propagates to the other at a uniform rupture 
velocity with a uniform slip distribution, d = 1. For a symmetric bilateral rupture that initiates 
in the middle and propagates to both ends of a fault at uniform rupture velocity with uniform 
slip distribution, d = 0. Predominantly bilateral ruptures correspond to  while 
predominantly unilateral ruptures correspond to 

5.00 d
15.0 d . We find d = 0.96 for our model.  

This value shows almost pure unilateral (westward) rupture propagation. 
The relation between integral estimates and real characteristics of source duration and 

spatial extent depends on the distribution of moment rate density in time and over the fault. In 
the case of Gaussian distributions the 99% confidence duration is 2.5 times larger then the 
integral estimate, and 99% confidence axis length is 3 times larger then correspondent integral 
estimate. Multiplying the integral estimate of duration by factor 2.5 we get for source process 
duration the value being equal to 100s. Multiplying the integral estimates for principal axes 
length by factors 3 we get for major axis size 375 km, and for minor axis less than 150 km. 

Use of the second nodal plane (with strike angle equal to 200°) as the fault plane gives 
significantly worse result. It is illustrated by figure 7. 
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Fig. 7. Comparison of residual functions for two selections of the fault plane.  Solid lines 
correspond to selected plane with strike angle 106°, dashed lines correspond to selected plane 
with strike angle 200°. 
 
V. Uncertainty of moment tensor determination in case of shallow earthquake. 
 

We consider the uncertainty of moment tensor determination from surface wave records if 
the wave length is much larger then the source depth (Bukchin et al., 2010).  

Such uncertainty for two special cases of double-couple, namely for pure normal (or 
reverse) fault and for pure strike-slip, was investigated by Kanamori and Given (1981). 

It is well known that in case of shallow earthquake moment tensor cannot be uniquely 
determined from long period surface waves. Only four out of six elements defining a 
symmetric moment tensor may be reliably determined by such inversion. We consider the 
consequences of this fact.  

We give an existence condition for double-couples radiating the same long period surface 
waves as the deviatoric moment tensor (symmetric 3x3 matrix with zero trace) obtained by 
linear inversion.  

We describe the family of such double-couples and show that they may provide better 
estimates of double-couple mechanisms than the traditional ‘‘best double-couple’’ solution.  

We describe a family of shallow double-couples which can be uniquely determined from 
long period surface waves. 

 
Definition of the ‘best double-couple’ 

In many routine determinations of CMT solutions the best double-couple is calculated from 
the deviatoric moment tensor. The best double-couple has identical eigenvectors to the 
deviatoric moment tensor, and seismic moment is given by the average of the absolute values 
of the most positive and most negative eigenvalues of that moment tensor. 

The best double-couple may be shown to be the double-couple moment tensor which 
deviates least from the original deviatoric moment tensor.  
 
Radiation of surface waves by shallow source 

 We consider surface waves radiated by an instantaneous point source in a horizontally 
uniform earth. For the spectrum of displacement in surface wave u(r, ) at a point r we have  

)],(exp[),,,()(),( rMqru ihP ,      (5.1) 

where q( ) is a complex vector depending on earth structure, M is the moment tensor, h the 
source depth,   the azimuth of surface wave radiation, (r, ) the propagation phase, and  
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the circular frequency. The factor P determines the radiation pattern of the source (azimuth 
dependence of spectral amplitude) and the initial (source) phase.  

For a Love wave this factor is given by  
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where V( ) (z) is the transverse eigenfunction,  is the wave number, i is the imaginary unit, and 
the coordinate system is defined in the following way: 1 – vertical down, 2 – north, and 3 – 
east. 

For a Rayleigh wave the function P is given by  
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where V(z) (z) , V(r) (z) are vertical and radial components of the eigenfunction, respectively.  
The source rotated around the vertical axis by 180° radiates in the direction with azimuth  

the same surface waves as the original one in the direction with azimuth  -180°. As can be 
seen from formulas (5.2) and (5.3), the result of this rotation is that the function ( ,h, , ) 
becomes its complex conjugate.  

The coefficients 
z

hV ),()(

 for Love waves and ]),(),([
)(

)(

z
hVhV

r
z  for Rayleigh 

waves are proportional to the shear traction acting on the horizontal plane. But such a force is 
vanishing at the free surface (h = 0).  As a consequence, if the source depth h is much smaller 
than the wave length, the moment tensor elements M12 and M13 almost do not affect the surface 
wave radiation pattern and the source phase, and they can-not be resolved from the observed 
spectra. At the same time the imaginary part of ( ,h, , ) is small and the rotation of the 
source around the vertical axis by 180° doesn’t change the radiated surface waves. This 
property of shallow sources was studied by Henry et al. (2002). They explained for the double-
couple case the two-fold rotational symmetry of the misfit function around the vertical axis of 
the moment tensor and demonstrated it for a set of earthquakes.  

Note that the elements M12 and M13 do not affect the surface wave radiation so long as they 
do not exceed significantly (in absolute value) the other elements of the moment tensor. But if 
these two elements are dominant, then they do contribute into the surface wave radiation and 
can be resolved for any nonzero h. This takes place for the double-couple in case one of its 
nodal planes is subhorizontal (Bukchin, 2006). It is important to note that such a source radiates 
relatively weak surface waves. So, all moment tensor elements for such a shallow double-
couple can be resolved from long period surface waves, provided the magnitude of the event is 
high enough, and as a result, the surface wave records are characterized by high signal-to-noise 
ratios. 
 
 
Existence condition and description of equivalent double-couples 

Only four out of six elements defining a symmetric moment tensor may be reliably 
determined from surface wave records if the wave length is much larger then the source depth. 
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It has in general case nonzero non-double-couple component. It is shown (Bukchin et al., 2010) 
that given four reliably determined elements is enough to answer the question of existence of 
pure double-couples radiating long period surface waves similar to that radiating by the original 
deviatoric moment tensor.  

Let elements M22, M33 and M23 are given. The element M11   is defined by zero-trace 
condition M11 + M22 + M33 = 0.  

Expressing these moment tensor elements through seismic moment and focal mechanism 
angles we obtained existence condition for double-couples with given values of these three 
moment tensor elements, and formulas describing the set of such double-couples. 

The existence condition for double-couples with given values of moment tensor elements 
M22, M33 and M23 has form of inequality 

2
233322 MMM .          (5.4) 

If this condition is satisfied, then such double-couples exist and have the same strike angle 
given by formulas 

)arccos(5.0
2

2
2

3

1

AA
A ,        (5.5) 

where A1, A2, A3 and   are given by  
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+ and – in formula (5.5) corresponds to two nodal planes. 
The dip, rake angles and seismic moments M0 for the set of double-couples characterized 

by similar long period surface wave radiation patterns and source phases are defined by 
identities  

1costan C ,          (5.6) 

20 cossin CM ,          (5.7) 
where constants C1 and C2 are given by formulas 
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Adding to triples of seismic moment, dip and rake angle values the value of strike angle we 
describe  the first branch of equivalent double-couples. Substitution of the strike angle value  
by value  +180° gives us the second branch of equivalent double-couples. 
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Fig. 8. Examples of families of equivalent double-couples. (a) Contour plot of   f = tan  cos 
. Contours are marked by the corresponding value of C1 in (6). Every isoline of this function 

defines dip and rake angles of a family of equivalent double-couples. (b) The same contour 
plot with superimposed lower hemispherical projections of focal solutions for some of the 
isolines. The value of strike angle is fixed equal to 0. Equivalent double-couples are given by 
focal solutions filled by the same color. Gray strip along the axis  = 0 and gray sectors 
centered at points of intersection of the axis  = 90° with axes  = -90° and  = 90° show the 
regions where one of the nodal planes is subhorizontal. Equivalent dip-slips (  = -90° and  
= 90°) and slips on a vertical fault (  = 90°) contain the symmetric double-couples rotated 
around the vertical axis by 180°. All other families of equivalent double-couples must be 
completed by symmetric solutions with the same corresponding values of dip and rake 
angles, and with strike angle equal to 180°. 

 
Summing up, if the deviatoric moment tensor M in the case of a shallow source is obtained 

by inversion of long period surface waves, by the CMT method, say, then only the values of 
four elements M11, M22, M33 and M23 are reliable. The elements M12 and M13 are not resolved 
and incorrect values of these elements can lead to a spurious non-double-couple component 
even if all other moment tensor elements are correct (Henry et al., 2002).  

But it turns out that four reliably determined elements are sufficient to provide the answer 
to the question of the existence of pure double-couples radiating the same long period surface 
waves as the original deviator M does. If the condition (5.4) is fulfilled, then using formulas 
(5.5-5.8) one can obtain a complete description of required double-couples. Examples of 
families of equivalent double-couples are shown in figure 8. 

If, on the contrary, the condition (5.4) does not hold, then there is no double-couple 
radiating the same long period surface waves as the original deviator M. In that case we search 
for equivalent double-couples with values of the elements M22, M33 and M23 which deviate the 
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least from the given values. Such double-couples are found by minimizing 2
23

2
33

2
22 ddd , 

where d22, d33 and d23 are the differences between the corresponding values of the three 
elements.  

Let us consider the equality 
3322

2
23 MMM          (5.9) 

as the equation of a surface in the 3D Euclidean space  M22, M33, M23. This equation describes  
an elliptic cone.  This surface is symmetric with respect to the plane M23 = 0. The upper part of 
this surface (M23  0) is shown in figure 9. The surface separates the points (M22 , M33 , M23)  
corresponding to the moment tensors that satisfy the double-couple existence condition from 
the points corresponding to the moment tensors that do not satisfy this condition. The existence 
condition is valid for the exterior of the surface, including the surface itself. To sum up, if for 
any given values of  M22 , M33 , M23  the existence condition (5.4) is not true,  then the double-
couples with the least-deviation values of these three elements correspond to a point on the 
surface under consideration. It is shown (Bukchin et al., 2010) that all such double-couples are 
pure dip-slips (  = ± 90°). 
 

 
Fig. 9. Upper half of the surface , M 2

23 = M22 M33. The small ball specifies the values of 
moment tensor elements M22 , M33 , M23  not satisfying the existence condition. The small 
ellipse marks the double-couple with the least deviating values of these elements. 
 

Described double-couples and reference deviatoric moment tensor are radiating similar 
surface wave fields if the depth of the source is much smaller than the wave length. To control 
the similarity of radiated wave fields for given values of source depth and period we calculate 
the normalized misfit between synthetic surface wave spectra calculated for any double-couple 
with current values of dip and rake angles and for the reference deviatoric moment tensor. This 
misfit is defined as the ratio of the root mean square misfit to the root mean square spectra 
calculated for the reference moment tensor.   

We present the misfit contour plot in plane ( , ) in the same way as Henry et al. (2002) . 
The left and the right parts of the picture correspond to two values of strike angle different from 
each other by 180°. These two parts are rotated by 180° with respect to each other. This allows 
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us to consider these two misfit plots as a single map which is continuous at the line °. 
The continuity follows from the equality  
m( , 90°, ) = m( °, 90°, - ,), 
where m( , , ) is a double-couple moment tensor with given values of strike angle , dip 
angle and rake angle . 
 
Application to the March 25, 1998 Antarctic Plate earthquake 

We consider the large shallow earthquake studied in detail by Henry et al., 2002.  They 
compared the best fitting double-couple mechanisms obtained from mantle wave inversion with 
the traditional ‘best double-couple’ obtained from the best fitting deviatoric moment tensor and 
with the results of body wave analysis. 

We present here a complete description of double-couples radiating long period surface 
waves similar to the radiation pattern of the deviatoric moment tensor from the Global CMT 
catalog, and compare them with the results reported by Henry et al. (2002). 

We introduce the same notation as in Henry et al. (2002). We shall refer to the best fitting 
deviatoric moment tensor as the optimal deviatoric (ODV) moment tensor. We shall refer to the 
best fitting double-couple as the optimal pure double-couple (OPDC). And finally we shall 
refer to the so-called best double-couple which is calculated from the ODV moment tensor in 
many routine determinations of CMT solutions as the BDC.  

The ODV solution for this Mw = 8.1 earthquake from the Global CMT catalog has a large 
non-double-couple component, characterized by the parameter , which is the ratio of minimum 
(in absolute magnitude) eigenvalue to the maximum (in absolute magnitude) eigenvalue. For 
this solution   =  0.41. We use the ODV solution from the Global CMT catalog as the 
reference deviatoric moment tensor. The values of its elements M22, M33 and M23 satisfy the 
equivalent double-couple existence condition (5.4). Using these values we calculate from (5.5) 
the strike angle ° for one of the two branches of equivalent double-couples. Then we use 
(5.6-5.8) to find the set of pairs of dip and rake angle values and the corresponding seismic 
moments. Replacing the strike angle value ° by the value ° +180° = ° gives us the 
second branch of equivalent double-couples. 

A contour plot of the misfit function for period 200 s and source depth 10 km is shown in 
figure 10. The same figure shows two branches of equivalent double-couples and the different 
moment tensor solutions for this earthquake. It can be seen that the misfit is negligible on long 
segments of the equivalent double-couple curves. Both optimal pure double-couples obtained 
by Henry et al. (2002) from mantle wave inversion (solutions 3 and 4) fit well the curves of 
equivalent double-couples, and the values of the strike angle for these solutions practically 
coincide with the predicted values. On the contrary, the BDC from the Global CMT catalog is 
far from the lines of minimum misfit and its values of strike angle differ by 6° from the 
predicted values. The large misfit for the BDC solution can be explained by the dependence of 
all the BDC moment tensor elements on the values of ODV elements M12 and M13 which are 
not estimated reliably. Large non-double-couple components for the ODV solution can be 
explained as well by inaccurate estimates of M12 and M13. As a preferable estimate of the 
double-couple mechanism for this earthquake we suggest the double-couple (marked in figure 
10 by the star) from the family of equivalent double-couples nearest to the solution obtained 
from body wave inversion by Henry et al. (2000). 
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Fig. 10. The 1998 Antarctic earthquake. Misfit function calculated with respect to the radiation 
of ODV moment tensor from Global CMT catalog for period 200 s and source depth 10 km. 
Red dashed lines show two branches of equivalent double-couples. Points to the left of the 
vertical line at the center of the figure have strike 95° and rakes corresponding to the left 
ordinate. Points to the right of the line have the strike 275° and rakes corresponding to the right 
ordinate. 1 –  solution from the Global CMT catalog; 2 – BDC from the Global CMT 
catalog (281°, 84°, 17°); 3, 4 – optimal DCs (Henry et al. 2002)  (276°, 69°, -28°) and (96°, 
64°, -23°); 5 – DC obtained from body waves analysis (Henry et al. 2000) (95°, 63°, -26°);. 
 
Main results of the uncertainty analysis 

Traditional ‘‘best double-couple’’ may provide inadequate estimate of double-couple 
mechanism caused by wrong values of elements M12 and M13 which are not estimated 
reliably.  
The existence of equivalent double-couples shows that non-double-couple component of 
moment tensor may be spurious and can be explained by errors in estimates of elements 
M12 and M13.  
Four reliably determined moment tensor elements is enough to answer the question of 
existence of equivalent double-couples. 
If the existence condition is valid a complete set of equivalent double-couples can be 
described analytically. 
If the existence condition is not valid, equivalent double-couples can be determined for 
values of moment tensor elements M22, M33 and M23 nearest to given values. 
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To select the preferable solution from the set of equivalent double-couples, additional 
data are required. These can be solution obtained from body wave inversion, first motion 
data or long period P-wave polarities.  
If one of nodal planes of shallow pure double-couple is subhorizontal then all elements of 
moment tensor are well resolved and the solution is unique.  
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