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Rheology

The response of polymeric liquids, such as melts and solutions, to
an imposed stress may under certain conditions resemble the
behavior of a solid or a liquid, depending on the situation.

Reiner used the biblical expression that “mountains flowed in
front of God” to define the DEBORAH number:

a . l. Reiner is credited with naming the Deborah Number after the song of
time Cf r Mm Deborah, Judges 5:5- “The mountains flowed before the Lord"(Fig. 3.10),

o It was first mentioned in his article "The Deborah Number” in the January

- . 1964 issue of Physics Today.
time of observation

Solid-like response: De—00

Liquid-like response: De—0

Rheology is the science of the
deformation and flow of materials.

Figure. 3.10 Nestles Canyon, Arizona. Courtesy of Wolfgang Cohnen (©1997)
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Earth-deformation Processes - spectrum ||
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Elusive lithosphere and its proxies

The lithosphere—asthenosphere boundary (LAB) is a first-order structural

discontinuity that accommodates differential motion between tectonic plates and the
underlying mantle. Although it is the most extensive type of plate boundary on the
planet, its definitive detection, especially beneath cratons, is proving elusive. Different
proxies are used to demarcate the LAB, depending on the nature of the measurement.
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The thermal boundary layer (TBL),
containing a conductive lid and a
transition layer, represents a near-
surface region where temperature
deviates from the adiabat. A zone of
low seismic shear-wave velocity (Vs)
is sometimes detected beneath a
high-velocity lid; various definitions
have been used to correlate this
zone with the LAB.The LAB may
also correlate with a downward
extinction of seismic anisotropy or a
change in the direction of anisotropy
and .The electrical LAB is marked by
a significant reduction in electrical
resistivity.

Eaton et al., 2009



G & seismic rays

Mid-Ocean Ridge — HOISPOIS  — Subduction Zone

Crust

Lithosphera
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South Pacific Superswell Hawai'ian Plume

Cross-sectional portrayal of proposed mechanisms for
the origin of a high-reflectivity G beneath the Pacific.The
reflectivity of the G is enhanced by the stagnation of
partial melt at the base of the lithosphere (blue lines).

Another deeper discontinuity (blue dashed lines)
predominantly occurs beneath major hotspots, mid-ocean
ridges, and subduction zones and lies at the base of the
LVZ. Underside reflections from the G do not form
where the seismic discontinuity has a weak velocity
contrast or a broad velocity gradient.

Schmerr, N,, (2012), The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary, Science, 335, 1480-1483.



Road map
@ Methodology:

@ Surface wave dispersion analysis
@ Surface wave tomography

@ Non linear inversion of dispersion data

@ Cellular models for the lithosphere-asthenosphere system
@ Optimization techniques
@ Scale level I: [°x1° cells in the whole Italian region
@ Adding other geophysical constraints

@ Selected sections and geodynamic modelling

@ Possible applications

@ Joint inversion

@ Seismic hazard studies



Surface waves

On Waves Propagated along the Plane Surface of an Elastic
Solid. By Lord Ravieien, D.C.L., F.R.S.

[Read November 12th, 1885.]

It is proposed to investigate the behaviour of waves upon the plane
free surface of an infinite homogeneous isotropic elastic solid, their
character being such that the disturbance is confined to a superficial
region, of thickness comparable with the wave-length. The case is
thus analogous to that of deep-water waves, only that the potential
energy here depends upon elastic resilience instead of upon gravity.*

Denoting the displacements by a, 3, 7, and the dilatation by 0, we
have the usual equations
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Surface waves - reprised

@ Condition of existence:
@ Discontinuity (boundary waves, undispersed: Rayleigh, Stoneley)
@® Waveguide (interferential & dispersed: Love & Rayleigh)



Surface waves - reprised
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FIGURE 2. SURFACE ACOUSTIC WAVES can be found over a
broad frequency spectrum. Current research extends from seis-
mic waves in the infrasound region to interdigital transducers
(IDTs) and to laser-generated SAW pulses and transient grat-
ings in the ultrasound region.

MARCH 2002 PHYSICS TODAY 43



Surface waves - reprised

@ Condition of existence:
@ Discontinuity (boundary waves, undispersed: Rayleigh, Stoneley)
@ Waveguide (interferential & dispersed: Love & Rayleigh)

T (s) f (Hz) A (km) c (km/s) d (km) application
0.02-0.1 10-50 | 0.002-0.05 | 0.1-0.5 002 |cn&neenng
geophysics
0.2-1 15 0.15-150 | 0.1-1.5 0.2 upper
sediments
5-10 0.1-0.2 7-30 2.3 5 sedimentary
basins




Dispersion relation

In physics, the dispersion relation is the relation between the energy of a
system and its corresponding momentum. For example, for massive
particles in free space, the dispersion relation can easily be calculated from
the definition of kinetic energy.

For electromagnetic waves, the energy is proportional to the frequency of
the wave and the momentum to the wavenumber. In this case, Maxwell's
equations tell us that the dispersion relation for vacuum is linear: w=ck.

The name "dispersion relation" originally comes from optics. It is possible to
make the effective speed of light dependent on wavelength by making light
pass through a material which has a non-constant index of refraction, or by
using light in a non-uniform medium such as a waveguide. In this case, the
waveform will spread over time, such that a narrow pulse will become an
extended pulse, i.e. be dispersed.

10



Effect of dispersion...

Demonstration: sum two harmonic waves with slightly

different angular frequencies and wavenumbers:

u(x, t) = cos(wt — kyx) + cos(w,t — kyx)

W =0+0w W) =0 —0W > 0w

ky=k+6k  ky=k-Sk k> Sk

Add the two cosines:

u(x, t)=cos(wt + Swt — kx — 5kx)
+ cos(wt — dwt — kx + dkx)
= 2 cos(wt — kx) cos(dwt — dkx)

The envelope (beat) has a group velocity:

U=d6wldk

The individual peaks move with a phase velocity:

c=wk

(a) cos (@t - kx) ®, = o + 0w, k, =k + ok

€os (@t = kyx) W; = ® — 0w, k; =k - 0k

(b)

Envelope Carrier

X >

11



Group velocity

@ Another consequence of dispersion manifests itself as a temporal
effect. The phase velocity is the velocity at which the phase of any one
frequency component of the wave will propagate. This is not the same
as the group velocity of the wave, which is the rate that changes in
amplitude (known as the envelope of the wave) will propagate. The
group velocity vg is related to the phase velocity v by, for a

homogeneous medium (here A is the wavelength in vacuum, not in
the medium):

I
vV, = g = vy = v+kﬂ: v—?»ﬂ
dk  dk dk di

and thus in the normal dispersion case vg is
always < v !

12



Dispersion...

@ The group velocity itself is usually a function of the wave's
frequency.This results in group velocity dispersion (GVD),that is
often quantified as the group delay dispersion parameter :If D is <
0, the medium is said to have positive dispersion. If D is > 0, the
medium has negative dispersion.

5= s
dw

Group velocity Phas€ V\e:ocfty Phase velocity AI r), Phase

('[]'
’

" . wave that arises if the phase and the

change in group velocity are

‘\ stationary and gives the highest
Hoap valociy amplitude in terms of group velocity
| and are prominent on the

seismogram.
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Dispersion and structural information
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Dispersion
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Methodology - Scale level |

more than 100
Event-Station
paths
(6s — 80s)

more than 50
Two-Station
paths
(15s — 150s)

Phase and Group
Velocities
at global scale

Method

Cells

Applications

2D Maps of
Dispersion Curves Group Velocity
FTAN of TOMOGRAPHY and
Group Velocity Phase Velocity
at different periods
Dispersion Curves
of REGIO /ATION
Phase Velocity
Definition of regions,
each with
D . P a mean dispersion curve
STl & NON-LINEAR INVERSION of Group Velocity
a set of solutions for HEDGEHOG and

each region

of Phase Velocity
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Studied resi

The ltalic region with
studied cells sized |°x1°.
The main tectonic features
and volcanoes are
indicated. The colored
areas indicate the grouping
of cells whichVs models
will be presented

Modified from Brandmayr et al., 2010
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Paths...

SE
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Paths from
epicenters
to stations

in the study area
Transalp profile

Method

Cells

Applications

* p

Modified from Panza et al., 2007
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FTAN

@ Frequency-Time representation:

@ Gaussian filters; FTAN maps

e.g. Levshin et al., 1972

@ Floating filters: Phase equalization
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FTAN - Tsunami si
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FTAN - Acoustic signal
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Method

SW Tomography

@ Phase velocity: 2 stations method o0 = f Okds = —92 J dcds

@ Group velocity: FTAN ot = J S[I]js =—— j ouds
u

@ Local velocity perturbation is obtained by tomographic inversion
__[° —ds _ H G(r)m(r)dr
LOI

@ Minimizing )

Z ot — ” G(r)m(r)dr | +« ” ‘Am(r)‘zdr

@ c(xyT) ukxyT)

e.g. Yanovskaya and Ditmar, 1990.



Method

Applications

Phase Velocity Tomography

Ref: 3.62 km/s
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Group Velocity Tomography

Cells

Applications

Ref: 2.32 km/s
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Method

SW Tomography: resolution & grouping

Applications

@ Density, azimuthal coverage and length of the paths
control the lateral resolution of the data set and the maps
can be discretized with a step consistent with the value of
the lateral resolution length (200 km)

@ Improvement of the lateral resolving power when some
parameters of the uppermost part of the crust are fixed
on the base of “a priori” independent geological and
geophysical additional constraints: 1°x |° grid

@ To each cell of the grid is assigned an average dispersion
curve, U; (Ti), obtained by averaging, for each Ti , the
values of the group velocity at the four corners (knots)
and single point errors Ou;j(Ti)

@ To regionalize the study area, the cellular dispersion
curves can be grouped according to specific rules
independently from any a priori geological assumption.



Method

SW Tomography: cells

Applications

Gridding with a mesh comparable to the resolving power
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Non-Linear Inversion (Hedgehog)

@ The structure is modeled as a stack of N homogeneous
isotropic layers each one defined by (Vp,Vs, p, th); any
structural model is a point in the space of the unknown
parameters {P;}

@ Optimized Monte Carlo search to find velocity depth
distributions consistent with dispersion data (difference
between computed and experimental values has to be less
than measurement error)

@ x(P) is a single point of a minimum region: neighboring
points x’(Pi+ai5P;) are tried, with ai=0 or |; procedure is
applied to every selected point until the whole region is
covered

@ Return is made to Monte Carlo technique, another
minimum region is reached...

Method

Cells

Applications
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Hedgehog resolution

@ Structure parametrization is made according to the
resolving power of the data and “a priori” information
(e.g. petrological, geophysical constraints)

@ Parameters can be fixed, independent or dependent
(e.g. Poissonian behaviour)

@ Parameters and their steps can be used to represent the
uncertainty of the inverted parameters

@ Partial derivatives of the dispersion curves w.r.t. the
considered parameter control the suitable steps in the
inversion (act as a guiding criteria) and depth resolution

L& av) T Lo | aV(T)
N;’[&Pj](s (T)| =oPf 2( oP ]bpi=U(Tr)

inima
Covariance matrix

Method

Cells

Applications
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Partial derivatives

S velocity (km/s)

3.5 4 45 &
0 T ‘ ‘ T 0
| L J/:
50| T VNN A | 50
/ \ N i
100 \ > 1 100
— 150 \ / 1 180 —
= ] £
= 3
= =
= X 10 ph ] S
a 1 2gall
200 - 50 ph | 200
/\ 50 gr i
250 | 100 ph 250
300 ] // | 300
350./ __L oo
0 0.01 002 003 004 006  0.07
dV/dVs

velocity (km/s)

o
©

Method

Cells

Applications

»
?

»
S

»
®

Phase - Rayleigh

Group - Rayleigh

Phase - Love

Group - Love

IS
N

)

// I\
\/ﬁ”//

Period (s)

1

From the experiments of Panza (1981) on the
resolving power of dispersion measurements
with respect to structural parameters in the
crust and in the upper mantle, for a given error,
Rayleigh wave group velocities lead, in general, to
a better resolution as compared with Rayleigh
wave phase velocities. The results of the
inversion experiments (Panza, 1981) clearly
indicate that the sub-Moho Vs can be determined
with a rather good accuracy using indifferently
phase or group velocity data, while crustal
parameters are better resolved by group
velocities.
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Method

The representative solutions...

Applications

@ The non-linear inversion of geophysical data in general does not
yield a unique solution, but a single model representing the
investigated field, and is preferred for an easy geological
interpretation of observations.

@ The analyzed region is constituted by a number of sub-regions
where multi-valued non-linear inversion is applied, which leads to
a multi-valued solution. Therefore, combining the values of the
solution in each sub-region, many acceptable models are obtained
for the entire region and this complicates the geological
interpretation of geophysical investigations.

@ New methodologies are presented, capable of selecting one
model among all acceptable ones, that satisfies different criteria
of smoothness in the explored space of solutions.We focus on
the non-linear inversion of surface wave dispersion curves, which
gives structural models of shear-wave velocity versus depth.

30



Looking for representativeness...

Median model
® may not be representative
Minimum r.m.s.
® may be affected by systematic errors

the one with the rm.s for phase and group velocities
closest to the average r.m.s. for all the solutions

® the range is decided by the parameter step
Optimization procedures

@ consists in finding, for each cell, the representative
solution so that the lateral velocity gradient between
neighbouring cells is minimized, this means that the
local shape of the physical field has to be as smooth
as possible (Occam’s razor)

Method

Cells

Applications
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Alps...

Cells

10E 20E Applications
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Road map
@ Methodology:

@ Surface wave dispersion analysis
@ Surface wave tomography

@ Non linear inversion of dispersion data

@ Cellular models for the lithosphere-asthenosphere system
@ Optimization techniques
@ Scale level I: 1°x1° cells in the whole Italian region
@ Adding other geophysical constraints

@ Selected sections and geodynamic modelling
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Method

Criteria for optimality

Applications

@ Local Smoothness Optimization (LSO): the optimized local solution of
the inverse problem is the one that is searched for, cell by cell,
considering only the neighbours of the selected cell and fixing the
solution as the one which minimizes the norm between such
neighbours.

@ Global Flatness Optimization (GFO): the optimized global solution of
the inverse problem with respect to the flatness criterion is the one
with minimum global norm in-between the set.

@ Global Smoothness Optimization (GSO): the optimized global
solution of the inverse problem with respect to the smoothness
criterion is the one with minimum norm in-between all the members
of the set. The GSO is based on the idea of close neighbours (local
smoothness) extended, in a way, to the whole study domain.

34



LSO steps

@ the data pre-processing in which the different layering of the
models of each cell and, therefore, of the whole domain, is
considered and equalized;

@ the choice of the starting cell among all the cells of the domain;

@® it has been decided to choose the one with the minimum
“average distance” i.e. the dependence of the smoothing
process on the initial solution is minimized.

@ the optimization algorithm in which the final method is
described and some definition are given.

@® a first iteration identifies the representative solution for
the SC and a second iteration (with or without a priori
constraints) identifies the representative solutions for all
the other cells.

Method

Cells

Applications
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Method

Consistency

Applications

Among the hedgehog solutions for this cell, we choose the one, which agrees best with the
distribution of the intermediate-depth seismicity falling in this cell. Thus in cell C5 a high velocity
lid, with Vs of about 4.60 km/s sits on a fast asthenosphere, with Vs of about 4.50 km/s reaching

a depth of about 200 km, where a fast mantle, with Vs of about 4.70 km/s is seen down to a

depth of more than 300 km.With this solution fixed, we run the optimization again.

Modified from Panza et al., 2007 longitude 15.5 latitude 38.5 sol 12
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LSO for Western Alps

Cells

Applications

Cellular structural model extended down to 350 km depth for the western Alps area.Yellow to brown
colors represent crustal layers, blue to violet colors indicate mantle layers. Red dots denote all seismic
events collected by ISC with magnitude greater than 3 (1904-2006). For each layer VS variability range is
reported. For the sake of clarity, in the uppermost crustal layers the values of VS are omitted.The
uncertainty on thickness is represented by texture.
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GFO for Western Alps

Cellular structural model extended down to 350 km depth for the western Alps area.Yellow to brown
colors represent crustal layers, blue to violet colors indicate mantle layers. Red dots denote all seismic
events collected by ISC with magnitude greater than 3 (1904-2006). For each layer VS variability range is
reported. For the sake of clarity, in the uppermost crustai iayers the vaiues of VS are omitted.The

uncertainty on thickness is represented by texture.
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Alps refined

Alpine refined cellular model. Cellular structural model extended down to 350 km
depth for the Alpine area, refined with GSO and GFO optimization algorithms, with

splitting of some cells to 1°x0.5° or 0.5°x1.0°, along profiles where additional crustal
information were available.
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Vs models and geophysical constraints

@ Since the non-linear inversion and its smoothing
optimization guarantee only the mathematical validity
of the solution of the inverse problem, the
optimization procedure can be repeated whenever
necessary.

@ Including additional geophysical constrains, such as
Moho depth, seismic energy distribution versus depth,
presented magmatism, heat flow, etc., until the appraisal
of the selected models against well-known and
constrained structural features gives an agreement
comparable with the model’s uncertainties
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Depth (km)

Vs models and geophysical constraints

A6 (40.5°N 16.5°E)

all events:
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Analyzing the presented seismicity-depth
distributions the clear stop of the
seismicity at about 36 km is observed and
thus we define the Moho depth at this
depth. So the lower 17 km thick lower
crust with VS range of 4.05-4.15 km/s is
followed by |3 km thick soft mantle layer
with VS range of 4.05-4.25 km/s.The
presence of this shallow, thin, and soft
mantle layer can be related to the elevated
local heat flow data (up to 90 mVW/m2
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Method

INPAR methodology =

Results

Linear step

Extraction of Green’s _ _
function computed by Dynamic relocation of

modal summation ' the hypocentre

Computing the base function for a set of hypocentral coordinates and structural
models and the differences between observed and synthetic records

i

Retrieval of MTRF

Non linear step

Reduction of MTRF to a constant moment tensor with the
corresponding STF taking only the correlated part from each of them

Comparison of our results with Contribution of our results to the
CMT and RCMT general tectonic picture
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Cellular

Method

Period range used by different methods

Results

CMT RCMT INPAR
long period intermediate | waveforms at a
body waves | period surface regional

T>45 waves distance

T>135 35-135s >10s

L

Improved resolving power for Mz and Mz, components

L

Reliable estimation even of shallow earthquake’s mechanisms
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Cellular

Method

Source

Results

CMT solutions
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Cellular Method

Source Results

INPAR solutions
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CROPO3 section

-50

Top: cellular model of the drown section

along CROPO3 profile.Yellow to brown

colors represent crustal layers, blue to 100 -
violet colors indicate mantle layers.

425105 25115 435125 435135
1
CORSCA TYRRHENAN SEA NORTHERN APENNINES ADRATIC Q

Centre: interpretation of the model,
modified after Carminati et Scrocca
(2004).The Vs value reported may not
necessarily fall in the centre of the Vs
range gained from inversion.The plotted
hypocenters, and their focal mechanisms
(on the right side), are retrieved by INPAR
moment tensor inversion.

Heat Flow & Gravey
00 T T - - v T - - 200

Bottom: heat flow (mWm-2 ,red full : :
circles) and gravimetric anomaly (mGal, .

green triangles) data along profileusedto _ ™| . .
support our interpretation.
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Cellular models

A cell-by-cell database has been compiled to complete the obtained results
with some independent data (VP, attenuation and density) to create an easier
way to access the data.All collected information for each cell is stored in a
table.

The Vp data are taken from Piromallo et al. (2003) where a P-wave tomography
study of the whole Mediterranean region is provided on a grid of 50 km in
both horizontal and vertical directions down to a depth of 1000 km.The
calculated Vp value for each layer in our cellular models permits to reduce the
uncertainty ranges of Vs in the mantle, as far as the Vp/Vs ratio in the mantle is
kept as close as possible to .82 (Kennet et al., 1995).

The database is completed with S-wave attenuation (Qs) data given in recent
studies of Martinez et al. (2009, 2010) for the Mediterranean at latitude less
than 45°N. Using averaging and linear interpolation, the value of Qs is
calculated for the centre of each layer in our cellular solutions.The Qs data for
the rest of the cells are taken from Craglietto et al. (1989).The values of P-
wave attenuation (Qp) has been derived using the relation Qp= 2.2Qs
(Anderson, 2007).All Vs values are rounded to 0.05 km/s, according to the
precision of our modelled data.

In some cases, as in the cell presented in example, a Vs inversion is modelled in
the upper 20 km.Whether this is a real structural feature or an artefact of the
inversion, will be a matter to be settled performing the inversion using the
receiver functions data to better constrain the upper fixed crust.

Cited references can be found in Brandmayr et al., 2010

Method

Cells

Applications
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Vp

GBO'N

TON L™y

50°'N

Method

Cells

Applications

@ The values (respect to a reference model) obtained from P wave tomography

(Piromallo e Morelli,2003) have been translated into absolute ones.

40°N

30°N ¢

-2.0-1.5-1.0-0.50.00.5 1.0 1.5 20
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Example cell: b3

H DENS Vp VS Qr Qs Z Lon Lat DeltaVs+] DeltaVs- |  Ve/Vs
1.20 2.30 2.70 .55 440.00 | 200.00 1.20 13.50 42.50 0.00 0.00 .74
0.80 2.50 3.70 2.13 418.00 190.00 2.00 13.50 42.50 0.00 0.00 1.74
1.50 2.60 5.35 3.10 418.00 190.00 3.50 13.50 42.50 0.00 0.00 1.73
12.00 2.75 5.70 3.30 330.00 150.00 15.50 13.50 42.50 0.05 0.05 .73

20.00 2.80 6.40 3.70 198.00 90.00 35.50 13.50 42.50 0.15 0.10 1.73
60.00 3.30 7.90 4.40 176.00 80.00 95.50 13.50 42.50 0.15 0.00 1.80
60.00 3.30 8.00 4.35 176.00 80.00 155.50 13.50 42.50 0.00 0.15 1.84
110.00 3.30 8.70 4.60 220.00 100.00 | 265.50 13.50 42.50 0.00 0.20 1.89
84.50 3.60 8.95 4.75 330.00 150.00 | 350.00 13.50 42.50 0.00 0.00 1.88

H - Thickness (km); DENS - Density (g/cm3);Vp - P-wave velocity (km/s);Vs - S-wave velocity (km/
s); Qp - Quality factor for P-wave; Qs - Quality factor for S-wave; Z - Depth of the lowest interface
(km); Lon, Lat - Geographical coordinates (°);DeltaVs+ DeltaVs- - Variation range for Vs (km/s);
Delta H+ Delta H- - Variation range for H (km).The boundaries between layers can well be
transition zones in their own right. Black bold lines separate fixed (“a priori”’) and inverted layers;
red bold line indicates the Moho.
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Two cross sections: EW

Method

Cells

Applications
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Two cross sections: NS
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Definition of ®

Bulk Sound Speed: @ =,|V/ —gvsz _ |k

P

the ratio may have the power, according to its sign, if the mantle anomalies

dD |9V,

(respect to a reference model) have a thermal or different (e.g. chemical) origin (I) V
P S
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Depth (km)

AK 135 — PREM Comparison (l)

@ g2: both models reveal a thermal anomaly starting from LID; PREM shows an interruption
about 50 Km thick

f2: both models reveal a deep anomaly

e2: PREM reveals two thermal anomalies

<

g

@ d2: PREM reveals two thermal anomalies marking upper and lower border of a LVZ; AK 35
reveals only the shallower one

<

c2: both models reveal a thermal anomaly in the asthenosphere (more evident for AK135)
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Depth (km)

AK 135 — PREM Comparison (ll)

@ e-4: both models reveal a thermal anomaly (but at different depths)
@ e-3: anomaly revealed by AK I35 involves almost the whole column; PREM involves part of LID
and of asthenosphere
@ e-2: both models reveal two anomalies in the asthenosphere (more evident for AK|35)
@ e-I:both models reveal two anomalies (more evident for AK135)
@ <0: PREM reveals two anomalies in the LID and in the asthenosphere near LVZ; AK 135
reveals only one in the upper asthenosphere and a much deeper one
@ el: both models reveal a thermal anomaly in the asthenosphere
@ e2: only PREM reveals anomalies
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Lithosphere density model

® The velocity structure obtained through nonlinear inversion of
dispersion curves and the smoothing optimization method to
choose the representative cellular model, whose layering is
used as fixed (a priori) information to obtain a density model
by means of linear inversion of gravimetric data.

@ Secismicity and heat flow are used as independent constraints in
outlining both the crustal and the seismic lid thickness; the
nonlinear moment tensor inversion of recent damaging
earthquakes allows some insight in the ongoing kinematic
processes.

@ Asymmetry between west-directed (Apennines) and east-
directed (Alps, Dinarides) subductions is a robust feature of
the velocity model, while density model reveals that slabs are
not denser than the ambient mantle, thus supplies no evidence
for slab pull.

Brandmayr et al., 201 |
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Lithosphere density model

Flumet Milan Garda Euganei
w E
0 100 200 300 400 500 600
0 s N~ e S

-100 -100
-200 -200
-300 -300

km O 100 200 300 400 500 600

(T [ [ [

12 32 38 40 441 42 44 46 48 49
V, (km s77) in the mantle

|. Ecors section: Flumet (western Alps) to Euganei Hills.

Striking feature of the section is the subduction of the European plate below the Adriatic plate, with deep
Olithospheric rootsO below Milan, represented by high-velocity lid, well in agreement with what was shown by
Mueller and Panza (1986). In contrast to Apennines subduction, no intermediate depth seismicity is observed in
western Alps.To the West the LVZ is found at a depth of about 180 km.To the East,a prominent LVZ marks the
Euganei Hills magmatic zone below a depth of about 130 km.The subducting lid is characterized by negative density
anomaly, whereas a positive density anomaly is seen beneath Euganei Hills, as shallow as 30 km.
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Lithosphere density model

Bavarian Alps Dolomites Euganei Apennines
N 0 100 200 300 400 S
O L - 1 — 1 1 = 0
° Q ° < ® @ -, ‘_'A‘.i

o)
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-200 -200
-300 -300
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12 32 38 40 41 42 44 46 48 49
Vg (km s77) in the mantle

km

2.Transalp section: from Bavarian Alps to Apennines

8°E 12°E 16°E 20°E 24°E

The low-angle subduction of the European plate below the Adriatic plate is fairly well evidenced by gently N-S
dipping high-velocity lid and in accordance with scarce shallow seismicity and almost absent intermediate depth
seismicity, as seen in Ecors section.A relatively low velocity lid is found beneath Dolomites, just below the Moho.The
bottom of the lid is found at about 120—140 km of depth and overlies a well-marked LVZ in the asthenosphere. In
the southernmost part of the section,Apennines subduction is delineated by high seismicity that reaches
intermediate depth.The prominent high- density body, as shallow as 40 km of depth, below Venetian plain, may be a

signature of the Euganei Hills magmatic activity.
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Lithosphere density model

@ The asymmetry between E-verging and W-verging subduction zones,
clearly evidenced by VS model, sup- ports the hypothesis of an
eastward mantle flow, especially in the LVZ, between 120 and 200 km
of depth, that is likely to represent the decou- pling between the

lithosphere and the underlying mantle at global scale (Panza et al,,
2010).

@ The flow is very shallow in the active Tyrrhenian basin due to mantle
compensation induced by the eastward migration of the Apennines
subduction. High densities (>3.3 g cm)3) in the mantle seem to be
strictly related to the eastward flow itself and to its ascent beneath the
back-arc basin or to other extensional tectonics or to volcanism.

@ On the contrary, slabs are not denser than the ambient mantle, but
they appear to be slightly lighter; this evidence conflicts with the
concept of “slab pull” and thus calls for different actors in subduction
dynamics (e.g. Doglioni et al., 2007).
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Seismic sequence January 2012

M. Ligure  Appennini Prealpi Venete Austria M. Ligure  Appennini Prealpi Venete Austria
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Courtesy of E. Brandmayr

http://140.105.54.18/geoweb/index.php

Seismological web-based data application
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Seismic sequence January 2012

M. Ligure  Appennini Prealpi Venete Austria M. Ligure  Appennini Prealpi Venete Austria
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Courtesy of E. Brandmayr

http://140.105.54.18/geoweb/index.php

Seismological web-based data application
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Road map
@ Methodology:

@ Surface wave dispersion analysis
@ Surface wave tomography

@ Non linear inversion of dispersion data

@ Cellular models for the lithosphere-asthenosphere system

@ Optimization techniques
@ Scale level I: 1°x1° cells in the whole Italian region
@ Adding other geophysical constraints

@ Selected sections and geodynamic modelling

@ Joint inversion
@ Seismic hazard studies
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Joint inversion

@® Surface waves provide valuable information on the absolute S-wave
velocity (Vs) but are relatively insensitive to sharp vertical velocity
contrasts.

@ On the other hand, Receiver Functions are sensitive to S-wave
velocity contrasts, which give rise to converted phases, but allows
for substantial trade-off between the depth and velocity above an
impedance change.

= Combining both kind of information in a joint inversion fills the
resolution gaps associated with each individual data set

1nree-uomponent ] .
Direct P-wave (Pp)

Station
Free Surface —Y direct converted phase
........ - o .
S-wave | 3 P’s PoP s“",r multiples
P-wave v/ 2 ! ’
i E /
s i
;  Velocity Contrast J\ v Time —»
5 ' 1 B ’
g 3} '
PpPs / P!p \ PpSs + PsPs —
PpSs + PsPs Ps

RF are time-series computed from three-component body-wave seismograms and sensitive to the earth structure below
the receiver.They are computed deconvolving the vertical component of the selected earthquake signal from the
corresponding horizontal component.The main conditions to be satisfied by the seismic events to be selected at a given
receiver are: epicentral distance ranging from 30° to 90° and a good signal to noise ratio.



Joint inversion

As starting models of the linear inversion procedure, we used the set of
models determined by the non-linear inversion of the dispersion curves of the
Caribbean region (Gonzalez et al. 201 |) corresponding to the cells where the
stations are located.

Such models were chosen because they fulfill the following conditions:

a) The stations are located in cells, with adequate resolution, for the study
region of surface wave tomography made by Gonzalez et al., (201 1).

b) These models are the solutions for the dispersion curves from a broad
search of possible models.

c) Each model belonging to the set of the accepted solutions for one cell,
differs from the others by at least £ APi for one parameter Pi (thickness,Vs),

where APi is consistent with the resolving power of the dispersion data, as
described by Panza, (1981).

d) They minimize the drawbacks intrinsic in the linearization of a non-linear
inverse problem.
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Joint inversion - Caribbean stations
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Location of seismic stations. Triangles represent the seismic stations used in this study; the dashed
line represents the “Axial fault”; the dotted line represent the “Cauto Nipe fault”; barbed lines
represent plate boundaries. Gonalez et al., 2012



(dRF/dh)/h

Joint inversion - Cascorro station
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Depth (km)

The layering of the initial models is consistent with the
resolving power of the surface wave data but, in order to
determine the optimum layering for the RF data, the partial
derivatives of the RF with respect to the thickness of the
layers (for values equal to 1,2,4,and |0 km) until the (final)
depth of 350 km been calculated
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1.00 20050926(269)0155
2.50 20010705(186)1353

2.50 20010707(188)0938

0 9 18 27 36

Time (sec)
Example of fit for receiver functions in Cascorro station
(CCQ) resulting from the joint inversion (using Gaussian
factors at 0.5, 1.0 and 2.5).Thin blue lines represent the

experimental data and thicker red lines indicate the chosen
solution corresponding to the best percent of fit (86%).

Gonalez et al,, 2012
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Joint inversion - Results
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Joint inversion - Chosen solution

The final model for each station is chosen according to the following two criteria:
(i) it is the solution with the best percentage of fit for the RFs, and

(ii) it corresponds to a dispersion curve whose difference with the experimental data at
each period is within their corresponding experimental errors and the standard error with
respect to observed group velocities

Chosen solution (thick solid black line) and initial model (gray dashed line)
for Cascorro station (CCC), result of the joint inversion of RFs (using
Gaussian factors at 0.5, 1.0 and 2.5) and dispersion data.The high velocity
|- LID, centred at a depth of about 125 km, seems to reveal the presence of a

i - -] subducted slab.
-100 B E . =100

LID : The resulting model for this station shows a crustal

i ) thickness of about 30 km, consistent with the values
~r . 1™®  proposed by previous studies in the zone . In the crust,
I ; pronounced low velocity layers are present, which could
{-200  be motivated by the obduction by earlier overthrusting
_ of the Bahamas platform by the Cuban island arc; this
1.,  feature,and a lithospheric thickness of ~75 km, are

Depth (km)

=200 |-

[ |
250 |- CCC |
3 : consistent with the presence of an accretionary type of
O SO VU I I crust. There is evidence of a subducted slab in the
25 30 35 40 45 50 mantle, from ~110 to ~140 km depth.

S-wave velocity (km/s)

Gonalez et al,, 2012
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Application to SHA: DGA —
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NDSHA - Multi scenario based - Regional scale
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NDSHA - Multi scenario based - Structural models
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NDSHA - Multi scenario based - | D models
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NDSHA - Multi scenario based - Historical seismicity
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NDSHA - Multi scenario based - Tectonic setting
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NDSHA - Multi scenario based - Signals
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Displacement - Italy
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NDSHA - Multi scenario based - Structural models
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Displacement - Italy
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