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INSU/CNRS (UMR 7154), F-75005 Paris, France

fournier@ipgp.fr

www.ipgp.fr/~fournier

mailto:fournier@ipgp.fr
http://www.ipgp.fr/~fournier


This document has been assembled for the students who will attend the workshop on Geophysical
Data Analysis and Assimilation in the Abdus Salam International Center for Theoretical Physics
in Trieste (Italy).

It comprises several components, most notably

1. a general part on the fundamentals of data assimilation,

2. a copy of the slides that I (at the time of writing) intend to show during the workshop on
the topic of Geomagnetic Data assimilation

3. a review paper entitled An introduction to data assimilation and predictability in Geomag-
netism,

4. the text describing two computer-based labs dealing with Lorenz’s 1963 model
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Chapter 1

Introduction

1.1 What is data assimilation?

The basic purpose of data assimilation is to combine different sources of information in order to
produce the best possible estimate of the state of a system. These sources generally consist of
observations of the system and of physical laws describing its behaviour, often represented in the
form of a numerical model. Why not simply use observations? First because observations are
often too sparse or partial in geophysics. Some extra information is needed to interpolate the
information contained in the observations to unobserved regions or quantities. A numerical model
naturally performs this task. Second, because observations are contaminated by errors (they are
noised). Combining (by means of the model) several noised data can be an efficient way of to filter
out at least part of the noise and to provide a more accurate estimate (“accuracies are added”,
see below).

The problem of data assimilation can be tackled using different mathematical approaches: signal
processing, control theory, estimation theory, . . . Stochastic methods, such as the popular Kalman
filter, are based on estimation theory. On the other hand, variational methods (3D-Var, 4D-Var. . . )
are rooted in control theory.

The historical development of data assimilation for geophysical systems can hardly be discon-
nected from meteorology. Data assimilation is indeed a mandatory step if one wishes to provide
a weather prediction system with a good initialization (an initial condition), and until the early
nineteen-nineties data assimilation was mostly used for this purpose. Today, its application is gen-
eralized to many other fields (atmospheric chemistry, oceanic biochermistry, glaciology, physical
oceanography, geomagnetism, stellar magnetism, seismology. . . ), and for a variety of purposes :

• the estimation of the trajectory of a system to study its variability (reanalyses)

• the identification of systematic errors in numerical models

• the estimation of unobserved field variables (e.g. the magnetic field inside Earth’s core)

• the estimation of parameters (e.g. a structural Earth model in seismology)

• the optimization of observation networks

1.2 A scalar example

Following for instance Ghil and Malanotte-Rizzoli (1991), assume we have two distinct measure-
ments, y1 = 1 and y2 = 2, of the same unknown quantity x. What estimation of its true value can

7



1.2. A SCALAR EXAMPLE 8/142

we make ?

1.2.1 First approach

We seek x which minimizes (x − 1)2 + (x − 2)2, and we find the estimate x̂ = 3/2 = 1.5 (this is
the least-squares solution). This solution has the following problems:

• it is sensitive to any change of units. If y1 = 1 is a measurement of x and y2 = 4 is a
measurement of 2x, then minimizing (x− 1)2 + (2x− 4)2 leads to x̂ = 9/5 = 1.8.

• it does not reflect the quality of the various measurements.

1.2.2 Reformulation in a statistical framework

We define

Yi = x+ εi, (1.1)

where the observation errors εi satisfy the following hypotheses

• E (εi) = 0 (unbiased measurements)

• Var (εi) = σ2
i (accuracy is known)

• Covar (ε1, ε2) = 0, i.e. E (ε1ε2) = 0, errors are independent.

We next seek an estimator (i.e. a random variable) X̂ which is

• linear: X̂ = α1Y1 + α2Y2

• unbiased: E
(
X̂
)

= x

• of minimum variance: Var
(
X̂
)

minimal (optimal accuracy)

This estimator is called the BLUE: Best Linear Unbiased Estimator. To compute the αi we use
the unbiased hypothesis

E
(
X̂
)

= x = (α1 + α2)x+ α1E (ε1) + α2E (ε2) = (α1 + α2)x, (1.2)

so that α1 + α2 = 1, or α2 = 1− α1. Next we compute the variance of X̂.

Var
(
X̂
)

= E

[(
X̂ − x

)2]
= E

[
(α1ε1 + α2ε2)

2
]

= α2
1E
(
ε21
)

+ 2α1α2E (ε1ε2) + α2
2E
(
ε22
)

= α2
1σ

2
1 + α2

2σ
2
2

= α2
1σ

2
1 + (1− α1)2σ2

2 .

Our estimator X̂ has to minimize this quantity. Computing α1 such that

d

dα1
Var

(
X̂
)

= 0 (1.3)

8/142, Workshop on Geophysical Data Analysis and Assimilation, ICTP, Trieste, 2012
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yields

α1 =
σ2
2

σ2
2 + σ2

1

. (1.4)

It follows that

X̂ =
σ2
2

σ2
1 + σ2

2

y1 +
σ2
1

σ2
1 + σ2

2

y2. (1.5)

Note that we get the same result if we try to minimize the functional

J (x) =
1

2

[
(x− y1)2

σ2
1

+
(x− y2)2

σ2
2

]
. (1.6)

Comments:

• This statistical approach solves the problem of sensitivity to units and it incorporates mea-
surement accuracies.

• The accuracy of the estimator is given by the second derivative of J

d2J
dx2

∣∣∣∣
x=X̂

=
1

Var
(
X̂
) =

1

σ2
1

+
1

σ2
2

, (1.7)

so that “accuracies are added”.

• If we consider that y1 = xb is a first guess of x (with standard deviation σb = σ1) and y2 = y
is an additional observation (with std dev σ = σ2), then we can rearrange Eq. (1.5) as

X̂ = xb +
σ2
b

σ2 + σ2
b

(
y − xb

)
. (1.8)

The quantity y−xb is called the innovation. It contains the additional information provided
by y with respect to xb.

1.2.3 Data assimilation methods

There are two classes of methods

• statistical methods: direct computation of the BLUE thanks to algebraic computations (the
Kalman filter);

• variational mehods: minimization of the functional J (4DVar).

Shared properties:

• they provide the same result (in the linear case);

• their optimality can only be demonstrated in the linear case;

Shared difficulties:

• accounting for non-linearities

9/142, Workshop on Geophysical Data Analysis and Assimilation, ICTP, Trieste, 2012



1.3. NOTATIONS 10/142

• dealing with large problems

• error statistics are required but sometimes only poorly known

Courtier (1997) provides a concise and elegant discussion of the two classes of methods and dis-
cusses their equivalence.

1.3 Notations

There exists some sort of standard notations, summarized by Ide et al. (1997).

• x state vector

• xt true state

• xb background state

• xa analyzed state

Superscripts denote vector types, subscripts refer to space or time. In the following: unless
otherwise noted, all vectors will be column vectors. If a and b are two column vectors of equal
size n, with the superscript T denoting transposition, then

aTb is their scalar product =
∑

aibi, (1.9)

abT is a matrix of coefficients aibj , (i, j) ∈ {1, . . . , n}2 . (1.10)

1.3.1 Discretization and true state

Most of the time, our goal will be to estimate as accurately as possible a geophysical field that
varies continuously in space and time. This real, continuous (and possibly multivariate) field is
denoted by ”x.

Numerical models are often used for the estimation. Numerical models operate in a discrete world
and only handle discrete representations of physical fields. Therefore we will try to estimate a
projection of the real state ”x onto a discrete space. Let Π denote the associated projector, and
xt be the projection of ”x

xt = Π(”x). (1.11)

xt is called the true state (see above); this is the state we wish to estimate in practice.

In a data assimilation problem, one deals with dynamical models that compute the time evolu-
tion of the simulated state. Let ”xi and ”xi+1 be the real (continuous) states at two consecutive
observation times, i being a time index. These two states are related by a causal link (the physical
model)

”xi+1 = g (”xi) . (1.12)

Projecting this equality into the discrete world, we get

xti+1 = Π [g (”xi)] . (1.13)

The dynamical model g is not strictly known, even though we hopefully know most of the physics
involved in it (in our vibrating string problem, our model will be exactly known). This physics

10/142, Workshop on Geophysical Data Analysis and Assimilation, ICTP, Trieste, 2012
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is represented in the discrete world by our numerical model M, which operates on discrete states
such as xt. Introducing this model into Eq. (1.13), we get

xti+1 =Mi,i+1

(
xti
)

+ ηi,i+1, (1.14)

in which

ηi+1 = Π [g (”xi)]−Mi,i+1

(
xti
)
. (1.15)

The model error ηi+1 term accounts for the errors in the numerical models (e.g. misrepresen-
tation of some physical processes) and for the errors due to the discretization. The covariance
matrix Qi+1 of the model error is given by

Qi+1 = Covar
(
ηi+1

)
= E

[(
ηi+1 − 〈ηi+1〉

) (
ηi+1 − 〈ηi+1〉

)T ]
, (1.16)

where 〈ηi+1〉 = E
(
ηi+1

)
is the average error.

1.3.2 Observations

The real, continous field ”x results in a signal ”y in the space of observations. This involves a

mapping ˛hffl

”y = ˛hffl ( ”x) . (1.17)

Despite its simplicity, this equation can not be used in practice. First, we do not have access
to the real ”y: the observed field yo is contaminated with measurement errors, denoted by εµ.

Accordingly,

yo = ˛hffl ( ”x) + εµ. (1.18)

Second, ˛hffl, which represents the physics of the measurement process (which might be exactly
known), is a continuous mapping. In practice, this physics is represented by a numerical operator
H, which is applied to the discrete state we wish to estimate, xt. Incorporating H and Π in
Eq. (1.18) yields

yo = H(xt) + ˛hffl (”x)−H [Π( ”x)]︸ ︷︷ ︸
εr

+εµ, (1.19)

where εr is often termed the error of representativeness (Lorenc, 1986), which includes the errors
related to the representation of the physics in H and those errors due to the projection Π of the
real state ”x onto the discrete state space (due for instance to numerical interpolation). The sum
of the measurement error and the error of representativeness is the observation error

εo = εµ + εr. (1.20)

This allows us to write the final form of the equation relating the discrete true state xt and the
observations

yo = H
(
xt
)

+ εo. (1.21)

11/142, Workshop on Geophysical Data Analysis and Assimilation, ICTP, Trieste, 2012
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The covariance matrix of the observation error εo is defined by

R = Covar (εo) = E
[
(εo − 〈εo〉) (εo − 〈εo)〉)T

]
. (1.22)

In our labs, we will be dealing with synthetic data and we will artificially introduce observation
errors εo (the statistics of which we will assume to be Gaussian).

1.3.3 A priori (background) information

It can be that we have some a priori knowledge of the state xt, under the form of a vector xb

having the same dimension as xt. This is the background state. Following a similar logic, the
background error is defined as

εb = xb − xt. (1.23)

Often the estimate of the background state comes from a model simulation. In this case, the
background is a forecast and is rather denoted by xf , with forecast error εf .

The covariance Pb of the background error is given by

Pb = Covar
(
εb
)

= E
[(
εb − 〈εb〉

) (
εb − 〈εb〉

)T ]
. (1.24)

1.3.4 Analysis

The result of the assimilation process is often called the analysis, and is denoted by xa. The
analysis error is defined by

εa = xa − xt, (1.25)

while the covariance matrix of the analysis error εa is defined by

Pa = Covar (εa) = E
[
(εa − 〈εa〉) (εa − 〈εa〉)T

]
. (1.26)

An important comment: the problem is entirely set-up once the physical model and the obser-
vations have been chosen, and the covariances (and possibly the background) defined. All the
physics has been introduced at this stage. The remaining part (the production of the analysis) is
technical.

1.4 Useful references

At this stage it might be timely to provide the reader with general references on data assimilation.
My favorite book on the topic is “Discrete Inverse and State Estimation Problems”, by Wunsch
(2006), which provides a very personal and powerful account of adjoint methods and their applica-
tion in geophysical fluid dynamics (oceanography). In her book entitled “Atmospheric Modelling,
Data Assimilation and Predictability ”, E. Kalnay (2003) has two comprehensive and very well-
written chapters on the basics and applications of data assimilation techniques to atmospheric
dynamics. Last, but not least, Evensen (2009) provides a very complete treatment of data as-
similation techniques, with a strong and useful emphasis on the basics and applications of the
ensemble Kalman filter he invented (we will briefly touch on this in Sect. 3.3.4.2).

12/142, Workshop on Geophysical Data Analysis and Assimilation, ICTP, Trieste, 2012
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For a start, I would highly recommend the review paper by Talagrand (1997), “Assimilation of
observations, an introduction” which provides an extremely concise and well-written overview of
the topic.

In addition, if you are looking for references related to the geophysical inverse problem in general,
Parker (1994) and Tarantola (2005) provide two very personal, insightful, and sometimes contra-
dictory views on how we should go about making inference on the Earth based on a finite number
of noisy observations and on physical laws governing its behaviour.

13/142, Workshop on Geophysical Data Analysis and Assimilation, ICTP, Trieste, 2012
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Chapter 2

Stochastic estimation

2.1 Basics of probability and statistics

2.1.1 Probability

2.1.1.1 Random experiment

A random experiment is mathematically described by

• the set Ω of all possible outcomes of an experiment, the result of which can not be perfectly
anticipated;

• the subsets of Ω, called events;

• a probability function, P : a numerical expression of a state of knowledge. P is such that,
for any disjoint events A and B,

0 ≤ P (A) ≤ 1, (2.1)

P (Ω) = 1, (2.2)

P (A ∪B) = P (A) + P (B). (2.3)

Here, ∪ means .OR. In the next paragraph, ∩ will mean .AND.

2.1.1.2 Conditional probability

When two events A and B are not independent, knowing that B has occurred changes our state
of knowledge on A. This writes

P (A|B) =
P (A ∩B)

P (B)
. (2.4)

2.1.2 Real random variables

The outcome of a random experiment is called a random variable. A random variable can be
an integer (the number of tries scored by the French rugby team, whose games often ressemble
random experiments), or a real number (e.g. the lifetime of a Buzz Lightyear action figure).

15



2.1. BASICS OF PROBABILITY AND STATISTICS 16/142

2.1.2.1 Probability density function

For a real random variable x, being equal to a given number is not strictly speaking an event.
Only the inclusion into an interval is an event. This defines the probability density function,
also known as pdf

P (a ≤ x ≤ b) =

∫ b

a

p(x)dx. (2.5)

2.1.2.2 Joint and conditional pdf

If x and y are two real random variables, p(x, y) is the joint pdf of x and y. The conditional pdf
p(x|y) writes

p(x|y) =
p(x, y)

p(y)
. (2.6)

2.1.2.3 Expectation and variance

A pdf is seldom known completely. In most instances, only some of its properties are determined
and handled. The two main properties are the expectation and the variance. The expectation of
a random variable x, characterized by a pdf p is given by

E (x) = 〈x〉 =

∫ +∞

−∞
xp(x)dx. (2.7)

The variance is given by

Var (x) = E
[
(x− 〈x〉)2

]
=

∫ +∞

−∞
(x− 〈x〉)2 p(x)dx. (2.8)

The standard deviation σ is the square root of the variance.

2.1.2.4 The Gaussian distribution

The random variable x has a Gaussian (or normal) distribution with parameters µ and σ2, denoted
by x ∼ N (µ, σ2) when

p(x) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
. (2.9)

This Gaussian pdf has the following properties

• the parameters µ and σ2 are its expectation and variance, respectively;

• If x1 ∼ N (µ1, σ
2
1) and x2 ∼ N (µ2, σ

2
2) are two independent variables, then x1 + x2 is also

Gaussian and x1 + x2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2);

• if a ∈ R and x ∼ N (µ, σ2), then ax ∼ N (aµ, a2σ2).

2.1.3 Real random vectors

Real random vectors are vectors whose components are real random variables. The pdf of a vector
is the joint pdf of its components.

16/142, Workshop on Geophysical Data Analysis and Assimilation, ICTP, Trieste, 2012
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2.1.3.1 Expectation and variance

The expectation vector is the vector of the expected values of the components. The second moment
of the distribution is the covariance matrix. If x denotes the random vector, the covariance matrix
is defined by

P = E
[
(x− 〈x〉) (x− 〈x〉)T

]
. (2.10)

A covariance matrix is symmetric positive definite. The terms appearing on its diagonal are the
variances of the vector components. The off-diagonal terms are covariances. If xi and xj denote
two different components of x, their covariance is

Pij = Covar (xi, xj) = E
[
(xi − 〈xi〉) (xj − 〈xj〉)T

]
(2.11)

and their correlation is

ρ(xi, xj) =
Covar (xi, xj)√
Var (xi) Var (xj)

. (2.12)

2.1.3.2 The multivariate Gaussian distribution

The random vector x of size n has a Gaussian (or normal) distribution with parameters µ and P,
denoted by x ∼ N (µ,P) , if

p(x) =
1

(2π)
n/2

(det P)
1/2

exp

{
−1

2

[
(x− µ)

T
P−1 (x− µ)

]}
. (2.13)

Here µ and P are the expectation and the covariance matrix of x, respectively; det P is the
determinant of P. The components of x are said to be jointly Gaussian.

2.2 The two pillars of estimation theory

If one has to remember only two formulas from this section, these are

1. Bayes’ theorem

p(x|y) =
p(y|x)p(x)

p(y)
. (2.14)

2. The marginalization rule

p(y) =

∫
p(x,y)dx =

∫
p(y|x)p(x)dx. (2.15)

where

• p(y|x) is the measurement model (or likelihood);

• p(x) is the prior distribution;

• p(y) is the marginal distribution (or evidence).

17/142, Workshop on Geophysical Data Analysis and Assimilation, ICTP, Trieste, 2012
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2.3 Optimal estimates

The optimal estimate of the random vector x given the observation y is the vector of values which
best reflects what a realisation of x can be, having y at hand. Optimality is subjective, and several
criteria can be proposed in order to define it. For the sake of illustration we present three such
estimators below (although the rest of the material discussed this week will only have to do with
the minimum variance estimator).

2.3.1 Minimum variance estimation

The estimate we seek is such that the spread around it is minimal. The measure of the spread is
the variance. If p(x|y) is the pdf of x, having yo at hand, the minimum variance estimate x̂mv is
the solution of

∇x̂J (x̂) = 0, (2.16)

where

J (x̂) =

∫
(x− x̂)

T
(x− x̂) p(x|y)dx (2.17)

and the gradient is defined as

∇x̂ = [∂x̂1
, . . . , ∂x̂i

, . . . , ∂x̂n
] (2.18)

(This is a row vector.) We can show that the solution is the expectation of the pdf, that is

x̂mv = E [x|y] . (2.19)

2.3.2 Maximum a posteriori estimation

The estimate is defined at the most probable vector of x given y, i.e., the vector that maximizes
the conditional pdf p(x|y). x̂map is such that

∂p(x|y)

∂x

∣∣∣∣
x=x̂map

= 0. (2.20)

With a Gaussian pdf, the minimum variance and the maximum a posteriori estimators are the
same.

2.3.3 Maximum likelihood estimation

The estimate is defined as the most probable vector of y given x, i.e., the vector which maximizes
the conditional pdf p(y|x). x̂ml is such that

∂p(y|x)

∂x

∣∣∣∣
x=x̂ml

= 0. (2.21)

The ML estimator can be interpreted as the MAP estimator without any prior information p(x).

18/142, Workshop on Geophysical Data Analysis and Assimilation, ICTP, Trieste, 2012
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2.4 The best linear unbiased estimate (BLUE)

We now return to the BLUE, which we already introduced based on the simple scalar example
of Sect. 1.2. We aim at estimating the true state xt of a system, assuming that a background
estimate xb and partial observations yo are given. We assume that these two pieces of information
are unbiased and that their uncertainties are known in the form of covariance matrices Pb and
R, respectively (recall paragraphs 1.3.3 and 1.3.2). The observation operator H is assumed linear
(denoted by H). All together we have the following pieces of information

H, such that yo = Hxt + εo, (2.22)

xb = 〈xt〉, (2.23)

Pb = 〈εbεbT 〉, (2.24)

〈εo〉 = 0, (2.25)

R = 〈εoεoT 〉. (2.26)

The best estimate (or analysis) xa is sought as a linear combination of the background estimate
and the observation

xa = Axb + Kyo, (2.27)

where A and K are to be determined in order to make the estimation optimal (you can think of
them as the generalization of the coefficients α1 and α2 in the simple scalar example of Sect. 1.2).
How do we define optimality? Given the information at hand, a wise choice is to seek an unbiased
estimate, with minimum variance. Reintroducing εa = xa − xt we seek (A,K) such that

E (εa) = 0, (2.28)

Tr (Pa) minimum, (2.29)

where Tr (·) denotes the trace (sum of the diagonal elements, here the variance of each component
of xa). One can show that

A = I−KH,

K = PbHT
(
HPbHT + R

)−1
,

in which K is called the Kalman gain matrix 1.

The a posteriori error covariance matrix Pa can also be computed. The final form of the update
equations writes

K = PbHT
(
HPbHT + R

)−1
, (2.30)

xa = xb + K
(
yo −Hxb

)
, (2.31)

Pa = (I−KH)Pb, (2.32)

where I is the identity matrix.

These equations constitute the best linear unbiased estimate (BLUE) equations, under the con-
straint of minimum variance. They are the backbone of sequential data assimilation methods
(soon to come).

1 We have assumed so far that we were dealing with real-valued variables. When dealing with complex-valued
fields, everything holds, provided one replaces the transpose operator T by a transpose conjugate operator, often
denoted by a dagger †.
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2.5 The Gaussian case

If we know that both the prior and observation pieces of information are adequately represented
by Gaussian pdfs, we may apply Bayes’ theorem to compute the a posteriori pdf. With

xt ∼ N (xb,Pb),

p(xt) =
1

(2π)n/2 det Pb1/2
exp

{
−1

2

[(
xt − xb

)T
Pb−1 (xt − xb

)]}
, (2.33)

yo ∼ N (Hxb,R),

p(yo|xt) =
1

(2π)n/2 det R1/2
exp

{
−1

2

[(
yo −Hxt

)T
R−1

(
yo −Hxt

)]}
. (2.34)

Bayes’ theorem provides us with the a posteriori pdf

p(xt|yo) ∝ exp(−J ), (2.35)

with

J (xt) =
1

2

[(
xt − xb

)T
Pb−1 (xt − xb

)
+
(
yo −Hxt

)T
R−1

(
yo −Hxt

)]
. (2.36)

We can show that this last equation can be rewritten as

J (xt) =
1

2

[(
xt − xa

)T
Pa−1 (xt − xa

)]
+ β, (2.37)

with

Pa =
[
Pb−1 + HTR−1H

]−1
, (2.38)

xa = Pa
[
Pb−1xb + HTR−1yo

]
, (2.39)

and β a vector independent of xt. With the help of the Sherman-Morrison formula (aka the matrix
inversion lemma according to Wunsch (2006), page 29)

[A + UDV]
−1

= A−1 −A−1U
[
D−1 + VA−1U

]−1
VA−1, (2.40)

we can show that these are the BLUE equations (2.30-2.32). The a posteriori pdf defined by
Eq. (2.35) is thus Gaussian, with parameters given by the BLUE equations. Since the BLUE
provides the same result as the application of Bayes’ theorem, it is the best estimator (in the
case of Gaussian pdfs and of a linear observation operator, though). In passing we can recognize
in Eq. (2.36) the cost function used in the static variational method termed 3D-Var. When it
minimizes this cost function, the 3D-Var algorithm computes the Maximum A Posteriori estimate
of the Gaussian pdf, which is identical to the Minimum Variance estimate found by the BLUE.
We can take from this that when statistics are Gaussian and the observation operator is linear,
every method, whatever its name, will yield the same optimal solution, which, depending on the
philosophy followed, will be given different interpretations.
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Chapter 3

The Kalman filter

3.1 Introduction

The system is now dynamical. Instead of a unique estimation, we set out to estimate a series of
states xti (a sequence of real random vectors), where the index i refers to a discrete time index
(when observations are made). The situation is summarized in Fig 3.1.

We assume the following a priori knowledge:

• the initial condition xt0 is Gaussian-distributed with mean xb0 and covariance Pb
0 ;

• a linear dynamical model M describes the evolution of the state of the system we are inter-
ested in;

• the model errors (recall Sect. 1.3.1) ηi are Gaussian with zero mean (they are unbiased)
and covariance Qi;

• the model errors are white (i.e. uncorrelated) in time E
(
ηiη

T
j

)
= 0 if i 6= j;

• Observation errors εoi are Gaussian, with zero mean and covariance matrix Ri;

• observation errors are white in time E
(
εoi ε

o
j
T
)

= 0 if i 6= j;

• Errors of different kinds are independent

E
(
ηiε

o
j
T
)

= E
(
ηiε

b
0

T
)

= E
(
εiε

b
0

T
)

= 0.

Under these many conditions, the Kalman filter provides the estimate of the states xti, conditioned
by the past and present observations yo1, . . . ,y

o
i ; in terms of pdf, this amounts to considering

p(xi|yo1:i),

where yo1:i = {yo1, . . . ,yoi }.

3.2 The Kalman filter algorithm

The Kalman filter algorithm is sequential and decomposed into two steps:

1. A forecast

2. An analysis (or observational update)
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⋆: observation yo

I: observation error ǫo(R)

: Model trajectory

⋆

⋆
⋆

⋆

⋆

timetnt0

•
•

•
• • •

•
• •

•

•
• • •

•

Figure 3.1: Assimilation starts with an unconstrained model trajectory over the time window of
interest. It aims at correcting this initial model trajectory in order to provide an optimal fit to
the available observations (the stars), given their error bars.

xt
i

xa
i

xf
i+1

ǫai

Mi,i+1ǫ
a
i

Mi,i+1x
t
i

ηi+1

ǫfi+1

state space

•xt
i+1

Figure 3.2: The forecast error εfi+1 has two sources: One is related to the propagation of the
a priori error by the model (dashed arrow), and the other is related to the model itself: ηi+1

quanties the physics which the model does not account for properly. After Brasseur (2006).
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⋆: observation yo

I: observation error ǫo(R)

: Model trajectory

I: forecast error ǫf(Pf)

I: analysis error ǫa(Pa)

⋆

⋆
⋆

⋆

⋆

timetnt0

•
•

•
• •

• • •
•

• • •• • ••
•

•

Figure 3.3: The sequential approach to data assimilation. Starting from the initial time, the
model trajectory follows the initial forecast, and is characterized by a growth of the forecast error.
As soon as the first observation is available, the analysis is performed (green bullet), and the
associated error decreases (green error bar). The same cycle is repeated anytime an observation
is available, with the assimilated trajectory deviating from the initial guess (the dashed line).

3.2.1 The forecast step

We start from some previously analyzed state xai (or from the initial condition x0 if i = 0),
characterized by the Gaussian pdf p (xai |yo1:i) of mean xai and covariance matrix Pa

i .

An estimate of xti+1 is provided by the dynamical model. This defines the forecast. As seen in
Sect. 1.3.1, we have

xfi+1 = Mi,i+1x
a
i , and (3.1)

Pf
i+1 = Mi,i+1P

a
iM

T
i,i+1 + Qi+1. (3.2)

The forecast error εfi+1 results from the addition of two contributions (see Fig. 3.2): the propaga-
tion of the a priori error by the model, and the model error itself.

3.2.2 Analysis step

At time ti+1, p(xi+1|yo1:i) is known through the mean xfi+1 and covariance matrix Pf
i+1, and, again,

the assumption of a Gaussian distribution. The analysis step consists of updating this pdf using
the observation available at time ti+1 and to find p(xi+1|yo1:i+1). This comes down to re-deriving
the BLUE equations of paragraph 2.4, this time in a dynamical context. Therefore “all” we have
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to do is compute

Ki+1 = Pf
i+1H

T
i+1

(
Hi+1P

f
i+1H

T
i+1 + Ri+1

)−1
, (3.3)

xai+1 = xfi+1 + Ki+1

(
yoi+1 −Hi+1x

f
i+1

)
, (3.4)

Pa
i+1 = (I−Ki+1Hi+1)Pf

i+1, (3.5)

The principle of the Kalman filter is illustrated in Fig. 3.3.

3.3 Implementation issues

3.3.1 Definition of covariance matrices and filter divergence

In case the input statistical information is mis-specified, the filter might end up underestimating
the variances of the state errors, εai . Too much confidence is put on the state estimation and too
little confidence is put on the information contained in the observations. The effects of the analysis
is minimized, and the gain happens to be too small. In the most extreme case, observations are
simply rejected. This is a filter divergence. We will see how we can get such a behaviour when
we consider our vibrating string toy problem.

Very often filter divergence is easy to diagnose: state error variances are small, and the time
sequence of innovations is biased. The fix is not as easy to make as the diagnostic. The main rule
to follow is not to underestimate model errors. If possible, it is better to use an adaptive scheme
to tune them on-the-fly.

3.3.2 Size / Optimal interpolation

The first limitation to the straightforward application of the Kalman filter is related to the size of
the problem. If n denotes the size of the state vector, the state covariance matrix is n× n. Since
its propagation by means of the model is n times for expensive than a model step, it becomes
rapidly out of reach when n increases (not to mention its storage).

If the storage is not an issue, but the computational cost of propagating Pa is one, a possibility is
to resort to a frozen covariance matrix

Pa
i = Pb ∀ti.

This defines the class of methods known as Optimal Interpolation (OI)1.

Under this simplifying hypothesis, the two-step assimilation cycles defined above becomes:

1. Forecast:

xfi+1 = Mi,i+1x
a
i , (3.6)

Pf
i+1 = Pb. (3.7)

2. Analysis:

xai+1 = xfi+1 + Ki+1

(
yoi+1 −Hxfi+1

)
, (3.8)

Pa
i+1 = Pb. (3.9)

with Ki+1 = PbHT
i+1

(
Hi+1P

bHT
i+1 + Ri+1

)−1
.

1Although the method is not really optimal, see e.g. Brasseur (2006)
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There are at least two approaches to form the static covariance matrix Pb.

1. The analytical formulation: The covariance matrix is formed from a vector of variances and
a correlation matrix C

Pb = D1/2CD1/2, (3.10)

where D is a diagonal matrix holding the variances and C is a correlation matrix to be
defined. One example is (Brasseur, 2006, and references therein)

Cmn =

(
1 + al +

1

3
a2l2

)
exp(−al), (3.11)

where a is a tunable parameter and l is the distance between the grid points m and n. We
should make it clear that such an approach is mostly relevant to multi-dimensional problems,
as it allows information to be spread from points where observations are made to points where
they are missing (think of satellite observation of sea surface height, for instance).

2. The second approach consists of taking an ensemble of Ne snapshots of the state vector from
a model free run, and to build the first and second statistical moments, xb and Pb, from this
collection of snapshots. In practice we compute

xb =
1

Ne

Ne∑
e=1

xe, (3.12)

Pb =
1

Ne − 1

Ne∑
e=1

(
xe − xb

) (
xe − xb

)T
. (3.13)

The static approach suffers from the fact that if a correction is applied along a certain direction
in state space during an update, the error statistics are not modified accordingly (by virtue of
Eq.(3.9) above). During the next update, the same level of correction might be applied along
the very same direction, whereas it might not be needed. The static approach is therefore more
suitable if two successive assimilation cycles are separated by a long enough time, so that the
corresponding dynamical states are decorrelated enough.

3.3.3 Evolution of the state error covariance matrix

In principle, Eq. (3.2) generates a symmetric matrix. Its practical implementation may not.
Numerical truncation errors my lead to an asymmetric covariance matrix and a subsequent collapse
of the filter. A remedy is to add an extra step to enforce symmetry, such as

Pf
i+1 =

1

2

(
Pf
i+1 + Pf

i+1

T
)
.

Another possibility is to use the square root decomposition of the covariance matrix. Since Pa is
symmetric positive definite, it can be written as

Pa = SaSaT ,

where Sa is a n × n matrix. This decomposition is not unique. For instance, in Lab 3, we
will use a Cholesky factorization which will provide us with a lower triangular matrix Sa. The
propagation of the covariance matrix is performed by first computing Mi,i+1S

a
i , and then by

assembling Pf
i+1 = (Mi,i+1S

a
i )(Mi,i+1S

a
i )T + Qi+1.
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3.3.4 Nonlinearities

Nonlinearities are ubiquitous in geophysical fluid dynamics, and the cause of a great deal of
concern for the data assimilation practitioner. Nonlinearities are likely to spoil the Gaussianity
of statistics. In addition, the model can no longer be represented by a matrix, and its transpose
is no longer defined. This statement also applies to a nonlinear observation operator. A way to
proceed with nonlinearities is provided by the Extended Kalman Filter (EKF), which relies on a
local linearization about the current model trajectory. This linearization is of course valid only in
the case of a weakly nonlinear system.

3.3.4.1 The extended Kalman filter (EKF)

When the dynamical model M and/or the observation operator H are (weakly) nonlinear, the
Kalman filter can be extended by resorting to the tangent linear approximation of M and
H, denoted by M and H, respectively. The two-step filter assimilation cycle now writes :

1. Forecast:

xfi+1 = Mi,i+1(xai ), (nonlinear forecast) (3.14)

Pf
i+1 = Mi,i+1P

a
iM

T
i,i+1 + Qi+1. (linear forecast) (3.15)

2. Analysis:

xai+1 = xfi+1 + Ki+1

[
yoi+1 −Hi+1

(
xfi+1

)]
, (3.16)

Pa
i+1 = (I−Ki+1Hi+1) Pf

i+1. (3.17)

with Ki+1 = Pf
i+1H

T
i+1

(
Hi+1P

f
i+1H

T
i+1 + Ri+1

)−1
.

3.3.4.2 The ensemble Kalman filter (EnKF)

The Kalman filter is only optimal in the case of Gaussian statistics and linear operators, in which
case the first two moments (the mean and the covariances) suffice to describe the pdf entering
the estimation problem. Practitioners report that its linearized extension to nonlinear problems,
the EKF, only works for moderate deviations from linearity and Gaussianity (e.g. Miller et al.,
1994). The ensemble Kalman filter (Evensen, 1994, 2009) is a method which has been designed
to deal with strong nonlinearities and non-Gaussian statistics, whereby the pdf is described by an
ensemble of Ne time-dependent states, xi,e.

A given cycle still consists of a forecast followed by an analysis, which relies on the good old
BLUE. The statistical information needed by the BLUE (see below) is provided by the ensemble,
at the exception of the observation errors in Eq. 3.24 below, which are random drawings from
the Gaussian distribution N (0,Ri). This is necessary for consistency with the observation error
covariance matrix.
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1. Forecast:

xf
i,e = Mi−1,i(x

a
i−1,e) + ηi,e, e = {1, . . . , Ne}. (3.18)

2. Analysis:

〈xf
i 〉 =

1

Ne

Ne∑

e=1

xf
i,e, (3.19)

Pf
i =

1

Ne − 1

Ne∑

e=1

(
xf
i,e − 〈xf

i 〉
)(

xf
i,e − 〈xf

i 〉
)T

, (3.20)

HiP
f
i =

1

Ne − 1

Ne∑

e=1

[
Hi

(
xf
i,e

)
−Hi

(
〈xf

i 〉
)] [

xf
i,e − 〈xf

i 〉
]T

(3.21)

HiP
f
i H

T
i =

1

Ne − 1

Ne∑

e=1

[
Hi

(
xf
i,e

)
−Hi

(
〈xf

i 〉
)] [
Hi

(
xf
i,e

)
−Hi

(
〈xf

i 〉
)]T

(3.22)

Ki =
(
HiP

f
i

)T [
HiP

f
i H

T
i +Ri

]−1

, (3.23)

yo
i,e = yo

i + εoe, e = {1, . . . , Ne}, (3.24)

xa
i,e = xf

i,e +Ki

[
yo
i,e −Hi

(
xf
i,e

)]
, e = {1, . . . , Ne}. (3.25)

The problem of storing the state covariance matrix Pa is solved, since “only” Ne state vectors
need be stored.

A detailed description of the implementation of the EnKF can be found in the book written by
its inventor, Geir Evensen, along with a comprehensive list of related publications (appendix B of
the book). We will apply the EnKF to Lorenz’s 1963 model in our computer-based lab 2.

A note of caution: the update phase (3.25) is still linear, as the Kalmain gain matrix is produced
using Eq. (3.23).
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Chapter 4

Variational assimilation

Here is a slightly modified excerpt taken from our review paper (Fournier et al., 2010).

Unlike sequential assimilation (which emanates from estimation theory), variational assimilation
is rooted in optimal control theory. The analyzed state is not defined as the one maximizing a
certain pdf, but as the one minimizing a functional J of the form

J (x) =
1

2

{
n∑
i=0

[Hixi − yoi ]
T

R−1i [Hixi − yoi ] +
[
x− xb

]T
Pb−1 [x− xb

]}
, (4.1)

in which xi = Mi,i−1 · · ·M1,0x, the sought x being the best estimate of the initial state of the
core, x0. This objective function is defined over the entire time window of interest. It is the sum
of two terms. The first one measures the distance between the observations and the predictions
of the model. It is weighted by the confidence we have in the observations. The second term is
analogous to the various norms which are added when solving the kinematic core flow problem;
it evaluates the distance between the initial condition and an a priori background state xb. That
stabilizing term is weighted by the confidence we have in the definition of the background state,
described by the background error covariance matrix Pb1. Defining a background state for the
core is no trivial matter. But one may substitute (or supplement) the corresponding term in
equation 4.1 by (with) another stabilizing term, typically a norm, as was done by Talagrand and
Courtier (1987) and Courtier and Talagrand (1987) in their early numerical experiments with the
vorticity equation on the sphere.

The goal of variational data assimilation is to minimize J by adjusting its control variables (or
parameters), usually the initial condition x0 (if everything else is held fixed, see Fig. 4.1), as
implied by our formulation in equation 4.1. Iterative minimization requires the computation of
the sensitivity (gradient) of J with respect to its control vector, which writes (∇x0J )

T
(the

transpose is needed since ∇x0
J is by definition a row vector, recall Eq. 2.18). The size of the

problem (the size of the state vector n) precludes a brute force calculation of the gradient (which
would imply n realizations of the forward model over [t0, tn]). Fortunately, as pointed out early on
by Le Dimet and Talagrand (1986) and Talagrand and Courtier (1987), a much more affordable
method exists: The so-called adjoint method, which is based on the integration of the so-called
adjoint equation backward in time

ai−1 = MT
i−1,iai + HT

i−1R
−1
i−1(Hi−1xi−1 − yoi−1) + δi1P

b−1 (xi−1 − xb
)
, n ≥ i ≥ 1, (4.2)

starting from an+1 = 0, where a is the adjoint field, and δ is the Kronecker symbol. The initial

value of the adjoint field provides the sensitivity we seek: (∇x0
J )

T
= a0 (e.g. Fournier et al.,

1Ide et al. (1997), and many others, use B to denote that matrix, a notation which is preempted in our case by
the magnetic induction.
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2007); a derivation of Eq. (4.2) is provided in Appendix A. Note that when writing equation 4.2,
we assumed for simplicity that observations were available at every model time-step.

Equation 4.2 indicates that over the course of the backward integration, the adjoint field is fed
with innovation vectors. Those vectors have an observational component (Hi−1xi−1 − yoi−1), and
a departure-to-background component

(
x0 − xb

)
for the initial condition, these two contributions

being weighted by the statistics introduced above. The adjoint model MT in equation 4.2 is the
adjoint of the tangent linear model M introduced previously in the context of the extended Kalman
filter (Sec. 3.3.4.1). The adjoint model has a computational cost similar to that of the forward
model, and makes it possible to use an iterative minimization algorithm suitable for large-scale
problems.

A few comments on the adjoint method are in order:

• It demands the implementation of the adjoint model MT : the rules to follow for deriving
(and validating) the tangent linear and adjoint codes from an existing forward code are well
documented in the literature (e.g. Talagrand, 1991; Giering and Kaminski, 1998), and leave
no room for improvisation. Still, this process is rather convoluted. It requires expertise
and deep knowledge of the forward code to begin with. The best situation occurs when the
forward code is written in a modular fashion, bearing in mind that its adjoint will be needed
in the future, and by casting as many operations as possible in terms of matrix-matrix or
matrix-vector products (for a one-dimensional illustration with a spectral-element, non-linear
magnetohydrodynamic model, see Fournier et al., 2007). The task of coding an adjoint by
hand can still become beyond human reach in the case of a very large model. One might then
be tempted to resort to an automated differentiation algorithm. Automated differentiation
(AD) is a very active field of research2: several operational tools are now available, some of
which have been tested on geophysical problems by Sambridge et al. (2007).

• The discrete adjoint equation 4.2 is based on the already discretized model of core dynamics.
An alternative exists, which consists first in deriving the adjoint equation at the continuous
level, and second in discretizing it, using the same machinery as the one used to discretize
the forward model. In most instances, both approaches to the adjoint problem yield the
same discrete operators. When in doubt, though, in the case of a minimization problem,
one should take the safe road and derive the adjoint of the already discretized problem:
This guarantees that the gradient injected in the minimization algorithm is exactly the one
corresponding to the discrete cost function (equation 4.1), up to numerical roundoff error.
Since the efficiency of a minimization algorithm grows in proportion to its sensitivity to errors
in the gradient, any error in the gradient could otherwise result in a suboptimal solution.

• The adjoint approach is versatile. Aside from the initial state x0, one can declare static model
parameters (static fields, material properties) adjustable, and add them to the control vector.

• In the case of a non-linear problem, the forward trajectory xi, i ∈ {0, . . . , n}, is needed to
integrate the adjoint equation. The storage of the complete trajectory may cause memory
issues (even on parallel computers), which are traditionally resolved using a so-called check-
pointing strategy. The state of the system is stored at a limited number of discrete times,
termed checkpoints. Over the course of the backward integration of the adjoint model, these
checkpoints are then used to recompute local portions of the forward trajectory on-the-fly,
whenever those portions are needed (e.g. Hersbach, 1998).

• On a more general note, adjoint methods have gained some popularity in solid Earth geo-
physics over the past few years, a joint consequence (again) of the increase in computational
power and the availability of high-quality satellite, or ground-based, data. Adjoint meth-
ods are now applied to problems related to the structure and evolution of the deep Earth:
Electromagnetic induction (Kelbert et al., 2008; Kuvshinov et al., 2010), mantle convection

2www.autodiff.org
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⋆: observation yo

I: observation error ǫo(R)

: Model trajectory

⋆

⋆
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⋆

⋆

timetnt0

• • • • •
•

• • • • •
•

• • •

adjust x0

Figure 4.1: The variational approach to data assimilation. After adjustment of the initial condition
x0 (the green bullet on the t = t0 axis) by means of an iterative minimization algorithm, the model
trajectory is corrected over the entire time window, in order to provide an optimal fit to the data
(in a generalized least squares sense). The dashed line corresponds to the initial (unconstrained)
guess of the model trajectory introduced in Fig. 3.1.

⋆

⋆
⋆

⋆

⋆

timetnt0

•••

•

Figure 4.2: Principle of sequential smoothing. The state to observation difference (the innovation)
at analysis time can be used to retrospectively correct the past products of analysis.
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(Bunge et al., 2003; Liu and Gurnis, 2008; Liu et al., 2008), and seismic wave propagation
(Tromp et al., 2005; Fichtner et al., 2006; Tromp et al., 2008), building in that last case on
the theoretical work of Tarantola (1984, 1988).

The application of a variational approach to time-dependent problems has been generically labeled
as the 4D-Var approach to data assimilation (e.g. Courtier, 1997), and is commonly referred to as
4D-Var. As such, the standard 4D-Var suffers from two drawbacks: It assumes that the model is
perfect (η = 0), and it does not provide direct access to the statistics of the analysis error - notice
its absence in Fig. 4.1. An alternative approach to the “strong constraint” assumption (η = 0)
consists in adding a term quantifiying the model error in the definition of the cost function, a
term whose weight is controlled by an a priori forecast error covariance. This more general “weak
constraint” approach (Sasaki, 1970) has been successfully introduced and implemented (under the
name “method of representers”) in physical oceanography during the past fifteen years (Egbert
et al., 1994; Bennett, 2002, and references therein).

From a general perspective, the advantages of a variational approach are its flexibility regarding the
definition and identification of control variables, and its natural ability to handle time-dependent
observation operators (and possibly time-correlated errors). It is also well-suited for the reanalysis
of past data records (hindcasting), since the state at a given time is estimated using the past
and future observations available over the entire time window (see Fig. 4.1). Note, however,
that hindcasting is also possible if one resorts to sequential smoothers (see Fig. 4.2), of the kind
described by e.g. Cohn et al. (1994), and applied in an oceanic context by e.g. Cosme et al. (2010).
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Messages

I Geomagnetic data provided over the last decade by satellites (and used in
conjunction with observatory data) have allowed us to get a more accurate
description of the rapid variations of the main geomagnetic field
(generated inside earth’s core)

I This better description is an incentive for constructing and testing physical
models of core dynamics able to account for the observed geomagnetic
variations (in a data assimilation framework).

I This effort started about 5 years ago, and we are still at the research
(non-operational) stage.

Special thanks to Julien Aubert (IPGP) and Chris Finlay (DTU)
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The Earth’s main magnetic field

B = −∇V in a current-free region,

V (r, t) = a
∑

`,m

(
a

r

)`+1 [
gm
` (t) cos mϕ + hm` (t) sin mϕ

]
Pm
` (cos θ),

Br (r, t) =
∑

`,m

(
a

r

)`+2 [
gm
` (t) cos mϕ + hm` (t) sin mϕ

]
Pm
` (cos θ).

Ω

inner core

outer core

m
an
tle

Hulot, Sabaka, Olsen TOG 2007
Geomagnetic observations are connected with the (large-scale) radial component of the magnetic

induction, Br , at the core surface (the small scales are screened by the crustal field).
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Observed geomagnetic field components

(Courtesy Chris Finlay)
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Commonly observed components of the geomagnetic field.
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Sensitivity to the core surface magnetic field

(Courtesy Chris Finlay)

Z at core surface with Earth’s surface shown together with the relevant Green’s fns.

I Each observation is a weighted average of the core surface field (Gubbins&

Roberts, GJRAS, 1983)
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Sensitivity of D, I , F to Br at the core surface.

(Courtesy Chris Finlay)
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Averaging Kernel’s showing sensitivity to Br at core surface of D, I and F observations in central Europe at Earth’s
surface. (Plots courtesy of S. Panovska.)
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Paleomagnetic observations

(Courtesy Chris Finlay)

Examples of paleomagnetic data sources: Left: Lavas on Hawaii; Middle: archeological artifacts (Genevey et al,
EPSL, 2009); Right: a lake sediment core.

I Magnetization acquired by rocks during formation and artifacts during
production records direction and intensity of the ancient field.
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Temporal distribution of records in past 10kyrs

(Courtesy Chris Finlay)
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Time distribution of archeomagnetic and (left) and sediment (right) magnetic records during the past 10 kyrs
(Korte et al., EPSL, 2011), in 200 yr bins, courtesy of S. Panovska.
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Distribution of sediment magnetic data (10 kyrs)

(Courtesy Chris Finlay)

Locations of lake sediment records used to constrain the CALS10K model of Korte et al. (EPSL, 2011) spanning
the past 10kyrs. Stars show locations of new records: Yellow stars for D/I, red stars or red borders around yellow

stars for RPI. Locations of previously used records are blue dots.
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Historical observations

(Courtesy Chris Finlay)

e.g. Extract from logbook of ‘King George’ from 2nd July 1719 (Jonkers et al., Rev. Geophys., 2003).
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Distribution of historical data (1770-1790)

(Courtesy Chris Finlay)

Locations of historical data (all components) between 1770 and 1790 from the Jonkers et al. (Rev. Geophys.,
2003) database.
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Ground magnetic observatories

(Courtesy Chris Finlay)

Magnetic observatories at Eskdalemuir in the UK (top left), Kourou, French Guyana (top right),
Qeqertarsuaq/Godhavn in Greenland (bot. left) and Hermanus in S. Africa (bot. right).
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Example of instruments in use at observatories

(Courtesy Chris Finlay)

D/I fluxgate theodolite, Danish fluxgate variometer, & Overhauser magnetometer (from ETHZ observatory in

development on Gan, Maldives, courtesy of J. Velimsky).
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Observatory distribution in 2010

(Courtesy Chris Finlay)

Locations of observatories used in determination of recent internal field models.
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An obsy series: 1st dif. annual means from ESK

(Courtesy Chris Finlay)

First differences of annual means for Eskdalemuir observatory, Scotland. This is a particularly long and high quality
record.

I Note the sharp changes in slope of dY/dt (i.e. discontinuity in second
time derivative) known as ’jerks’.
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Low Earth orbit satellites

Satellites CHAMP (left) and Ørsted (right) measuring the geomagnetic field.

Examples of a satellite fluxgate magnetometer (left) and star cameras (right) for measuring instrument orientation.
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Geographical coverage with 3 days of satellite data

(Courtesy Chris Finlay)
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Example showing 3 days of CHAMP vector satellite data from 2009 as used in the construction of the CHAOS-4a
model of Olsen et al., http://www.spacecenter.dk/files/magnetic-models/CHAOS-4/.
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Constructing global models of core surface field

(Courtesy Chris Finlay)

I Model core field as potential field with purely internal source,

B = −∇V and ∇ · B = 0

where V (r , θ, φ, t) = a
N∑

`=1

∑̀

m=0

(a
r

)`+1

gm
` (t)Y m

` (θ, φ).

I Account for secular variation using a B-spline basis for Gauss coefficients,

gm
` (t) =

∑

p

gmp
` Mp(t).

I Solve inverse problem by minimizing a cost function: data misfit & a
regularization norm based on core surface field,

Θ = [d− f(m)]TC−1
e [d− f(m)] +R(m).

R(m) is a norm measuring spatial & temporal complexity at CMB.
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The Earth’s main magnetic field
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The variations of the main magnetic field

Ḃr (nT/y) at Earth’s surface in 2007
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Time scales

Instantaneous correlation times (Hulot & Le Mouël, PEPI, 1994)
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Data distribution vs. time: increase in quantity and accuracy

number of observations per year
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(Fournier et al., Space Sci. Rev., 2010)

archeomagnetic data (orange): geomagia database (Donadini et al., G3, 2009); historical data (black):

gufm1 (Jackson et al., PhilTrans,2000); satellite data (blue): xCHAOS (Olsen & Mandea, NGEO, 2008).

Satellite data make a difference: error in geomagnetic field models

0.02 (nT/y)2 for CHAOS vs. ∼ 30 (nT/y)2 in the 1980ies (Hulot et al., TOG, 2007).
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Relationship between observations and dynamics

Kinematic approach : seek the (large scale) core surface flow uh such that

∂tBr = Ḃr = −∇h · (uhBr )?

I Frozen-flux approximation (Roberts & Scott, JGG, 1965),
I Non-uniqueness. Extra hypotheses required: steady flow (Voorhies & Backus,

GAFD, 1985), tangencial geostrophy (Le Mouël, Nature, 1984), quasi-geostrophy (Pais

& Jault, GJI, 2008; Gillet et al., G3, 2009), . . . + regularization (Holme, TOG, 2007, for a

recent review)

I Spatial resolution error � observation error.

Eymin & Hulot, PEPI, 2005. Peak velocity: 37 km/y. Pressure

(color): ±1010 Pa.
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Assimilation of geomagnetic observations

A dynamical approach to the inverse problem of estimating the state of the core x
is in order (e.g. Talagrand, JMSJ, 1997, for a review on assimilation).

Ingredients:

1. observations

2. a dynamical model describing the physics of the processes under scrutiny

Goals:

I Probe the physics governing the secular variation: advection,
hydromagnetic waves, with an ounce (or more) of diffusion Important
because fundamental

I Make inferences on the interior of the core

I Construction of core field and flow models

I Retro-propagate the current quality of observations

I Increase the quality of the geomagnetic forecast, and assess its limits

Specific to the core problem ( 6= meteorology, oceanography)

I ‘Surface’ measurements only

I uncertainties in the knowledge of the background state (the
‘climatological’ mean)
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Which model of core dynamics?

1. Quasi-geostrophic (Canet et al., JGR, 2009)

2. Taylor state (Livermore, Ierley, Jackson., GJI, 2009, PEPI, 2010).

3. Convection-driven geodynamo model (Liu, Tangborn, Kuang, JGR, 2007; Kuang et

al., GJI, 2009)
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Surface and volume

Dynamic Magnetic Field Imaging: Aubert, Aurnou, Wicht (GJI, 2008)
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Outline
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3D sequential assimilation experiments using synthetic data
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Framework in a discrete world

Notations of Ide et al., J. Met. Soc. Japan, 1997.

I Forward model (the numerical geodynamo model):

xi+1 = Mi,i+1[xi ], (1)

I xi : modelled core state at discrete time ti (column vector, size nx).
I Mi,i+1: prognostic, nonlinear numerical model of core dynamics

(semi-implicit in time).
I Modeled core state is controlled by x0 + other control parameters().

I Observations yo
i :

yo
i = Hi [x

t
i ] + εoi , in which (2)

I o: o bservation,
I Hi : observation operator,
I t: true,
I εoi : observation error (covariance matrix Ri ).
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Trajectory in model space
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: Model trajectory
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Sequential assimilation

We perform an analysis each time there is some observation available.

xt
i

xa
i

xf
i+1

ǫai

Mi,i+1ǫ
a
i

Mi,i+1x
t
i

ηi+1

ǫfi+1

state space

•xt
i+1

A 2-step procedure: the Kalman filter

1. Forecast:

xfi+1 = Mxai ,

Pf
i+1 = MPa

i M
† + Q.

2. Analysis:

xai+1 = xfi+1 + Ki+1

(
yoi+1 − Hxfi+1

)
,

Pa
i+1 = (I − Ki+1H) Pf

i+1.

with Ki+1 = Pf
i+1H†i+1

(
Hi+1Pf

i+1H†i+1 + Ri+1

)−1

.
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Sequential assimilation
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Sequential assimilation
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Sequential assimilation
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Optimal interpolation

I Size of the covariance matrix: nx × nx (nx is size of x, typically 106 ).

I Evaluating MPa
i M
† requires O

(
n4

x

)
operations. (nx times more expensive

than a single model step.)

A 2-step procedure:

1. Forecast:

xfi+1 = Mxai ,

Pf
i+1 = MPa

i M
† + Q.

2. Analysis:

xai+1 = xfi+1 + Ki+1

(
yo
i+1 − Hxfi+1

)
,

Pa
i+1 = (I − Ki+1H) Pf

i+1.

with Ki+1 = Pf
i+1H†i+1

(
Hi+1Pf

i+1H†i+1 + Ri+1

)−1
.
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Optimal interpolation

I Possibility: use a frozen background error covariance matrix Pb.

A 2-step procedure:

1. Forecast:

xfi+1 = Mxai ,

Pf
i+1 = Pb

2. Analysis:

xai+1 = xfi+1 + Ki+1

(
yo
i+1 − Hxfi+1

)
,

Pa
i+1 = Pb

with Ki+1 = PbH†i+1

(
Hi+1PbH†i+1 + Ri+1

)−1
.
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Structure of the background covariance matrix in 3D

Transport of information from the surface downwards:

CMB poloidal m
agnetic
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NB: Pb is 20000 × 20000
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Experiments with synthetic data

Solve a time-dependent assimilation problem:

I Generate synthetic data from model free run over [t0,T ]: here maps of Br

at the top of the core (truncated at ` = 13 and assuming perfect
observations, R = 0)

I Start from t0 using wrong initial conditions (for instance the average
background state)

I Assimilate synthetic observations and correct model trajectory
I Assess quality of assimilation scheme by comparing the known true

dynamo state xt and the estimate x̂
I Retrieval of internal structure
I Forecast quality
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Synthetic observations

Time between samples: approximately 50 yr. Color scale ±2 mT.

# 1 # 2 # 3 # 4 # 5 # 6 # 7

# 8 # 9 # 10 # 11 # 12 # 13 # 14

Time span ∼ 700 yr.
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Retrieval of internal structure

  

  

 

 

 

 

ï���

ï��8

�

��8

���

ï���

ï���

�

���

���

ï�

ï���

�

���

�

 

 

ï��

ï��

�

 

 

Br at

external 

boundary

Br at

mid-shell

Vr in 

equatorial 

plane

C in

equatorial

plane

Reference

in absence of data

DIWHU���DQDO\VLV

(stochastic inversion

RI���GDWD�VDPSOH� �[�����P7�

�[�����P7�

�[����NP�\U�

�[�����NJ�P��

DIWHU����DQDO\VHV

VSDFHG�����Tsec 

����\U��HDFK

and one forecast

 

 

 

 

 

 

 

 

 

 

 

 

Estimates

Aubert & Fournier, NPG, 2011

A. Fournier (Trieste Nov. 1st 2012) Geomagnetic data assimilation



none
The benefit of using multivariate statistics to construct Pb

Br

mid-depth

C
(eq. plane)
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The benefit of using multivariate statistics to construct Pb
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The benefit of using multivariate statistics to construct Pb

Br
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(eq. plane)
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Reference BP updated all fields updated
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Forecast quality

Define the innovation

di = observation − forecast = yo
i −Hxf

i

Involves the first 13 SH degrees of the poloidal field at the core surface.
Forecast quality via the average error

error =
1

Ncycles

∑

i

‖di‖2 over 3000 yr

The number of assimilation cycles Ncycles is set by the spacing between two
successive cycles, ∆tcycle. We will take ∆tcycle = 5, 25, 50 and 100 yr.

Our forecast strategies to define xf
i will consist of

1. a no-cast

2. a linear forecast based on the perfectly known SV up to SH degree 8

3. a linear forecast based on the perfectly known SV up to SH degree 13

4. a multivariate OI scheme assimilating Br maps up to SH degree 13
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Forecast results

100 101 102
∆tcycle (yr)

forecast error (×1.7 mT)

10-3
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100
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rs
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ld
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rs

— no cast
— lin SV 8
— lin SV 13
— assim B13

Over long time scales, assimilation provides the best answer.
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Terrestrial matters

It is of interest to elucidate the causes (and
forecast the evolution) of the South Atlantic
Anomaly.

Finlay et al., 11th IGRF, GJI, 2011

Intensity (nT)

30000

40000

50000

60000

1900

2015 1955

Total Intensity F / nT

Finlay et al., 11th IGRF, GJI, 2011
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Summary of the 3D synthetic section

I Implementation of an optimal interpolation scheme for geomagnetic data
assimilation based on 3D dynamo models

I Synthetic experiments:
I Multivariate statistics help better constrain the internal structure of the core
I Scheme adapted for long-term predictions of the evolution of the large-scale

poloidal field at the top of the core
I On short time scales: linear prediction based on perfectly well-known large

scale SV performs better.
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Limit of predictability

Hulot, Lhuillier, Aubert, GRL, 2010; Lhuillier, Aubert, Hulot, GJI, 2011496 F. Lhuillier, J. Aubert and G. Hulot

Figure 2. Consequences of introducing non-random perturbations in the g0
1 axial dipole coefficient of dynamo B4 at three times (t0 = 1.51, t0 = 1.9, t0 =

2.0) highlighted in red in Fig. 1. The reference time-series is represented in black, whereas the perturbed time-series are represented in red, green and blue,
according to the amplitude of perturbation. The four panels show: (a) long-term evolution of the perturbed solutions; (b) short-term evolution of the perturbed
solutions; (c) modulus of the axial dipole error (i.e. ln |!y0

1| for the poloidal magnetic field Bp) in a semi-logarithmic plot; (d) modulus of the dipole error
(i.e. ln |!y1| for the poloidal magnetic field Bp) in a semi-logarithmic plot. The colour vertical lines indicate the time after which the reference and perturbed
solutions drift apart in panel (b), which actually corresponds to the beginning of the free-development phase. For any of the amplitudes 10−2, 10−6, 10−10 of
perturbation and any of the three times of perturbation, the exponential growth rates λ2, λ6 and λ10 of panels (d) were computed together with their uncertainty
at 95 per cent confidence level (in units of τ−1

η ) as described in Section 3.1.

3.1 Error growth for a case study

For this case study, we focus on dynamo B4. In the reference time-
series presented in Fig. 1, type-1 perturbations (computed with
the help of eq. 1) were introduced at three given stages of the
simulation: t0 = 1.51, half a magnetic time before the reversal;
t0 = 1.9, at the onset of the reversal; t0 = 2, when the reversal
is under way. In each case, three amplitudes of perturbation were
tested: 10−2, 10−6 and 10−10. Nine different perturbed solutions
were thus produced, the evolutions of which are shown in Fig. 2.
Fig. 2(a) details the long-term evolution of the perturbed solutions
and underlines the difficulty in predicting the long-term behaviour
of the perturbed solutions from the reference one. The reversal of
the reference time-series may be in certain cases slightly altered,
in other cases impeded, otherwise it is changed into an excursion.
It is then possible to conclude that the reference and perturbed
solutions evolve with no apparent relationship. In parallel with this
first conclusion, Fig. 2(b) focusing on the time shortly after the
introduction of the perturbation, shows that the lapse of time after

which the reference and perturbed solutions drift apart depends on
the amplitude of this perturbation. As could be expected, perturbed
solutions separate first for the largest perturbation (10−2, vertical red
line), next for the medium perturbation (10−6, vertical green line)
and finally for the smallest perturbation (10−10, vertical blue line). It
is of interest that the time interval between the red and green vertical
lines is approximately equal to the time interval between the green
and blue vertical lines. This indicates that, every time the amplitude
of the perturbation is changed by the same factor (here 10−4), the
same delay is introduced before the perturbed solution separates
from the reference solution. This is a first clear indication of the
exponential growth of the errors resulting from the perturbations.

Fig. 2(c) presents the modulus of the axial dipole error as a func-
tion of time in a semi-logarithmic scale. It demonstrates the expo-
nential character of the error growth, and reveals three main stages
in the evolution of the perturbed solutions: a mobilization phase, an
exponential-growth phase and a free-development phase. The first
phase, which lasts about one hundredth of magnetic time in this
case, does not depend on the amplitude of the initial perturbation. It

C© 2011 The Authors, GJI, 186, 492–508
Geophysical Journal International C© 2011 RAS

error ∝ exp(λt)

λ−1 = τe

= 0.18(±0.02)Rm−1τη

(with τη = D2/η, ie
120 kyr for the core)
For the Earth:

I τe ∼ 30 yr

I limit of predictability:
70 yr

(with optimal model and
DA scheme)
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Chaotic systems governed by deterministic equations

Lorenz’s 1963 model is the canonical example of such a system. Since it is
much simpler than the geodynamo, we will study its properties and implement
an Ensemble Kalman filter atop it in the computer exercises which follow.

A. Fournier (Trieste Nov. 1st 2012) Geomagnetic data assimilation

none
Extra

Supplementary material
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Convection-driven model of the geodynamo

Discretization of conservation laws and Maxwell’s equations, modified
Boussinesq codensity formalism of Braginsky & Roberts (GAFD, 1995).

∇ · u = 0, (3)

ρ (∂tu + u ·∇u + 2Ω× u) = −∇Π + j× B + ρν∇2u + Cg, (4)

∂tC + u ·∇C = κ∇2C + ST/ξ, (5)

∂tB = ∇× (u× B) + (1/µσ)∇2B, (6)

+ no-slip boundary conditions for u, insulating magnetic boundary conditions
at the ICB and CMB, prescribed codensity at the ICB and null codensity flux
∇C = 0 at the CMB.
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Numerical methods

Numerical scheme based on the pioneering work of Glatzmaier (Journal of Computational

Physics, 1984).

I poloidal-toroidal decomposition of u and B

u = ∇×∇× (uPr) + ∇× (uT r) ,

B = ∇×∇× (BPr) + ∇× (BT r) .

I Spherical harmonic expansion of uP , uT , BP , BT , and C




uP
uT
BP

BT

C




(r , θ, φ, t) =
l=L∑

`=0

m=∑̀

m=−`




uP `m(r , t)
uT `m(r , t)
BP `m(r , t)
BT `m(r , t)
C`m(r , t)



Ym
` (θ, φ)

I Finite differences in radius r

I Computation of nonlinear terms in physical space

I Second order semi-implicit time-differencing

Dormy, Cardin, Jault, EPSL, 1998; Aubert, Aurnou, Wicht, GJI, 2008
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Construction of the prior: scaling procedure

1. Assume model and Earth obey the same scaling laws
(Christensen & Aubert, GJI, 2006; Aubert, Labrosse, Poitou, GJI, 2009)

2. Extrapolate model values to geophysical values

Rescaling

I time:
correlation times τ` = τsv/`
(Christensen & Tilgner, Nature, 2004; Lhuillier, Fournier, Hulot, Aubert, GRL, 2011); .
Assume model and Earth share same τsv = 415 yr.

I field:
relate rms field strength Brms and available convective power p

Brms ∝ f
1/2

Ohmp
1/3

Assume Brms(Earth) = 2.4 mT (Aubert, Labrosse, Poitou, GJI, 2009)
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A more quantitative assessment

misfit =

∫
V

(
ut − û

)2
dV∫

V
ut2dV

; correlation =

∫
V

ut · ûdV
√∫

V
ut2dV

√∫
V

û2dV
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Structure of the background covariance matrix in 3D

The state vector xi at discrete time ti : the complex-valued spectral coefficients
at radial levels rk

xi =
[
. . . , uP

k
`m, . . . , uT

k
`m, . . . ,BP

k
`m, . . . ,BT

k
`m, . . . ,C

k
`m, . . .

]T
i

Having Ne samples at hand, compute mean

xb =
1

Ne

Ne∑

i=1

xi

and variances-covariances

Pb =
1

Ne − 1

Ne∑

i=1

(
xi − xb

)(
xi − xb

)†

Size issues: truncate L = 15 and every other radial level.
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Structure of the background covariance matrix in 3D

Transport of information from the surface downwards:

CMB poloidal m
agnetic
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NB: Pb is 20000 × 20000
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Abstract Data assimilation in geomagnetism designates the set of inverse methods for ge-
omagnetic data analysis which rely on an underlying prognostic numerical model of core
dynamics. Within that framework, the time-dependency of the magnetohydrodynamic state
of the core need no longer be parameterized: The model trajectory (and the secular variation
it generates at the surface of the Earth) is controlled by the initial condition, and possibly
some other static control parameters. The primary goal of geomagnetic data assimilation is
then to combine in an optimal fashion the information contained in the database of geomag-
netic observations and in the dynamical model, by adjusting the model trajectory in order to
provide an adequate fit to the data.
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The recent developments in that emerging field of research are motivated mostly by the
increase in data quality and quantity during the last decade, owing to the ongoing era of mag-
netic observation of the Earth from space, and by the concurrent progress in the numerical
description of core dynamics.

In this article we review briefly the current status of our knowledge of core dynamics,
and elaborate on the reasons which motivate geomagnetic data assimilation studies, most no-
tably (a) the prospect to propagate the current quality of data backward in time to construct
dynamically consistent historical core field and flow models, (b) the possibility to improve
the forecast of the secular variation, and (c) on a more fundamental level, the will to identify
unambiguously the physical mechanisms governing the secular variation. We then present
the fundamentals of data assimilation (in its sequential and variational forms) and summa-
rize the observations at hand for data assimilation practice. We present next two approaches
to geomagnetic data assimilation: The first relies on a three-dimensional model of the geo-
dynamo, and the second on a quasi-geostrophic approximation. We also provide an estimate
of the limit of the predictability of the geomagnetic secular variation based upon a suite of
three-dimensional dynamo models. We finish by discussing possible directions for future
research, in particular the assimilation of laboratory observations of liquid metal analogs of
Earth’s core.

Keywords Geomagnetic secular variation · Dynamo: theories and simulations · Earth’s
core dynamics · Inverse theory · Data assimilation · Satellite magnetics · Predictability

1 Introduction

1.1 Inference on Core Dynamics from Geomagnetic Observations

We begin with a brief overview of the current status of our knowledge of core dynamics,
as deduced from the record of the geomagnetic secular variation. In addition to the various
references listed in this section, the interested reader will find a complete account of the
theoretical and observational foundations of that knowledge in the reviews by Jackson and
Finlay (2007) and Finlay et al. (2010).

Inferences on sub-annual to decadal core dynamics are usually made by assuming that the
geomagnetic secular variation at the core-mantle boundary (CMB), as described by the rate-
of-change of the radial component of the magnetic induction ∂tBr , is caused by diffusionless
advection by the fluid flow uh:

∂tBr = −∇h · (uhBr) , (1)

in which ∇h· is the horizontal divergence operator. This so-called frozen-flux hypothesis
was originally proposed by Roberts and Scott (1965); it is of central importance for finding
estimates of the flow at the top of the core responsible for the observed secular variation.
As such, the problem is non-unique (Backus 1968). Consequently, further assumptions on
uh are needed; those are reviewed in detail and discussed by Holme (2007) and Finlay et al.
(2010). In addition, the product of the inversion is often regularized: Intermediate—to small-
scale features are damped in order to produce a flow of moderate spatial complexity. In the
past thirty years, tens of studies based on different approaches have arguably produced a
common, large-scale picture of uh for recent epochs (Holme 2007): it consists in a strong
westward flow under the Atlantic ocean, a flow usually weaker under the Pacific hemi-
sphere, and it exhibits large-scale vortices under South Africa and North America, the root
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mean square (rms) flow speed being on the order of 15 km/y. Further inspection of various
core flow models produced under different working hypotheses reveals features which are
far less consensual, and hypotheses-dependent (Holme 2007, and references therein). The
large-scale, consensual picture described above evolves slowly over time, as do the large-
scale features of the magnetic field (e.g. Hulot and Le Mouël 1994).1 This can be observed
by considering either snapshots of uh at different epochs (e.g. Hulot et al. 1993), or parame-
terized, time-dependent core flow models, as computed by Jackson (1997) (recall that time
is a parameter, and not a variable, within the kinematic framework we have discussed so
far).

In an attempt to relate the dynamics inferred at the top of the core with its deeper origin,
the axisymmetric component of time-dependent core surface motions can in turn be inter-
preted as the signature of torsional oscillations occurring inside the core (Braginsky 1970).
The subject of torsional oscillations is reviewed by Finlay et al. (2010). Trying to fit the sec-
ular variation (or to explain time-dependent core flow) using that class of wavy motions is
of great interest, since it provides in particular constraints on the strength of the cylindrical
radial magnetic induction inside the core, Bs . For a recent effort in that direction, consult
Buffett et al. (2009).

The path from geomagnetic observations to the description of core dynamics has thus so
far mostly consisted in a two-stage, sequential process: First, Br and ∂tBr are estimated at
the CMB by downward-continuing surface measurements, using some regularization. Sec-
ond, the surface flow underneath the CMB is estimated from (1), by imposing one (or sev-
eral) constraints on the flow, and inevitably some damping. However and regardless of the
lack of consistency of that strategy, it now appears that our ability to learn more about core
dynamics following this path has almost reached a plateau, even though the quality and
density of the recent data keep on improving. This is because spatial resolution errors2 (the
large-scale secular variation due to the interaction of the concealed, small-scale field, with
the large-scale flow) now dominate observational errors in the error budget of core flow
inversions (Eymin and Hulot 2005).

More recently, sophisticated strategies, such as ensemble approaches, have been used
to describe statistically the corresponding unresolved component of the secular variation
(Gillet et al. 2009). Modeling strategies bypassing the above two-stage, sequential approach
have also been designed to simultaneously invert for the field and the flow at the top of the
core (Lesur et al. 2010), in philosophical line with an earlier work by Waddington et al.
(1995). Lesur et al. (2010) implement the frozen-flux constraint (equation (1)) in their in-
version, thereby introducing a dynamically consistent relationship between Br and uh at the
top of the core.

These two recent and innovative approaches very much point the way forward to a better
understanding and description of core dynamics, by incorporating dynamical constraints (as
imposed by the equations governing the secular variation of the geomagnetic field) in the
inversion process, and taking spatial resolution errors into account in the most sensible way.
Such preoccupations are not limited to the study of the geomagnetic secular variation: Dur-
ing the past decades, they have also been central in the fields of atmospheric dynamics and
physical oceanography, and at the heart of the development of data assimilation strategies.

1Note, though, that recent field models based on satellite data indicate a reorganization time for the large-scale
structures of the secular variation ∂tBr itself on the order of 20 y (Olsen et al. 2009).
2Also called “errors of representativeness” in the data assimilation literature (e.g. Lorenc 1986; Kalnay 2003;
Brasseur 2006).
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The terminology “data assimilation” was coined in meteorology to label the set of time-
dependent, inverse techniques used for improving the forecast of the state of the atmosphere.
In his authoritative article, Talagrand (1997) defines the assimilation of meteorological or
oceanographical observations as the process through which all the available information is
used in order to estimate as accurately as possible the state of the atmospheric or oceanic
flow. Here we complement that definition by explicitly adding that the determination of the
associated uncertainty is also desirable.

1.2 A Historical Perspective on Atmospheric Data Assimilation and Numerical Weather
Prediction

Precisely because atmospheric data assimilation is so much ahead of geomagnetic data as-
similation, it is worth providing the reader first with a brief historical perspective on that
area of research (and the related issue of numerical weather prediction). The standards de-
fined by this more mature field will naturally lead us to further argue for the need to develop
geomagnetic data assimilation systems.

Data assimilation was initially developed as a means to initialize atmospheric models for
use in Numerical Weather Prediction (NWP). Early efforts to predict atmospheric motion
through calculation began even before the advent of digital computers. Richardson (1922)
developed the first numerical weather prediction system, using a room full of human calcu-
lators, and was ultimately unsuccessful. Observations of the atmosphere were hand interpo-
lated to a regular grid in order to initialize an early equations of motion and state system,
taking 6 weeks to carry out a 6-hour forecast. The development of early computers led to an
effort by Charney et al. (1950), which used numerical interpolation to fit observational data
to a regular grid.

The general approach of interpolating a numerical forecast to observation location, cal-
culating the difference between observation and forecast (O − F) (termed the innovation)
and interpolating back to the numerical grid, was first developed by Bergthorsson and Döös
(1955). This difference was then used to correct the forecast as an initialization of the next
segment of the model forecast. Statistical interpolation, a Bayesian approach for giving rel-
ative weights to the observations and forecast, was next introduced by Eliassen (1954) and
Gandin (1963).

From this time forward the field of numerical weather prediction progressed rapidly, and
still continues to do so: the 72-hour forecasts are now as successful (as measured by the
average error in the determination of the horizontal pressure gradient over a given area) as
the 36-hour forecasts were 10 or 20 years ago (Kalnay 2003). Kalnay (2003) attributes that
continuous improvement to the conjunction of four factors:

(F1) the increased power of supercomputers, allowing much finer numerical resolution and
fewer approximations in the operational atmospheric models;

(F2) the improved representation of small-scale physical processes (clouds, precipitation,
turbulent transfers of heat, moisture, momentum, and radiation) within the models;

(F3) the use of more accurate methods of data assimilation, which results in improved initial
conditions for the model; and

(F4) the increased availability of data, especially satellite and aircraft data over the oceans
and the Southern hemisphere.

It is striking to see how those factors can equally well be listed as necessary conditions for
progress to occur in the field of geomagnetic data analysis and its interpretation in terms of
the underlying core dynamics.
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1.3 Why Consider Geomagnetic Data Assimilation

It is quite tempting to wonder how the learning curve of atmospheric data assimilation
carries over to the subject of geomagnetic data analysis. An intermediate learning curve
would actually be that of ocean data assimilation (Ghil and Malanotte-Rizzoli 1991): the
interested reader will find in the monograph edited by Chassignet and Verron (2006) an
account of its evolution over the past fifteen years, in the wake of the launch of several
satellite missions to monitor the state of the world ocean (the Global Ocean Observation
System),3 which led to the international Global Ocean Data Assimilation Experiment pro-
gram.4 In geomagnetism, alongside the recent increase in the quantity and quality of ob-
servations (factor F4 above, which is described succinctly in Sect. 3 below, and more sub-
stantially by Hulot et al. 2007 and Gillet et al. 2010b), there has been considerable im-
provement in our ability to model numerically the non-linear dynamics of the core since the
groundbreaking work of Glatzmaier and Roberts (1995) (e.g. Christensen and Wicht 2007;
Sakuraba and Roberts 2009). This improvement essentially follows on from the increase
in computational power, and the development of codes able to capitalize on the parallel
trend in high-performance computing (factor F1 above). Three-dimensional, convection-
driven models of the geodynamo are of particular interest since they are now used to de-
rive scaling laws for its average behavior. Key non-dimensional parameters controlling that
behavior can be identified in a database of such models, and for instance used to evalu-
ate, after appropriate extrapolation, the rms strength of the magnetic field inside the core,
which is of order 2 mT according to Christensen and Aubert (2006) and Christensen et al.
(2009). Despite that indisputable progress, questions remain concerning the applicability of
such numerical tools to geomagnetic field modelling, depending on the time scale of in-
terest. Practical numerical considerations make the value of some input diffusive control
parameters too large (by several orders of magnitude) compared to what one would expect
for the Earth. Part of the dynamics is thus certainly affected (damped) in such numerical
simulations (that includes the torsional oscillations). Also, a good modelling of the secu-
lar variation on interannual time scales requires a proper separation of the time scales of
the relevant physical phenomena, in line with what occurs in the core. These phenomena
include inertial waves (which build geostrophy), various types of magnetohydrodynamic
waves, advection, and Ohmic dissipation; the corresponding time scales are roughly of order
1 day, 10 yr, 100 yr, and 10,000 yr, respectively (e.g. Gubbins and Roberts 1987; Jault 2008;
Finlay et al. 2010). Having those time scales in the right proportion is currently not easily
achievable with three-dimensional dynamo models. Their ability to cope with that mismatch
will be assessed through their success in analyzing and forecasting short-term geomagnetic
changes (in light of the available observations).

Alternatively, one can be tempted to circumvent that overdiffusive behavior by simpli-
fying the model of core dynamics, thereby reducing its dimensionality and making less
diffusive simulations, with an appropriate separation of the relevant timescales, possible (at
the expense of some physics lost along the way). An example is the quasi-geostrophic ap-
proach, which assumes that the flow is invariant along the direction of rotation of the Earth,
and effectively considers a two-dimensional flow. The validity of that approach (depending
on the time scale and the region under scrutiny) is addressed in Sect. 4.2. In what follows,
we actually make a case for geomagnetic data assimilation as a way to test to which extent

3www.ioc-goos.org.
4www.godae.org.



252 A. Fournier et al.

a given model can be successful in explaining our indirect observations of core dynamics.
Bearing in mind the recent evolution in the observation of the geomagnetic field and the
modelling of core dynamics, we now list some of the questions which we would like to try
and answer using geomagnetic data assimilation:

1. Can the physical mechanisms responsible for the geomagnetic secular variation be
identified unambiguously in its record? As an example, are surface measurements the
signature of effective material transport of Br at the CMB, or the signature of hy-
dromagnetic waves (Finlay and Jackson 2003)? Those two effects could very well
be combined, and, despite the popularity of the frozen-flux approach, an ounce (or
more) of diffusion might also be required (Gubbins 1996; Chulliat and Olsen 2010;
Chulliat et al. 2010). Assimilation of geomagnetic measurements into models of core
dynamics will first and foremost tell us something about the various models we resort
to. As outlined above, a comprehensive model of core dynamics, able to represent all the
physics occuring at all time and length scales, is not within reach. Compromises have
to be made, and geomagnetic data assimilation appears as the natural framework within
which to evaluate the robustness of those compromises, in the light of the data.

2. What is the predictive power of dynamical models of the geomagnetic field? That ques-
tion is related to the problem of forecasting, a long-standing issue of interest in numerical
weather prediction (see Sect. 1.2 above).

3. To which extent is it possible to retro-propagate the current quality of data for the purpose
of core field modelling? That question is related to the issue of hindcasting, or reanalysis.
Here a reference is the work done on the reanalysis of the state of the atmosphere over
the time period 1957–1996, that is supposed to be free of artifacts resulting from changes
in the assimilation/analysis techniques used initially in that time interval (Kalnay et al.
1996). This reanalysis has allowed one to recompute more accurately the atmospheric an-
gular momentum over that same time window, and its related contribution to the length-
of-day (LOD) time series (Gross et al. 2004).

Regarding that last point, the interest for data assimilation lies in its versatility regarding the
type of measurements it can use to obtain some insights on the state of the system under
study. Any measurement (even remotely related to the state of system) can be used. The
quality and quantity of information contained in those measurements can also vary widely
with time, which makes data assimilation particularly well-suited for geomagnetic purposes.

Finally, specific to the core problem is the attractive possibility offered by the joint use of
models and observations to probe (indirectly) the deeper dynamics of the core by analyzing
its magnetic surficial signature at the core-mantle boundary.

The remainder of this article aims at discussing the possibility of addressing the ques-
tions listed above in a foreseeable future with the help of data assimilation. It is organized as
follows: The methodological foundations of data assimilation are first presented in Sect. 2.
Section 3 summarizes next the observations at hand for geomagnetic data assimilation prac-
tice. Section 4 reviews recent studies devoted to the feasibility and application of data as-
similation techniques for the purpose of geomagnetic data analysis. Two options have been
followed so far:

– One option relies on three-dimensional numerical models of the geodynamo, and is illus-
trated in Sect. 4.1. Three-dimensional models of the geodynamo have actually also been
used to try and estimate the limit of predictability of the secular variation, an account of
which is provided in Sect. 4.3.

– Another option is based upon quasi-geostrophic models of the secular variation, and is
the subject of Sect. 4.2.
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Section 5 concludes this review by providing a tentative summary and by pointing out pos-
sible directions for future research.

2 Fundamentals of Data Assimilation

In this section we aim at describing the fundamentals of data assimilation, in its sequential
and variational formulations, without providing any proof of the underlying mathematical
results. The interested reader will find a much more rigorous and complete treatment of
the subject in the recent treatises by Bennett (2002), Kalnay (2003), Wunsch (2006), and
Evensen (2009). We will resort as much as possible to the set of notations recommended by
Ide et al. (1997); our notations are summarized in Table 1.

2.1 Basic Ingredients

The goal of geomagnetic data assimilation is to solve the time-dependent inverse problem
of estimating the state of the core x, with time appearing as an explicit variable. We have at

Table 1 Data assimilation
notations used in this paper,
which follow for the most part
the recommendations made by
Ide et al. (1997). With the
exception of the objective
function J , the quantities listed in
this table are time-dependent, and
appear in the text with an index i

referring to the discrete time ti at
which they come into play

Symbol Meaning

x the state vector of the core

Lx size of the state vector

xt the true state

M the forward model of core dynamics

η the model error

Q the model error covariance matrix

xf the forecast

εf the forecast error

Pf the forecast error covariance matrix

xa the analysis

εa the analysis error

Pa the analysis error covariance matrix

xb the background state

Pb the background error covariance matrix

H the observation operator

H ′ ≡ H the linearized observation operator

yo the observations

Lyo size of the observation vector

εo the observational error

R the observational error covariance matrix

K the Kalman gain

J the objective function

M ′ ≡ M the tangent linear model

M ′T ≡ MT the adjoint model

d the innovation

r the residual

a the adjoint field



254 A. Fournier et al.

our disposal a database of observations of the core and a numerical model of its dynamics.
Before proceeding with technicalities, we quote Wunsch (2006): “ . . . almost all methods
in actual use are, beneath the mathematical disguises, nothing but versions of least-square
fitting of models to data, but reorganized so as to increase the efficiency of solution, or to
minimize storage requirements, or to accommodate continuing data streams.”

In the remainder of this section, we shall operate in a discrete world. Assume we have a
prognostic, possibly non-linear, numerical model M which describes the dynamical evolu-
tion of the core state at any discrete time ti , i ∈ {0, . . . , n}. If Δt denotes the time-step size,
the width of the time window considered here is T = tn − t0 = nΔt , the initial (final) time
being t0 (tn). In formal assimilation parlance, this is written as

xi+1 = Mi,i+1 [xi] , (2)

in which xi is a column vector (of size Lxi
, say), describing the state of the core at discrete

time ti . If M relies for instance on a grid-based discretization of the equations governing
the geomagnetic secular variation, then the state vector x contains the values of all the cor-
responding field variables at every grid point. The secular variation equations could involve
terms with a known, explicit time dependence, hence the dependence of M on time in (2).
In the remainder of this paper, we shall omit the model operator time indices for the sake of
clarity, unless necessary. Within this framework, the modeled secular variation is controlled
by the initial state of the core, x0, and possibly some other, static, input parameters. The
model operator is imperfect: Even if we knew the true state of the core xt

i at discrete time ti ,
the action of the model would introduce a simulation error ηi+1 at time ti+1, defined as

ηi+1 = M
[
xt

i

] − xt
i+1. (3)

In the following, the statistical distribution of that error is assumed to be Gaussian and
centered, and we denote the simulation error covariance matrix with Qi .

Assume now that we have partial and imperfect knowledge of the true dynamical state of
the core xt through databases of observations yo collected at discrete locations in space and
time. This formally writes

yo
i = Hi[xt

i] + εo
i , (4)

in which yo
i is a column vector of size Lyo

i
, and Hi and εo

i are the (possibly time-dependent)
discrete observation operator and error, respectively. Modern geomagnetic observations con-
sist of (scalar or vector) measurements of the magnetic field, possibly supplemented by an-
nual to decadal time series of the length-of-day, since these are related to the angular momen-
tum of the core (see Sect. 3). The observation operator is assumed time-dependent: In the
context of geomagnetic data assimilation, we can safely anticipate that its dimension will in-
crease dramatically when entering the recent satellite era (1999–present). However, Hi will
inevitably connect x with a space of lower dimensionality than the state space (Lyo

i
< Lxi

,
see Table 2). The observational error εo

i is time-dependent as well. We will assume in the
following that it has zero mean and we will denote its covariance matrix at discrete time ti
by Ri . For simplicity and unless otherwise stated, we will also assume that the observation
operator is linear, namely that H = H ′ ≡ H according to the notations of Table 1.

As illustrated in Fig. 1, we may have a first guess of the model trajectory over the time
interval of interest, and some observations (along with their error statistics) available along
the way. Our task is to make the best (optimal) use of those available measurements in
order to correct the initial trajectory. This can be achieved following either of two strategies,
referred to as sequential or variational data assimilation, which we will now introduce.
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Fig. 1 Assimilation starts with
an unconstrained model
trajectory over the time window
of interest. It aims at correcting
this initial model trajectory in
order to provide an optimal fit to
the available observations (the
stars), given their error bars. In
this figure (and also in Figs. 3
and 4), it is assumed for
pedagogical simplicity that the
state vector and the observation
vector belong to the same
one-dimensional space

2.2 Methodology: Two Classes of Implementation

2.2.1 Sequential Assimilation

Sequential assimilation is rooted in estimation theory and its two-stage principle is the fol-
lowing: Starting from a previously analyzed core state, we first forecast the evolution of that
state, and then correct it (i.e. perform an analysis) as soon as an observation is available. For
the sake of simplicity, we shall defer the discussion of the non-linear case and consider for
now that M is linear.

1. The forecast: In mathematical terms, the forecast at time ti+1, xf

i+1, is obtained by time-
stepping the model, starting from the a priori, analyzed state xa

i
5 at time ti :

xf

i+1 = Mxa
i . (5)

The forecast error writes accordingly

ε
f

i+1 = xf

i+1 − xt
i+1 = M

(
xa

i − xt
i

) + ηi+1, (6)

which shows that it has two components (see Fig. 2):

– The propagated error in the a priori, analyzed estimate of the core state, Mεa
i =

M(xa
i − xt

i ). Even if estimated using previous observations, the estimate xa
i is not the

true state of the core. The statistics of that component of the error field are described
by the time-dependent, a priori error covariance matrix Pa

i . We will assume again that
the error has zero mean and that it is distributed as a Gaussian, multivariate random
variable.

– The model error ηi+1 = Mxt
i − xi+1, which was already introduced in the previous

paragraph, with covariance matrix Qi+1.

The statistical properties of the forecast error are described by a covariance matrix given
by

Pf

i+1 = E
(
ε

f

i+1ε
f T

i+1

)
= MPa

i M
T + Qi+1, (7)

5xa
i

is either the product of a previous assimilation cycle, or based on the initial guess trajectory in the case
of the first encounter with an observation.



256 A. Fournier et al.

Fig. 2 The forecast error ε
f
i+1

has two sources: One is related to
the propagation of the a priori
error by the model (dashed
arrow), and the other is related to
the model itself: ηi+1 quantifies
the physics which the model does
not account for properly. After
Brasseur (2006)

in which E(·) denotes statistical expectation and T means transpose. The error on the ini-
tial state is transformed during the forecast state by the model dynamics, and augmented
by the model imperfections, both being assumed statistically independent.

2. The analysis: The goal of the analysis is to determine the optimal estimate xa
i+1 of xt

i+1,
given the observations yo

i+1. The corresponding conditional probability p is given by
Bayes’ formula

p
(
xt

i+1|yo
i+1

) = p(yo
i+1|xt

i+1)p(xt
i+1)

p(yo
i+1)

. (8)

The numerator being a simple scaling factor, it can be ignored when trying to maximize
that probability density function (pdf). Our hypotheses of Gaussianity imply

p
(
xt

i+1|yo
i+1

) ∝ exp

[
−1

2

(
εoT

i+1R−1
i+1ε

o
i+1 + ε

f T

i+1Pf −1

i+1 ε
f

i+1

)]
, (9)

and finding the optimal estimation (which maximizes this expression) is equivalent to
finding the minimum of the argument of the exponential. Given the expressions of the
various error fields, the corresponding functional J writes

J (x) = (
yo

i+1 − Hi+1x
)T

R−1
i+1

(
yo

i+1 − Hi+1x
) +

(
xf

i+1 − x
)T

Pf −1

i+1

(
xf

i+1 − x
)

. (10)

After some algebra, one finds that the optimal estimation for the state vector, xa
i+1, is

given by

xa
i+1 = xf

i+1 + Ki+1

(
yo

i+1 − Hi+1xf

i+1

)
, (11)

in which

Ki+1 = Pf

i+1H
T
i+1

(
Hi+1Pf

i+1H
T
i+1 + Ri+1

)−1
(12)

is the so-called Kalman gain matrix. Two limits are of pedagogical interest: First, in the
case of perfect observations (Ri+1 ∼ 0) of the entire state (Hi+1 ∼ I), the Kalman gain
is the identity I. Second, in the case of an extremely accurate forecast (Pf ∼ 0), the
correction to the forecast becomes negligible.

The analysis is in turn characterized by an error described by the covariance matrix

Pa
i+1 = [

I − Ki+1Hi+1
]

Pf

i+1. (13)

That last equation shows how the uncertainty in the forecast decreases in proportion to
the amount of information added to the system.



An Introduction to Data Assimilation and Predictability in Geomagnetism 257

Fig. 3 The sequential approach to data assimilation. Starting from the initial time, the model trajectory fol-
lows the initial forecast, and is characterized by a growth of the forecast error. As soon as the first observation
is available, the analysis is performed (green bullet), and the associated error decreases (green error bar). The
same cycle is repeated anytime an observation is available, with the assimilated trajectory deviating from the
initial guess (the dashed line)

The innovation d then represents the difference between the observations and the forecast

di+1 = yo
i+1 − Hi+1xf

i+1, (14)

while the residual r refers to the difference between the same observations and the analysis

ri+1 = yo
i+1 − Hi+1xa

i+1. (15)

These two fields are useful for assessing the a posteriori consistency of a data assimilation
scheme (see Sect. 2.2.4).

To summarize, sequential assimilation consists first of a forecast stage, where both the
forecast and (in principle) its error statistics are computed thanks to the model (see (5)
and (7)). During the second stage, the available observations are used to correct the forecast
and its error statistics, according to (11) and (13), respectively. That process is repeated
sequentially, as illustrated schematically in Fig. 3.

Finally, recall that to get (7), we assumed that the model M was linear. If the assumed
dynamics is non-linear, one has to replace M in that equation by the tangent linear model M,
obtained by linearizing the model about the current model trajectory. Equations (5), (11), and
(13) still hold in the so-called extended Kalman filter (EKF) framework.

2.2.2 Variational Assimilation

Unlike sequential assimilation (which emanates from estimation theory), variational assim-
ilation is rooted in optimal control theory. The analyzed state is not defined as the one max-
imizing a certain pdf, but as the one minimizing a functional J of the form

J (x) = 1

2

{
n∑

i=0

[
Hixi − yo

i

]T
R−1

i

[
Hixi − yo

i

] + [
x − xb

]T
Pb−1 [

x − xb
]
}

, (16)

in which xi = Mi,i−1 · · ·M1,0x, the sought x being the best estimate of the initial state of
the core x0. This objective function is defined over the entire time window of interest. It is
the sum of two terms. The first one measures the distance between the observations and the
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Fig. 4 The variational approach to data assimilation. After adjustment of the initial condition x0 (the green
bullet on the t = t0 axis) by means of an iterative minimization algorithm, the model trajectory is corrected
over the entire time window, in order to provide an optimal fit to the data (in a generalized least squares
sense). The dashed line corresponds to the initial (unconstrained) guess of the model trajectory introduced in
Fig. 1

predictions of the model. It is weighted by the confidence we have in the observations. The
second term is analogous to the various norms which are added when solving the kinematic
core flow problem; it evaluates the distance between the initial condition and an a priori
background state xb . That stabilizing term is weighted by the confidence we have in the
definition of the background state, described by the background error covariance matrix Pb .6

Defining a background state for the core is no trivial matter. But one may substitute (or
supplement) the corresponding term in (16) by (with) another stabilizing term, typically a
norm, as was done by Talagrand and Courtier (1987) and Courtier and Talagrand (1987) in
their early numerical experiments with the vorticity equation on the sphere.

The goal of variational data assimilation is to minimize J by adjusting its control vari-
ables (or parameters), usually the initial condition x0 (if everything else is held fixed, see
Fig. 4), as implied by our formulation in (16). Iterative minimization requires the computa-
tion of the sensitivity (gradient) of J with respect to its control vector, which writes (∇x0J )T

(the transpose is needed since ∇x0J is by definition a row vector). The value of Lx precludes
a brute force calculation of the gradient (which would imply Lx realizations of the forward
model over [t0, tn]). Fortunately, as pointed out early on by Le Dimet and Talagrand (1986)
and Talagrand and Courtier (1987), a much more affordable method exists: The so-called ad-
joint method, which is based on the integration of the so-called adjoint equation backward
in time

ai−1 = MT
i−1,iai + HT

i−1R−1
i−1(Hi−1xi−1 − yo

i−1) + δi1Pb−1 (
xi−1 − xb

)
, n ≥ i ≥ 1, (17)

starting from an+1 = 0, where a is the adjoint field, and δ is the Kronecker symbol. The
initial value of the adjoint field provides the sensitivity we seek: (∇x0J )T = a0 (e.g. Fournier
et al. 2007). Note that when writing (17), we assumed for simplicity that observations were
available at every model time-step.

Equation (17) indicates that over the course of the backward integration, the adjoint
field is fed with innovation vectors. Those vectors have an observational component

6Ide et al. (1997), and many others, use B to denote that matrix, a notation which is preempted in our case by
the magnetic induction.
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(Hi−1xi−1 − yo
i−1), and a departure-to-background component (x0 − xb), these two con-

tributions being weighted by the statistics introduced above. The adjoint model MT in (17)
is the adjoint of the tangent linear model M introduced previously in the context of the
extended Kalman filter. The adjoint model has a computational cost similar to that of the
forward model, and makes it possible to use an iterative minimization algorithm suitable for
large-scale problems.

A few comments on the adjoint method are in order:

– It demands the implementation of the adjoint model MT : the rules to follow for deriv-
ing (and validating) the tangent linear and adjoint codes from an existing forward code
are well documented in the literature (e.g. Talagrand 1991; Giering and Kaminski 1998),
and leave no room for improvisation. Still, this process is rather convoluted. It requires
expertise and deep knowledge of the forward code to begin with. The best situation oc-
curs when the forward code is written in a modular fashion, bearing in mind that its
adjoint will be needed in the future, and by casting as many operations as possible in
terms of matrix-matrix or matrix-vector products (for a one-dimensional illustration with
a spectral-element, non-linear magnetohydrodynamic model, see Fournier et al. 2007).
The task of coding an adjoint by hand can still become beyond human reach in the case of
a very large model. One might then be tempted to resort to an automated differentiation
algorithm. Automated differentiation (AD) is a very active field of research:7 several oper-
ational tools are now available, some of which have been tested on geophysical problems
by Sambridge et al. (2007).

– The discrete adjoint equation (17) is based on the already discretized model of core dy-
namics. An alternative exists, which consists first in deriving the adjoint equation at the
continuous level, and second in discretizing it, using the same machinery as the one used
to discretize the forward model. In most instances, both approaches to the adjoint problem
yield the same discrete operators. When in doubt, though, in the case of a minimization
problem, one should take the safe road and derive the adjoint of the already discretized
problem: This guarantees that the gradient injected in the minimization algorithm is ex-
actly the one corresponding to the discrete cost function (16), up to numerical roundoff
error. Since the efficiency of a minimization algorithm grows in proportion to its sensitiv-
ity to errors in the gradient, any error in the gradient could otherwise result in a suboptimal
solution.

– The adjoint approach is versatile. Aside from the initial state x0, one can declare static
model parameters (static fields, material properties) adjustable, and consequently part of
the control vector. For example, Sect. 4.2 presents the results of twin (synthetic) exper-
iments conducted with a torsional oscillation model, for which the control vector com-
prises the initial angular velocity and the static profile of the cylindrical radial component
of the magnetic induction averaged over geostrophic cylinders.

– In the case of a non-linear problem, the forward trajectory xi , i ∈ {0, . . . , n}, is needed
to integrate the adjoint equation. The storage of the complete trajectory may cause mem-
ory issues (even on parallel computers), which are traditionally resolved using a so-called
checkpointing strategy. The state of the system is stored at a limited number of discrete
times, termed checkpoints. Over the course of the backward integration of the adjoint
model, these checkpoints are then used to recompute local portions of the forward trajec-
tory on-the-fly, whenever those portions are needed (e.g. Hersbach 1998).

7www.autodiff.org.
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– On a more general note, adjoint methods have gained some popularity in solid Earth
geophysics over the past few years, a joint consequence (again) of the increase in compu-
tational power and the availability of high-quality satellite, or ground-based, data. Adjoint
methods are now applied to problems related to the structure and evolution of the deep
Earth: Electromagnetic induction (Kelbert et al. 2008; Kushinov et al. 2010), mantle con-
vection (Bunge et al. 2003; Liu and Gurnis 2008; Liu et al. 2008), and seismic wave
propagation (Tromp et al. 2005, 2008; Fichtner et al. 2006), building in that last case on
the theoretical work of Tarantola (1984, 1988).

The application of a variational approach to time-dependent problems has been generically
labeled as the 4D-Var approach to data assimilation (e.g. Courtier 1997), and is commonly
referred to as 4D-Var. As such, the standard 4D-Var suffers from two drawbacks: It as-
sumes that the model is perfect (η = 0), and it does not provide direct access to the sta-
tistics of the analysis error—notice its absence in Fig. 4. An alternative approach to the
“strong constraint” assumption (η = 0) consists in adding a term quantifying the model
error in the definition of the cost function, a term whose weight is controlled by an a
priori forecast error covariance. This more general “weak constraint” approach (Sasaki
1970) has been successfully introduced and implemented (under the name “method of
representers”) in physical oceanography during the past fifteen years (Egbert et al. 1994;
Bennett 2002, and references therein). It allows in particular the derivation of posterior error
covariances (see also Uboldi and Kamachi 2000). An interesting discussion on various ap-
proaches to “weak constraint” 4D-Var in an operational context is also provided by Trémolet
(2006).

From a general perspective, the advantages of a variational approach are its flexibility
regarding the definition and identification of control variables, and its natural ability to han-
dle time-dependent observation operators (and possibly time-correlated errors). It is also
well-suited for the reanalysis of past data records (hindcasting), since the state at a given
time is estimated using the past and future observations available over the entire time win-
dow (see Fig. 4). Note, however, that hindcasting is also possible if one resorts to sequential
smoothers, of the kind described by e.g. Cohn et al. (1994), and applied in an oceanic context
by e.g. Cosme et al. (2010).

2.2.3 Practical Considerations: Non-linearities, Size, Cost

Sequential and variational assimilations share the same goal. As suggested by the defini-
tions of the cost functions in (10) and (16), they are equivalent in the linear Gaussian case
(Lorenc 1986). In a weakly non-linear situation (and still assuming Gaussian statistics), the
equivalence holds at first order between the EKF and 4D-Var, since both resort to the same
tangent linear model M (Courtier 1997). In a strongly non-linear case, issues arise in both
approaches.

From the variational point of view, the cost function can loose its convexity, and several
local minima exist. This situation is illustrated in a 1-parameter synthetic situation in Fig. 5.
In that example, a reference secular variation is generated using the frozen-flux equation (1).
It is initialized by a given map of Br at the top of the core, and is due to an equatorially
symmetric quasi-geostrophic uh. The secular variation is generated over a time window of
variable width T , expressed in units of the advective time Tadv, defined as the ratio of the
outer core radius c to the rms flow speed U (see Table 3). The control vector is reduced
to a single scalar, which prescribes the position of a mid-latitude cyclonic vortex (located
along the Greenwich meridian in the reference, i.e. ‘true’, case, see Fig. 5). We generate a
collection of guesses of the secular variation by picking the same initial Br and letting the
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Fig. 5 In the synthetic context of a secular variation generated by a steady quasi-geostrophic core flow uh,
the three curves on the top represent the misfit between a reference frozen-flux secular variation, due to a true
flow ut

h
, and a frozen-flux secular variation due to a guess flow u

g
h

(both secular variations are initialized with

the same Br at the top of the core); the only difference between ut
h

and u
g
h

is the longitude of the eye of a
mid-latitude Gaussian vortex of half-width c/10, where c is the radius of the outer core. The streamfunction
associated with ut

h
is represented in the middle of the bottom row (in the equatorial plane, looking from

the North pole). It is based on a solution obtained by Gillet et al. (2009), with a peak-to-peak amplitude on
the order of roughly 15,000 y−1, which yields an rms velocity of order 15 km/y. Red and blue correspond
to cyclonic and anti-cyclonic motions, respectively. The streamfunctions shown to the left and right of the
true streamfunction are guesses for which the vortex offset is −15 degrees and +15 degrees, respectively
(+ means Eastward). In the top, the misfit is plotted as a function of the offset longitude in degrees, for three
different time window widths T : 0.1, 0.25, and 0.5 advective time Tadv (the green, magenta, and blue curves,
respectively). The three curves have been normalized to ease cross-comparison. The global minimum (when
the guessed flow is the true flow, i.e. the offset is zero) is set in a valley which gets narrower as T is increased,
indicating that in an inversion setting, an inaccurate initial guess for the vortex location could result in a
solution corresponding to an undesired local minimum

position of this vortex vary (as illustrated on the maps in the bottom of Fig. 5), and estimate
the misfit between the reference secular variation and every single guess. Fig. 5 (top) shows
the misfit as a function of the vortex offset for three different time window widths T : 0.1,
0.25, and 0.5 advective time Tadv (the green, magenta, and blue curves, respectively). The
three curves have been normalized to ease cross-comparison. The global minimum (when
the guessed flow is the true flow, i.e. the offset is zero) is set in a valley which gets narrower
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as T is increased. In addition, the number of local minima (the wiggly character of the misfit)
increases substantially with T . This example indicates that in the context of a gradient-based
search, an inaccurate initial guess can result in a solution corresponding to a local minimum
if the inversion is carried out over a time window of width T representing a substantial
portion of the time scale of the dynamics at work (the advective time in our example).

From the sequential point of view, propagating the error statistics via (7) using M can lead
to poor error covariance evolution and even unstable error covariance growth (Miller et al.
1994). This growth is intrinsically related to the chaotic underlying dynamics. In that case,
no assimilation should be undertaken over time windows of width larger than the intrinsic
predictability time limit for the system, whose value is governed by the combined effects
of, first, the amplitude of the error with which the state is estimated from the observations,
and, second, the intrinsic error growth rate λe = τ−1

e resulting from the chaotic dynamics
(Sect. 4.3 discusses further the value of the e-folding time τe for the geodynamo).

A remedy to an unstable covariance error growth exists, which relies on a probabilistic
description of the non-linear evolution of the model state, and the associated time-dependent
pdf based upon a well-chosen ensemble of non-linear forward realizations (Evensen 1994):
The so-called ensemble Kalman filter (EnKF) is described in great detail by Evensen (2009),
and a first example of a simple application in geomagnetism is that of Beggan and Whaler
(2009). Since the time-dependent forecast error covariance matrix is directly derived from
the ensemble of forecasts, the EnKF has the extra advantage of making (7) and (13) obsolete:
The awfully expensive propagation of error statistics8 is no longer needed. Actually, the
horrendous cost of error statistics propagation often leads data assimilation practitioners
to employ a static (frozen) background error covariance matrix, by setting Pf

i = Pb for all
discrete times: That popular approach is referred to as optimal interpolation (OI), although
the convenient approximation upon which it rests makes it suboptimal (e.g. Brasseur 2006).
It is, however, a good approximation to begin with, before embarking on more sophisticated
strategies such as the EnKF. Section 4.1 presents results obtained in an OI framework by
assimilating geomagnetic field models with a three-dimensional model of the geodynamo.

In terms of computer resources, assimilation is very demanding, especially when dealing
with non-linear dynamics. For OI and EnKF, the derivation of good error statistics requires
an ensemble size of order O(10–100). Conversely, for 4D-Var, the iterative non-linear min-
imization might also be achieved in several tens of iterations, bearing in mind that a given
iteration relies on a forward and an adjoint calculation. Good preconditioning is therefore
almost mandatory. For geomagnetic data analysis, a solution to circumvent the cost problem
consists in simplified dynamical models, of reduced dimensionality, and tailored to the study
of the secular variation, an example of which is provided in Sect. 4.2.

The computational cost is roughly the same for sequential and variational assimilations.9

The former is easier to implement than the latter, at the expense of the loss of some flexi-
bility. For an interesting and animated discussion on the relative merits of 4D-Var and the
EnKF under their most recent and sophisticated implementations, the reader is referred to
Kalnay et al. (2007a, 2007b) and Gustafsson (2007). As far as geomagnetic data assimilation
is concerned, and because it is still in its infancy, let us bear in mind for the time being that
key to the success of both approaches is a good, trustworthy description of error statistics.

8A quick inspection of equations (5) and (7) shows indeed that the propagation of error statistics is Lx times
more expensive than a model step, a factor which is prohibitive for almost any practical application, starting
from Lx � 1,000, say.
9In an operational setting, and at the same computational cost, Buehner (2008) reports that weather forecasts
based either on 4D-Var or the EnKF perform equally well.
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2.2.4 A Posteriori Validation, Statistical Consistency and Possible Model Bias

Once a data assimilation scheme has been implemented, it is possible to perform a posteriori
quality and consistency checks to evaluate its performance, and assess the robustness of
the hypotheses upon which it relies. These checks are reviewed by Brasseur (2006) in the
monograph edited by Chassignet and Verron (2006) and by Talagrand (2003), to which the
reader should refer for further detail and references. One intuitive way to assess the efficacy
of a given scheme is to compare its predictions with independent measurements of the state
of the system. In the oceanographic context, these can consist of measurements of the state
of the ocean obtained via a network of buoys. The Earth’s core does not lend itself easily to
that type of practice, given the sparse database of observations at hand (see Sect. 3 below).
Nevertheless, independent and reliable observatory timeseries and the interannual to decadal
variation of the length of day (which is related to the angular momentum carried by the core
flow, Jault et al. 1988; Jackson et al. 1993) appear as natural candidates for this exercise.

It is also possible to perform internal consistency checks. For instance, in a sequential
framework, the first-order moment of the innovation vector (defined in (14)) should vanish
over a sufficiently long assimilation sequence

E (di ) = E
(

yo
i − Hix

f

i

)
= E

[
Hixt

i + εo
i − Hi

(
xt

i + ε
f

i

)]
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(
εo

i

) − E
(
Hiε

f

i

)
= 0,

(18)
in which we have used the definitions of the error fields introduced above, and assumed
(as usual) that both were centered. Note that in practice the expectation is computed by
taking the time average, i.e. the algebraic mean over all the discrete times ti at which an
assimilation cycle is performed (see the interesting discussion about this practical necessity
in Dee and Da Silva 1998). The same property should hold in the variational case, provided
the innovation is defined as the difference between the observations and the predictions
based upon the estimate of background state xb (Talagrand 2003).

A non-zero mean innovation points at a bias, in the observation error or/and in the model
error. In case the bias comes from the model, E (di ) provides only the projection of this
bias onto the data space, which for the geomagnetic field is restricted to the largest scales
of the field at the core-mantle boundary (see Sect. 3 below). Therefore, in the context of
geomagnetism, it appears crucial to choose a model that possesses at least some degree of
similarity with what we see of the true geomagnetic field. This is necessary if we do not
want to deal with a forecast bias, by resorting to a dynamical forecast bias removal strategy
such as the one favoured by Dee and Da Silva (1998).

If the model is a three-dimensional model of the geodynamo, we note that in a recent
study, Christensen et al. (2010) define a series of quantitative static criteria to help define
what would be a good candidate model to represent the geomagnetic field. They consider
the ratio of the power in the axial dipole component to that in the rest of the field, the ratios
between equatorially symmetric and antisymmetric and between zonal and non-zonal non-
dipole components, and a measure for the degree of spatial concentration of magnetic flux at
the core surface. Again, these criteria are purely morphological and static; other dynamical
properties could be sought, such as the existence of a significant secular variation occuring
in the equatorial region, and a tendency for a westward drift of magnetic structures (at least
in the Atlantic hemisphere).

The first-order moment of the residual vector (defined in (15)) should also vanish. Should
it not, it would hint at the sub-optimality of the system (Talagrand 2003). Many more criteria
exist, which involve for instance the second-order moments of the innovation and residual
vectors. Here we simply refer the reader to the references listed above for an extensive
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coverage of these quality checks (see also Bennett 2002, Sect. 2.3.3). As far as we know,
such criteria have not yet been applied to geomagnetic data assimilation schemes, but they
should certainly come to the fore when the field becomes more mature, given the insight
they can provide (in particular regarding the model bias).

3 Geomagnetic Observations and Their Connection with the State of the Core

Having introduced the basics of data assimilation, let us now try to provide the reader with
an overview of the geomagnetic observations yo which are in principle amenable to geo-
magnetic data assimilation practice. We do not aim at discussing here the observation errors
(the content of the matrix R), an account of which can be found in the reviews by Hulot et al.
(2007), Jackson and Finlay (2007), and Hulot et al. (2010b) for the archeomagnetic data-
base. Rather, we focus on the issue of relating those observations to the state of the core. The
keypoint for us is that those measurements are in all cases related to the knowledge of the
radial component of the magnetic induction at the top of the core, Br . We will accordingly
discuss the nature of the observation operator H associated with a given measurement.

Modern geomagnetic data consist of appropriately processed time series of the three
components of B , usually recorded in observatories or by dedicated satellites (see Fig. 6).
Those “level-1B”-type data, in space agency parlance, are the observations one would ulti-
mately like to assimilate. At a given location ro, however, the measured field results from
the contribution of several internal and external sources (core, crust, ionosphere, magne-
tosphere, the world ocean), and further time and space filtering is therefore required to
isolate the (dominant) signal originating from the core. Various techniques can be used,
depending on the type, quantity and quality of data considered. In particular, whereas con-
tributions from non-core sources can only be dealt with as a source of noise when consider-
ing early historical data (see e.g. Jackson and Finlay 2007), more advanced techniques have
been designed for observatory time series and even more so for satellite data (see e.g. Hulot
et al. 2007). In that case, the core field contribution of interest is often directly provided in
the form of a so-called geomagnetic field model, which consists in a time-varying spherical
harmonic description of the core field. Such models are usually referred to as “level-2” data
(products) in space agency parlance.

Practically speaking, and assuming an electrically insulating mantle (a reasonable first-
order approximation, see e.g. Alexandrescu et al. 1999), the connection between the state
of the core x (which comprises in some form Br at the core surface S) and an estimate Bα

(α = 1,2,3) of the core field at ro is achieved by means of a data kernel Kα

Bα(r
o) =

∫

S
Kα(r

o, r)Br(r) d2r, (19)

where r denotes a point at the core surface S (see e.g. Gubbins and Roberts 1983;
Bloxham et al. 1989; Jackson 1989, for explicit expressions of these kernels). The exact
discrete form of the observation operator H (which is linear in this case) depends ultimately
on the quadrature rule used to evaluate the above integral.

Some data (in particular early historical and observatory data) are however sometimes
only available in the form of individual inclination and declination measurements. Those
are non-linearly related to the components Bα . Directly assimilating such data implies deal-
ing with a non-linear observation operator H . The machinery presented in Sect. 2 remains
nevertheless applicable, provided a linearization of H about the current state of the core (or
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Fig. 6 The magnetic observation of the Earth is made possible by an unevenly distributed network of
long-lived magnetic observatories located at its surface. The corresponding database has been supplemented
over the past few decades by satellite measurements, most notably during the past ten years for which a con-
tinuous satellite database is available. The global coverage provided by the satellites ideally complement the
longer observatory time series. In this figure, the innermost sphere is the inner core, which is surrounded by
the outer core. The green plane is the equatorial plane. The color scale at the core-mantle boundary represents
the radial component of the magnetic induction Br at epoch 2004, according to the CHAOS model of Olsen
et al. (2006), with a typical amplitude of ±1 mT. Going from the surface of the core to the surface of the
Earth through the mantle (two thirds of which are represented here), the field decreases. The smaller scales
decrease most rapidly, which yields an almost dipolar structure at the surface of the Earth, with the field
lines pointing outward in the Southern hemisphere (positive, red Br ) and inward in the Northern hemisphere
(negative, blue Br ). The field amplitude at a given location radius r has been scaled by a factor (r/c)3 for the
sake of visibility, c being the radius of the outer core

the background guess, in a weakly non-linear case) is performed, and an iterative solution
sought.

On another note, it is also in principle possible to account for the finite electrical con-
ductivity of the mantle σm, which introduces a delay between an event occuring at the core
surface and its signature at the surface of the Earth. Mantle filter theory (e.g. Backus 1983)
requires to replace the kernels in (19) by more general impulse response functions Fα (whose
exact form depends on the distribution of σm in the mantle), and to convolve these with the
history of the evolution of Br on S

Bα(r
o, t) =

∫ t

0

∫

S
Fα(r

o, r, t − τ)Br(r, τ ) d2r dτ. (20)

Implementing such a formalism would be most useful for the investigation of short time
scale core dynamics (sub-annual to interannual, say), for which delay and attenuation could
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have some importance when trying to interpret the data (e.g. Pinheiro and Jackson 2008).
But this calls for substantial novel methodological developments.

Another issue of more immediate concern is the concealing of the smallest spatial scales
of the core field by the crustal field. It is related to the formal impossibility of distinguish-
ing the contribution of magnetized sources located within the crust from that of the core.
It is well-known that at any given time the core field dominates the largest spatial scales
(roughly up to spherical harmonic degree 14, which corresponds to 800 km at the core
surface S), whereas the crustal field dominates the smallest spatial scales (e.g. Hulot et al.
2007). This concealing not only affects the field itself but also its time derivative (the secular
variation), the smallest scales of which are again expected to be dominated by the crustal
secular variation (Hulot et al. 2009). In that case, however, the transition is expected to
occur further down the spectrum (near spherical harmonic degree 18, corresponding to a
length scale of 600 km on S); this leaves some room for improvement compared to the
current situation where the core field secular variation is perhaps recovered up to degree 16
(e.g. Olsen and Mandea 2008). Such an improvement can be expected from the upcoming
ESA SWARM mission (Friis-Christensen et al. 2006).10 The myopia of the geomagnetic
observer interested in the core field is a disease which has long been diagnosed. It can be
mitigated by resorting to averaging kernels (e.g. Whaler and Gubbins 1981; Jackson 1989;
Backus et al. 1996, §4.4.4), and replacing effectively Br in (19) by an appropriately aver-
aged B̂r (see also Canet et al. 2009).

Geomagnetic data assimilation is still in its early days and, to our knowledge, a study as-
similating “true” geomagnetic observations yo remains to be seen. Instead, researchers have
so far cautiously dealt with synthetic data (for algorithmic verification), and with published
core geomagnetic field models. These models provide parameterized time-dependent maps
of Br at the core surface (through a set of time-dependent Gauss coefficients), and over dif-
ferent time scales, ranging from a decade to several centuries (e.g. Lesur et al. 2008; Olsen
et al. 2006; Sabaka et al. 2004; Jackson et al. 2000). Models covering up to several millennia
have also been built thanks to the availability of archeomagnetic data (see e.g. Hongre et al.
1998; Korte and Constable 2005; Korte et al. 2009). The accuracy of those models degrades
going back in time, as a result of the temporal and spatial sparsity, and greater uncertainty,
of the data they rely on. In addition, prior to 1850, historical models are mostly based on
directional measurements (Jackson et al. 2000), which makes it possible to recover the field
morphology (Hulot et al. 1997), but precludes the determination of the global strength of
the field. Still, there is an encouraging ongoing effort to improve on that situation thanks to
the construction of archeomagnetic intensity databases (e.g. Genevey et al. 2008). In partic-
ular, careful intensity measurements covering the period 1590–1850 could prove useful in
complementing the data already extracted from logbooks (Gubbins et al. 2006; Finlay 2008;
Genevey et al. 2009).

In Table 2, we have tried to synthesize the information content already available for geo-
magnetic data assimilation. We computed the average size Lyo of the data vector that could
be fed in an assimilation scheme over different time periods, assuming a model of core dy-
namics operating with a time-step of 1 week, and relying on the number of data used to con-
struct the field models referenced in the rightmost column. As graphically shown in Fig. 7,
the last decade of satellite measurements allows for a dramatic tenfold increase in the size
of yo. In a variational framework aiming at adjusting the initial condition (see Sect. 2.2.2),
the size of the control vector (the initial state x0) for a typical, three-dimensional dynamo

10www.esa.int/esaLP/ESA3QZJE43D_LPswarm_0.html.
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Table 2 An attempt to summarize the observational content available to geomagnetic data assimilation prac-
titioners. We took the number of data (and corresponding timespan) used in the studies listed in the rightmost
column to estimate the average quantity Lyo of observations that could be fed in an assimilation scheme at
every single time-step, assuming a numerical model of core dynamics operating with a time-step Δt = 1 week

Period Average Lyo Type of data Reference

2000–now 10,000 observatory & satellite Lesur et al. (2008)

1960–2002 1,000 observatory & satellite Sabaka et al. (2004)

1900–1960 50 observatory & satellite & survey Jackson et al. (2000)

1600–1900 10 navigation & observatory Jackson et al. (2000)

0–1600 0.1 archeomagnetic Korte and Constable (2005)

Fig. 7 Amount of geomagnetic measurements available over the last millennium, from archeomagnetic
sources (orange bars), historical sources (black bars), and from the recent satellite era (blue bars). The data
have been binned in bins of 1 year, and the scale on the y axis is logarithmic. The archeomagnetic curve has
been constructed using the Geomagia database, available online at geomagia.ucsd.edu (Korhonen et al. 2008;
Donadini et al. 2009). The historical curve is that of the gufm model of Jackson et al. (2000), and the recent
satellite curve is based on the xCHAOS model of Olsen and Mandea (2008)

model is of order 1 million:11 Table 2 encouragingly indicates that two years of satellite data
suffice to get a number of observations similar to the size of the control vector. A note of
caution is in order, though: At any given time ti , the number of observations will certainly
not exceed the size of the state vector. It is the accumulation of observations over time which
is such that their total number will eventually exceed the size of the state vector (and make
the minimization problem of variational assimilation “appear” well determined). As seen
above, the effective part of the control vector directly sampled by observation involves at

11Follow the pseudo-spectral approach of Glatzmaier (1984) and perform the poloidal-toroidal decomposi-
tion of flow and magnetic field. The state vector x then comprises the four corresponding scalar fields, aug-
mented with temperature (or co-density). Operating with 80 Chebyshev polynomials in radius and a spherical
harmonic expansion truncated at degree and order 50 to discretize the components of x yields Lx ≈ 106.
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most the first 15 spherical harmonic degrees of the poloidal field at the core-mantle bound-
ary. From the spectral point of view (assuming a horizontal truncation at spherical harmonic
degree 50, and 80 points in radius), that amounts to a modest 0.2 per mil of the state vector.
However, that static estimate effectively increases by virtue of the dynamics (although that
effect is hard to quantify), in the first place through the diffusive and convective transport
of information which results from running the forward (or adjoint) model. The correction
applied at the top of the dynamo region is communicated to the bulk of the core (through
the action of either the Kalman gain or the adjoint model in a 4D-Var framework). This
propagation can be made even more effective if multivariate statistics (relating observed and
non-observed components of the state vector) are used to construct the background error
covariance matrix Pb (which appears in both the sequential and variational formulations of
data assimilation).

Not surprisingly, it is over the historical period, and in particular the twentieth and early
twenty-first centuries, that the first data assimilation studies have been attempted. The high
quality and quantity of magnetic measurements available over that period imply in turn
some confidence in the field models, which can be used as reasonable proxy “observations”.
From the underlying core dynamics point of view, a century is also long enough to try and
understand the fast variability of the geomagnetic secular variation. Dealing with time series
of the Gauss coefficients also has a practical advantage: If the model of core dynamics M

is discretized by means of spherical harmonics in the horizontal direction, then H very
conveniently reduces to a diagonal operator (see e.g. Kuang et al. 2009).

We conclude this section by adding that an extra (geodetic) observation can be included in
a geomagnetic data assimilation scheme. The time series of the fluctuation in the length-of-
day (ΔLOD) has an annual to decadal component which is usually attributed to fluctuations
in the core angular momentum (Jault et al. 1988; Jackson et al. 1993; Pais and Hulot 2000;
Gillet et al. 2009). The construction of the component of H which is associated with the
ΔLOD signal is straightforward (it is linear).

4 Current Approaches to Geomagnetic Data Assimilation

Different approaches to geomagnetic data assimilation have recently come to the fore in geo-
magnetism. Early studies have focussed on the feasibility of implementing data assimilation
algorithms to the problem of the geomagnetic secular variation, by analyzing the response
and behaviour of the assimilating system in a well-controlled environment, using databases
of synthetic observations, starting from one-dimensional toy models (Fournier et al. 2007;
Sun et al. 2007), and moving on to systems of higher complexity (Liu et al. 2007;
Kuang et al. 2008; Canet et al. 2009). Those studies are generically referred to in the lit-
erature as “observing system simulations experiments” (OSSEs), or, equivalently, “twin ex-
periments”. More recent applications have considered “level-2” observations (see Sect. 3
above), thereby permitting to make some inference on the state of the core x (Kuang et al.
2009). The approaches followed nowadays differ by the choice of the physical and numerical
model M employed to describe core dynamics, and the form of assimilation they resort to
(sequential or variational). In this section, we shall give an example of a sequential approach
based on a three-dimensional geodynamo model, followed by an example of a variational
scheme designed for a two-dimensional quasi-geostrophic model of the secular variation;
we will conclude with a discussion of the intrinsic limit of the predictability of the secular
variation, as inferred from the results of a suite of three-dimensional dynamo models.
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Table 3 Summary of the various
core dynamics-related symbols
appearing in the text, and the
non-dimensional numbers
coming into play. Expressions
that follow for the Ekman,
Roberts, Rossby, and Rayleigh
numbers, are obtained using the
outer core radius c as the length
scale, the magnetic diffusion time
= c2/λ as the time scale,
(2ρλμΩ)1/2 as the magnetic
field scale, and hT c as the
temperature scale

Symbol Meaning

ρ core density

σe electrical conductivity

μ magnetic permeability

λ magnetic diffusivity = 1/μσe

ν kinematic viscosity

κ thermal diffusivity

αT thermal expansion coefficient

Ω the angular velocity of the Earth

c outer core radius

b inner core radius

d outer core depth = c − b

B the magnetic induction (field)

u the core flow

Θ0 background temperature profile

Θ temperature anomaly

hT prescribed background temperature gradient
= −∂rΘ0 (r = b)

g0 the gravity field at r = b

uh core surface flow

Ψ geostrophic streamfunction

B0 magnetic field scale

U velocity scale

τ time scale

Tadv advective time scale
.= c/U

VA Alfvén wave speed
.= B0/

√
ρμ

TA Alfvén wave period = c/VA

E Ekman number
.= ν/2Ωc2

qκ Roberts number
.= κ/λ

Ro Rossby number
.= λ/2Ωc2

Rth Rayleigh number
.= αT g0hT c2/2Ωλ

Rm magnetic Reynolds number
.= Uc/λ

Pm magnetic Prandtl number
.= ν/λ

Pr Prandtl number
.= ν/κ

Le Lehnert number
.= B0/cΩ

√
ρμ

A summary of the relevant quantities and notations we shall need is provided in Table 3.
The Earth’s outer core is considered as a conducting fluid of density ρ, electrical conduc-
tivity σe , magnetic permeability μ, magnetic diffusivity λ = 1/μσe , thermal diffusivity κ ,
and kinematic viscosity ν. Owing to thermal-compositional convection (treated under the
Boussinesq approximation) in an ambient gravitational field g, the fluid flows at velocity
u and sustains a magnetic field (induction) B . It is contained in a (to first order) spherical
shell of inner radius b and outer radius c, corresponding to the inner-core boundary and
core-mantle boundary, respectively. The core rotates about the z-axis (unit vector ez) with
an angular velocity Ω . After proper non-dimensionalization, the numerical description of
its dynamics is provided by a numerical model M which expects, aside from an initial con-
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dition, a set of non-dimensional input parameters, the exact nature of which depends on the
scales chosen for length, time, flow, and magnetic field (see Table 3).

4.1 Sequential Assimilation Using Three-dimensional Models of the Geodynamo

Non-linear self consistent numerical dynamo models which are capable of generating an
Earth like geomagnetic field have been in existence for a little more than a decade (Glatz-
maier and Roberts 1995; Kageyama and Sato 1997; Kuang and Bloxham 1997). While com-
putational limitations do not allow these models to operate in parameter regimes near those
of the Earth’s core, they are able to produce important physical processes such as dipole
dominant poloidal magnetic field, westward drift and occasional field reversals (Christensen
and Wicht 2007). However, if we look into the more detailed structures of the geomagnetic
field from the dynamo solutions and from the observations, we will find they are very dif-
ferent, as shown in Fig. 8. Obviously, the model outputs are still very far away from those
observed at the Earth’s surface.

In many ways, these dynamo models are far more successful than the early numerical
weather prediction models discussed in Sect. 1.2. But, again, a much bigger difference is

Fig. 8 The non axial dipolar part of the radial component Br of the magnetic field at the CMB from obser-
vation in 2000 according to the CM4 model of Sabaka et al. (2004) (top) and from the numerical dynamo
simulation (bottom). The poloidal scalar (of the magnetic field) is expanded in spherical harmonics, with
complex coefficients bm

l
of degree l and order m. Plotted in this figure are the scaled poloidal fields based

on the spectral coefficients b̃m
l

≡ bm
l

/b0
1, for all m ≤ l ≤ 8, and without (l,m) = (1,0). From Kuang et al.

(2009)
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that in geomagnetic data assimilation, the observations are only made at the surface of the
Earth, and even then, only of the poloidal magnetic field. The observation vector yo therefore
has a far smaller dimension than the state vector x. If we carry out the assimilation in spec-
tral space, and the maximum wave number that can be reliably assimilated is around l = 13,
the observation operator H essentially acts to project the state space onto the smaller set
of observations. State space (or model space) is defined as the magnetic field (B), velocity
field (u) and the temperature perturbation (Θ) within the liquid outer core, with the velocity
and magnetic fields further decomposed into poloidal and toroidal components. The only
observations of the state are of the poloidal component of the magnetic field at the Earth’s
surface. The observations can then be downward continued to the dynamo domain bound-
ary (DDB), e.g. the core-mantle boundary (CMB) or the top of the electrically conducting
D′′-layer (above the CMB). Therefore the observation operator is simply a matrix which
projects the complete state space to the poloidal component of the magnetic field at the
DDB.

The model M from (2) is in this case the discretization of the momentum, induction and
energy equations, which in non-dimensional form are (see Table 3):

Ro (∂tu + u · ∇u) = −ez × u − ∇p + j × B + RthΘr + E∇2u, (21)

∂tB = ∇× (u×B) + ∇2B , (22)

∂tΘ = − (u · ∇)Θ0 − (u · ∇)Θ + qκ∇2Θ . (23)

These equations have been solved by both finite difference (Kageyama and Sato 1997),
combined spherical harmonics and Chebyshev polynomials (Glatzmaier and Roberts 1995)
and combined spherical harmonics and finite differences (Kuang and Bloxham 1997).

A sequential data assimilation system has been built using the Kuang and Bloxham model
(Kuang et al. 2008). This system features two possible means to estimate the forecast error
covariance, Pf , which are ensemble methods (Sun et al. 2007) and modeling. Ensemble
estimation of forecast error covariance has enabled the construction of multivariate error
covariances which allow the assimilation of the poloidal magnetic field to directly impact
other state variables. Modeled covariances are constructed by choosing functions that result
in error covariances that have the required properties of diagonal dominance and positive
semi-definiteness (e.g. Gaspari and Cohn 1999). With respect to ensemble methods, they
avoid carrying along an ensemble of model runs that generally makes the system too expen-
sive; therefore, they have the advantage of computational efficiency, and can be tuned by
adjusting one or more parameters, such as the error correlation length scale. For example,
Kuang et al. (2009) use a simple Pf

P
f

ij = ρiσ
2δij , (24)

in which

ρi = (ri − rc)
2

(rdo − rc)
2 [3 (rdo − rc) − 2 (ri − rc)]

(
1 − ri − rdo

rdo

)
for ri ≥ rc, (25)

where ri denotes the i-th radial grid point, rdo is the mean radius of the top of the D′′-layer,
rc is the correlation distance from the CMB, and σ is a constant forecast error standard
deviation. One could optimize the analysis by changing the correlation length rc. For the
detailed mathematics, we refer the reader to Kuang et al. (2009).
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This modelling approach has been incorporated in a series of observing system simula-
tion experiments (OSSEs), in which a model run is used as the true state of the system, xt

(generally referred to as a nature run) (Liu et al. 2007). From this nature run, observations
are generated using the observation operator with added observation error using (4). The as-
similation system then uses these synthetic observations with another model run, generally
with somewhat different parameter values. OSSEs are used to determine the impact of the
assimilation on the unobserved state of a system, which for the geodynamo is nearly the
entire state. These experiments therefore have the potential to show whether geomagnetic
data assimilation has any potential to really improve our estimates of the dynamics of the
Earth’s core.

An example of this potential is seen in Fig. 9, which shows the radial component ur of
velocity u at a distance of 35 km below the CMB for three different cases. A nature run
with parameter values Rth = 15000, Ro = 1.25 × 10−6 and E = 1.25 × 10−6 is shown in
panel (a). Panel (b) shows ur from a free model run with the same parameter values except
Rth = 14500 while panel (c) shows ur after running the assimilation for a time of 0.892 τd ,
where τd is the Earth’s magnetic free decay time. Observations of the poloidal magnetic
field at the CMB from the nature run with degree l ≤ 8, are assimilated into the model every
0.01 τd . The results show that the assimilation results in a measurable improvement in the
radial velocity at this location. In other words, corrections to the poloidal magnetic field will
in turn influence the other state variables through the model simulation. Thus, this univariate
assimilation of geomagnetic data could be seen to improve the estimation of fluid motion in
the Earth’s outer core.

Kuang et al. (2009) have applied this system with the surface geomagnetic measurements
over the past 100 years. In this application, analysis is made every 5 years. The rms error ε

is defined as

ε =
{

1

A

∫ [(
b̃f

r

)
−

(
b̃o

r

)]2
dA

}1/2

, (26)

where the superscripts f and o have their usual meaning, and b̃r is related to the spherical
harmonic coefficients bm

l of the poloidal field at the top of the D′′-layer (whose surface is
denoted by A) by

b̃r =
8∑

0≤m≤l

l(l + 1)

r2

(
bm

l

b0
1

)
. (27)

As shown in Fig. 10, the errors between the assimilated results and surface geomagnetic
observations decrease over time, i.e. the model outputs are drawn closer to the observations.
The reduction of the errors could be attributed to the changes of the state variables inside
the core (Kuang et al. 2009). But since this assimilation is using real observations, there is
no known ‘true’ state with which to compare the changes to the unobserved state variables.
However, we can plot the differences in the core state between model runs with and with-
out assimilation. For example, Fig. 11 shows the relative change in the toroidal magnetic
field over the one hundred year assimilation run, which reaches as much as 40%. The im-
proved poloidal magnetic field forecast is an indication that these changes have resulted in
an improved estimate of the toroidal magnetic field.

In fact, it is worth noting that such geomagnetic data assimilation schemes are al-
ready tentatively used in geomagnetic field modeling for short-term forecasting purposes.
Indeed, Kuang et al. (2010) utilizes 7,000 years of the field models derived from pale-
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Fig. 9 Radial velocity, ur , on a
spherical shell 35 km below the
CMB from a nature run (a), a free
model run (b) and the forecast
after assimilating observations
from the nature run with
l ≤ 8 (c). Assimilation was done
every 20 years for 17840 years.
The velocities in each panel are
non-dimensional (common color
scale at the bottom).
A non-dimensional velocity of
unity implies 1.75 × 10−2 km/y

omagnetic, archeomagnetic, historical magnetic, observatory and satellite magnetic data
in their geomagnetic data assimilation system (MoSST_DAS). In addition, a prediction-
correction algorithm is used to reduce the dynamo system model errors in assimila-
tion output. Their forecasts are benchmarked with earlier forecasts, in particular those of
IGRF-8 and IGRF-9. The results demonstrate that, their 5-year field forecasts are com-
parable to IGRF, and their 5-year SV forecasts are more accurate (with smaller mis-
fit). Using the same system, and the field model output up to 2010, they produced a
5-year SV forecast for the period from 2010–2015. Their forecast is now a component of
IGRF-11.
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Fig. 10 The difference between the poloidal field at the DDB inverted from surface geomagnetic observa-
tions and that from assimilation during the past 100 years. The analysis time, i.e. the time interval between
two adjacent analyses, is 5 years

4.2 Variational Assimilation Based on Models Tailored to Account for Observations of the
Secular Variation

Following an alternative route, Canet et al. (2009) decided to develop a minimal model of
core dynamics M able to account for the observed secular variation. They resort to a quasi-
geostrophic approach which aims at describing core processes on short time scales (years
to decades). Viscous forces can be readily neglected outside boundary layers and detached
shear layers, provided those localized regions do not exert a control on the main body of
the fluid. Canet et al. (2009) therefore followed the common practice of defining the core
surface flow uh, which appears in (1), as the flow beneath the viscous Ekman layer attached
to the core-mantle boundary.

Three-dimensional simulations of the geodynamo (as governed by (21)–(23)), if per-
formed at very low Ekman number (E ≈ 5 × 10−7), require formidable computational
power; even if data that can be assimilated are available for no more than a small frac-
tion of a magnetic diffusion time, these simulations are currently out of reach for data as-
similation practice in that region of parameter space.12 Interestingly, though, these recent
high-resolution simulations have yielded Earth-like ratios of the magnetic to kinetic energy

12An assimilation scheme requires good model error statistics. Even if one resorts to a frozen background
error covariance matrix (the optimal interpolation approach to sequential data assimilation), the estimation of
that matrix demands to run the model over a significant amount of time (several magnetic diffusion times),
which becomes prohibitive in the parameter range recently explored by e.g. Sakuraba and Roberts (2009).
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Fig. 11 The relative difference in toroidal magnetic field between the forecast from the assimilation run and
the free running model, as a function of time (x-axis) and radial position (y-axis). The analysis is calculated
every 20 years (1900, 1920, 1940, 1960 and 1980). The color scale is in percent

for the largest length scales (Takahashi et al. 2008; Sakuraba and Roberts 2009). For a small
enough magnetic Prandtl number Pm (typically 0.2), they exhibit smaller scale convection
vortices as the Ekman number is decreased towards Earth-like values, while not much varia-
tion in the dominant scale of the magnetic field is observed. These simulations thus give hints
of dynamo generation taking place at length scales that are kept out of view of the myopic
observer at the Earth’s surface. That behaviour prompted Canet et al. (2009) to investigate
a model which involves only the velocity and magnetic fields, leaving aside the buoyancy
forces which power the geodynamo and are responsible for changes in the magnetic field
occuring on long (millennial, say) time scales.

On the shorter secular variation time scales, rotation forces are much larger than mag-
netic forces in the bulk of the fluid. On the basis of theoretical arguments and numerical
calculations, Jault (2008) argued that rapidly rotating motions of length scale L are axially

In addition, ensemble covariances in sequential algorithms increase the assimilation runs at least by one
order of magnitude (the size of the ensemble), thus effectively increasing simulation time well beyond a free
magnetic decay time. Similar conclusions apply to variational assimilation algorithms: The background error
covariance matrix entering the definition of the cost function (16) is the same as the one used in an optimal
interpolation framework (its proper determination is therefore as costly). In addition, the minimization of
the objective function requires several tens of iterations, since it is not conceivable to come up with a direct
estimate of the Hessian.
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Fig. 12 Geometry of the system
and notations used to describe the
quasi-geostrophic model of core
dynamics. (a) Side view.
(b) Equatorial section. Σ is the
equatorial plane, while the CMB
corresponds to the outer sphere,
located at r = c; b is the radius of
the inner core. Modified after
Canet et al. (2009)

invariant if the relevant non-dimensional Lehnert number, Le, is small enough. That num-
ber measures the ratio between the period of inertial waves, 1/Ω , and the period of Alfvén
waves, TA = L/VA (Lehnert 1954):

Le = B0

Ω(μρ)1/2L . (28)

The Alfvén wave speed VA is classically defined as VA = B0/
√

ρμ; note that Le is a decreas-
ing function of the length scale L. In the series of calculations carried out by Jault (2008), the
flow appears to be invariant in the direction parallel to the rotation axis, provided Le � 1.
For the Earth’s core, a magnetic field strength B0 on the order of 2 mT (Christensen et al.
2009) and a scale L of 1,000 km yield Le ≈ 10−4, well below unity. Therefore, Canet et al.
(2009) assume that the high frequency Earth’s core flows, responsible for the observed geo-
magnetic secular variation, are geostrophic at leading order. Instead of Le, which is based on
the magnetic field intensity B0 and a characteristic length scale L, the appropriate small pa-
rameter to characterize the approximation is related to the slopes of the spherical boundaries
(e.g. Gillet et al. 2007, and references therein). Indeed, motions with a non zero component
in the cylindrical radial direction cannot be fully geostrophic in a spherical shell. Working
in the equatorial plane Σ (crosshatched in Fig. 12), a cylindrical set of coordinates (s, ϕ, z),
with ez parallel to the axis of rotation, is well-suited to study the resulting columnar patterns.
The s and ϕ components of the velocity are independent of z. Outside the cylindrical surface
parallel to the rotation axis and tangent to the inner core (the so-called tangent cylinder), the
z component of the velocity uz varies linearly with z, in order for the total flow u to satisfy
the no-penetration condition at the outer boundary. Inside the tangent cylinder, one can write
uz = a(s) + b(s)z, and choose properly the two functions a and b which guarantee that the
total flow satisfies the no-penetration condition at both the ICB and the CMB. Outside the
tangent cylinder, the quasi-geostrophic flow is uniquely defined by its streamfunction ψ in
the equatorial plane.

The quasi-geostrophic assumption is somehow supported by inversions of tangentially
geostrophic core surface flows uh, which do not assume equatorial symmetry. Figure 13
shows the spectrum of the kinetic energy at the core surface as a function of spherical har-
monic degree l, after separating uh into its equatorially symmetric (ES) and equatorially
antisymmetric (EA) components (the red and black curves, respectively). The ES compo-
nent appears to be stronger than the EA component at the largest scales, at least up to l = 7.

Using the two-dimensional framework outlined above, the calculation of core surface
flows is then incorporated inside a prognostic dynamical model which describes the time
evolution of the corresponding streamfunction ψ . Retaining the Lorentz forces for the rea-
sons outlined above implies averaging the magnetic contribution to the vorticity equation
along the direction of rotation of the Earth, following a procedure akin to that of Hide
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Fig. 13 Spectrum of the energy
of the core surface flow inferred
from the model xCHAOS of
Olsen and Mandea (2008)
divided into its equatorially
symmetric (ES, red curve) and
antisymmetric (EA, black curve)
components. The calculated core
flow uh has been obtained over
the time interval [2000–2007]
after ensemble averaging 10
different solutions obtained using
10 different realizations of the
invisible small-scale magnetic
field (spherical harmonic degree
l ≥ 13). Consult Gillet et al.
(2009) for further details on the
method

(1966), who worked in the β-plane. This yields a term involving only quadratic products
of the equatorial components of the magnetic field Bs and Bϕ , namely B2

s , BsBϕ and B2
ϕ

(Canet et al. 2009). We shall use the generic notation B2 to refer to these quantities. The
induction equation in the core interior can also be transformed into an equation for the evo-
lution of B2. Coupling the axial vorticity equation and this modified induction equation, we
obtain an extension to non axi-symmetrical core flows of the torsional oscillation model of
Braginsky (1970), which involved only

{
B2

s

}
(s) = 1

2h(s)

1

2π

∫ 2π

0

∫ h(s)

−h(s)

B2
s (s, ϕ, z)dzdϕ, (29)

in which h(s) is the half-height of the geostrophic cylinder of radius s. At the core surface,
the flow interacts with the magnetic field, through the radial component of the magnetic
induction equation. That part of the model connects the dynamics and the observed secular
variation, with the radial component of the magnetic field acting as a passive tracer. In
summary, the state of the Earth’s core in that approach consists of Br at the core surface,
together with the equatorial streamfunction ψ(s,ϕ) and quadratic quantities B2(s, ϕ).

Omission of buoyancy in this model can be challenged. Indeed, Amit et al. (2008) and
Aubert et al. (2008) have recently suggested an alternative or complementary model as they
have investigated steady core surface flow driven by thermal coupling with the heteroge-
neous lower mantle. As the mantle and the solid inner core evolve on very long time scales,
thermal coupling with heterogeneous solid boundaries can be the source of significant steady
flows (Aubert et al. 2007), but not of the rapidly changing flows, of the kind inferred from
the recent secular variation observed from satellites (Olsen and Mandea 2008).

From the methodological standpoint, Canet et al. (2009) resort to variational data assim-
ilation to construct formally the relationship between model predictions and observations,
following the 4D-Var approach described in Sect. 2.2.2. They have investigated the effect of
several factors on the solution (width of the assimilation time window T , amount and quality
of data), and they have discussed the potential of the model to deal with real geomagnetic
observations. They have illustrated that framework with twin experiments, performed first
in the case of the kinematic core flow inverse problem, and then in the case of Alfvén tor-
sional oscillations. In both cases, using the adjoint model enables the estimation of core
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Fig. 14 Torsional oscillations twin experiments in a 4D-Var framework. The control vector for these exper-
iments consists of the initial angular velocity profile in the core, ωg(s, t = 0), along with the profile of the
static magnetic quantity {B2

s }(s). Left: cylindrical radius-time plot of ωg showing the propagation of a syn-
thetic, reference torsional wave in the region outside the tangent cylinder (cylindrical radius b < s < c). Red
is positive, blue is negative (absolute scale is arbitrary). Length and time are scaled by c and TA , respectively.
With our choice of scales, an Alfvén time amounts to 6 y. Center and right panels: Assimilation results, for
two widths of the time interval over which assimilation has been carried out: 0.5 TA (top row) and 0.06 TA

(bottom row). Center panel: the initial angular velocity profile ωg(s, t = 0). In black: the true profile. In blue:
the initial guess. In red: the result obtained after assimilation. Right panel: same for {B2

s }(s), which is plotted
in units of B0, i.e. 2 mT. Note that in most instances, the red and black curves are superimposed

state variables which, while taking part in the dynamics, are not directly sampled at the core
surface. A pedagogical example of such a behaviour is provided in Fig. 14: The reference
(true) case consists of an initial perturbation of the angular velocity (with respect to a solid-
body rotation), ωt

g(s, t = 0), which propagates in the outer core with a local wavespeed
proportional to the rms value of Bs over a geostrophic cylinder (defined in (29)). That pro-
gressive torsional wave interacts with Br at the core surface to generate a synthetic database
of secular variation, ∂tB

t
r , over a time interval of width T , assuming an error-free measure-

ment (εo = 0). Assuming next a wrong initial condition for ωg and an incorrect profile for
{B2

s }, the adjoint model can be used in conjunction with the database to correct the guesses
for ωg(s, t = 0) and {B2

s }(s). In Fig. 14, the results obtained after assimilating the perfect
synthetic observations are shown for two values of T , corresponding to a short and a long
window (spanning 6% and 50% of an Alfvén time, respectively). In both cases, the retrieval
of ωg(s, t = 0)t is perfect in that noise-free context (because the secular variation is directly
sensitive to the initial condition), whereas the retrieval of {B2

s }t is only achieved over the
portion of the domain which has been effectively sampled by the wave during its propa-
gation. The short interval case is indeed characterized by a shadow zone which covers the
outer third (in radius) of the outer core (see the bottom right panel in Fig. 14); that zone has
been illuminated by the passing of the wave in the longer time interval case.

The history of the determination of the magnetic field within the core from the study of
torsional oscillations gives us a note of caution about the use of simplified models. It shows
that, unfortunately, the choice of the model can dictate the answer. Braginsky (1970, 1984)
argued that both LOD variations and magnetic field records show oscillations with periods
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about 60 years. If we identify that period with the period of the fundamental eigenmode
for torsional oscillations, we obtain an estimate for the rms s-component of the magnetic
field within the core Bs ≈ 0.2 mT. However, the same model can be used to account for
variations with periods of about 6 years (Gillet et al. 2010a). Then, we obtain Bs ≈ 2 mT.
In that latter case, we can associate the longer period variations with non-zonal fluctuations
which drive the zonal circulation. Both models can nevertheless provide an adequate fit to
the data, because the uncertainties on the flow coefficients are very large (Buffett et al. 2009).

From the discussion of this example, we can emphasize two points. First, a good grasp of
the different error sources is crucial. As outlined in the introduction, the difficulties arising
because of the invisible small scale magnetic field at the core-mantle boundary are now well
identified (Eymin and Hulot 2005). They translate into uncertainties in the coefficients of ψ

(errors of representativeness) that can be accurately estimated using an ensemble technique
(Gillet et al. 2009). Second, the transfer of data assimilation methods to the geomagnetic
community has been slowed down by our poor knowledge of the state of the Earth’s core
prior to the assimilation of geomagnetic data.

That remark calls for an incremental approach whereby our knowledge of the state of the
Earth’s core x progressively improves. As noted above (Sect. 1.1), we arguably have a good
knowledge of the largest scales of the quasi-geostrophic streamfunction ψ time-averaged
over the last ten years during which highly accurate satellite data have been available. On
the other hand, time series of ψ inferred from continuous magnetic field models such as
CM4 (Sabaka et al. 2004) for the time interval 1960–2002 show artifactual variations. This
situation has prompted different groups to forgo sequential approaches and undertake si-
multaneous predictions of Br and of the flow (or the streamfunction ψ ) at the core surface
(Lesur et al. 2010). We can look at these efforts as a step preliminary to the use of the full
QG scheme outlined in this section.

4.3 Core Field Forecasting and Earth’s Dynamo Limit of Predictability

In parallel to the efforts reported above, which mainly focussed on the ability of data as-
similation schemes to recover some information about the hidden components of the state
of the geodynamo (such as the magnetic field deep inside the core, recall Figs. 11 and 14),
a number of studies have also started looking into the possibility of improving geomag-
netic (core) field forecasts. Such forecasts are not only of academic interest. They are very
much needed to ensure that an accurate enough global model of the geomagnetic field is
permanently available for a large number of practical applications such as navigation, point-
ing (e.g. for directional drilling), pre-processing of local magnetic surveys for exploration
geophysics, and defining the magnetic environment in the near outer space for ionospheric,
magnetospheric, and space weather applications (see e.g. Meyers and Davis 1990, for an in-
teresting account of those many, sometimes unexpected, applications). Most of those needs
are currently covered by the International Geomagnetic Reference Field (IGRF) models,
which are updated, published and widely distributed every five years (see e.g. Maus et al.
2005). Those models are conventionally provided in the form of a set of Gauss coefficients
(up to degree 13) defining a spherical harmonic description of the field at a reference epoch
(the latest IGRF has just been released for reference epoch 2010.0),13 together with an ad-
ditional set of estimates of the first time derivative of those coefficients (up to degree 8), to
be used for forecasting the field over the next five years. Thus IGRF forecasts basically rely
on a simple linear extrapolation of the field in time.

13www.ngdc.noaa.gov/IAGA/vmod/igrf.html.
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For most applications, increasing the range of the forecast beyond five years is less an is-
sue than improving the accuracy of the forecast. For other applications, however, increasing
the range of the forecast is very much desirable. It is well-known for instance that the global
intensity of the field is currently decreasing, especially within a wide region in the South-
Atlantic where the field is already much lower than anywhere else, defining a so-called
South-Atlantic Anomaly (SAA, see e.g. Hulot et al. 2007). This anomaly evolves very sig-
nificantly on decadal time scales (e.g. Olsen et al. 2000), through core processes that could
lead to a further decrease of the field in this area (Hulot et al. 2002). As the SAA is already
an issue to low Earth orbiting space technology (e.g. Heirtzler 2002), which requires signif-
icant time for planning and operation, improving our ability to forecast the evolution of the
field up to several decades would unquestionably be valuable.

Studies investigating how geomagnetic field forecasting could be improved (compared
to the linear IGRF five-year range type of forecasting) have been very few so far. A first
series of studies, illustrated by the two recent papers of Maus et al. (2008) and Beggan and
Whaler (2009), looked into the possibility of relying on the initial value problem described
by (1) to forecast the field. Starting from an initial field Br at time t0 and assuming a flow
uh known over the forecasting time window, (1) can be time stepped, and the trajectory of
Br computed, over the same window. Since, as already noted in Sect. 3, knowing Br at the
core surface is equivalent to knowing the field at the Earth’s surface and above (where we
are interested in predicting the core field), this makes it possible to forecast the field. Note
that this forecasting strategy is indeed different from the IGRF strategy: Following the latter
would imply to start as well from a known Br at t0, but to use a steady right-hand side
term (equal to ∂tBr at t0), when time stepping equation (1). In particular, even assuming a
forecast based on a stationary flow uh is different from an IGRF forecast, as the field Br in
the right-hand side term of (1) evolves at each time step, making this term time-dependent.

Using such a core flow based forecasting strategy is a natural first step towards im-
proving on the trivial IGRF forecasting strategy. It nevertheless relies on two fundamen-
tal assumptions that need to be spelled out. One is that magnetic diffusion is not ex-
pected to play any significant role on the time and length scales of interest. This in-
deed is widely thought to likely be the case (see e.g. Jackson and Finlay 2007; Holme
2007). The other, far less grounded, is that better a priori information is available with
respect to the flow uh and its time behaviour, than with respect to the field Br . This is
a strong assumption, especially in view of the dynamical interplay between the magnetic
field and the flow expected within the quasi-geostrophic conceptual framework discussed
in Sect. 4.2. However, and as already pointed out, it may also be that some background
quasi-stationary core flows driven by mantle thermal heterogeneities could play a signif-
icant role, especially when considering long time scales (Aubert et al. 2007, 2008; Amit
et al. 2008). Interestingly, Maus et al. (2008) precisely suggest that using a stationary
flow uh could slightly improve the quality of the forecast when considering predictions
up to a decade, beyond the time scale of short term dynamics associated with the so-called
geomagnetic jerks. The still unpredictable occurrence of these remains the main limita-
tion to short-term forecasting (see e.g. Thébault et al. 2010). Although such simple core
flow based geomagnetic field forecasts are much debated (e.g. Lesur and Wardinski 2009;
Maus et al. 2009), further developments, associated with data assimilation techniques, such
as initiated by Beggan and Whaler (2009), and with physical models, along the lines dis-
cussed in Sects. 4.1 and 4.2, are clearly the way to additional improvements.

An interesting question to be discussed at this point is that of the limit of predictability
of the Earth’s dynamo. Just as for meteorology, any geomagnetic field forecast is indeed
intrinsically limited in time. This is because the geodynamo belongs to the same class of
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non-periodic dynamical systems that can exhibit chaotic behaviour. As first pointed out by
Edward N. Lorenz in his celebrated 1963 paper (Lorenz 1963), for such systems, unless
the initial state is perfectly known, future states are bound to become unpredictable after a
finite period of time, even if computed from exactly known deterministic equations. This
is because any initial error with respect to the true state of the system xt , no matter how
small, will necessarily grow at some exponential rate and eventually lead to a predicted
state xf macroscopically different from xt . In the case of the atmosphere, it is for instance
estimated that any initial error will roughly double within 1.5 days (Kalnay 2003), which,
given current meteorological data quality and assimilation strategies, translates into the fa-
miliar possibility of accurately forecasting the weather up to three days in advance (recall
Sect. 1.2), with some confidence up to a week, but hardly beyond. Although some attempts
have been made early on to characterize the non-linear behaviour of the Earth’s dynamo by
using simplified equations (e.g. Jones et al. 1985), it is only very recently that the issue of
the associated limit of predictability has begun to be addressed with the help of fully con-
sistent 3D magnetohydrodynamic codes, of the same type as those envisioned for the data
assimilation approach described in Sect. 4.1.

The first study of this type has already provided interesting results (Hulot et al. 2010a).
It consisted in a systematic study of a series of numerical dynamo simulations, the dynamo
being assumed thermally driven with fixed and homogeneous temperatures imposed at both
the inner-core and core-mantle boundaries, with the electrically conducting inner core (with
the same conductivity as the liquid core) free to rotate axially (along the Earth’s rotation
axis) with respect to the electrically insulating mantle, and the mechanical boundary con-
ditions assumed rigid at both boundaries. Although such assumptions can be considered as
quite restrictive (in particular because internal heat sources, and compositional sources are
ignored), they have several advantages. First, they are typical of the type of assumptions
currently used for initial attempts of implementation of data assimilation strategies with
three-dimensional models of the geodynamo (see Sect. 4.1 above). Second, they make it
possible to run a large number of simulations under well-understood physical assumptions,
with each simulation characterized by four input dimensionless parameters (the Rayleigh
Rth, Ekman E, Prandtl Pr, and magnetic Prandtl Pm numbers, see Table 3). Finally, and as
precisely suggested by the study of Hulot et al. (2010a), it anyway seems that the issue of
the limit of predictability of fully consistent 3D dynamos is less dependent on the details of
the way the dynamo is driven, than on the constitutive dimensionless parameters E, Pr, and
Pm, the output parameter Rm (the magnetic Reynolds number, see Table 3), or the typical
correlation times of the field produced at the core surface, estimates of which can be de-
rived from both contemporary and archeomagnetic observations (Hulot and Le Mouël 1994;
Hongre et al. 1998). Thanks to the relatively large number of simulations they ran (37 in
total), Hulot et al. (2010a) were thus able to investigate the dependence of the limit of pre-
dictability of such dynamos on those various parameters, and propose a relatively simple
asymptotic rule that they tentatively applied to the Earth’s dynamo.

To both illustrate the origin of this limit of predictability and the method used by Hulot
et al. (2010a) in their investigation, Fig. 15 shows the consequence of artificially introducing
a slight error in one such simulation. In this figure, we first show the time evolution of the
axial dipole field produced at the core surface by the reference simulation (Fig. 15a), which
experienced a reversal. This reference simulation was next slightly perturbed by adding an
error of relative value ε to the axial dipole at a given time t0 (here close to the reversal).
The consequence of introducing this perturbation in the subsequent evolution of the simu-
lation is next shown in Fig. 15b, where a close-up of the initial dipole evolution is plotted,
together with the dipole evolution after introducing relative errors of ε = 10−2, ε = 10−6,
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Fig. 15 Error growth in a perturbed fully consistent 3D dynamo simulation, with E = 4 × 10−4, Pr = 1,
Pm = 10 and Rm ≈ 770, following the definitions given in Table 3, which are slightly different from those
chosen by Hulot et al. (2010a). In (a) we first show the evolution of the axial dipole field at the core sur-
face (arbitrary scale) for a reference run as a function of time (scaled in units of magnetic diffusion time
τD = d2/λ, d being the depth of the core, see Table 3). At time t0 = 2.00 (arrow), perturbations with various
magnitudes are introduced and the subsequent evolution of the axial dipole field of the perturbed solutions
are shown in (b) (ε = 10−2 red, ε = 10−6 green, and ε = 10−10 blue), which also shows a close-up of the
reference solution (black). The detailed way those various perturbed solutions diverge from the reference
solution are finally shown in (c), which shows semi-logarithmic plots of the relative rms differences for each
spherical harmonic degree l (with 1 ≤ l ≤ 8, leading to eight overlapping curves) between the core surface
poloidal magnetic field produced by the reference simulation and that produced by each perturbed solution
(same colour-code as for (b)). Colour-coded vertical bars mark the times when the perturbed solutions start
behaving in a way totally unrelated to the reference solution (consult Hulot et al. 2010a for more illustrations
and details)
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and ε = 10−10. As can be seen, the perturbed solutions first remain very close to the ref-
erence solution, but eventually diverge macroscopically from this solution. The larger the
initial error, the sooner the divergence occurs. As shown in Fig. 15c, this is because the dif-
ference between the perturbed solution and the reference solution (e.g., the error) gradually
increases in an exponential manner with a growth rate independent of the initial error ε. The
same growth rate is found in the way all quantities defining the state of the dynamo x diverge
from their evolution in the reference simulation (such as the higher degrees of the poloidal
magnetic field at the core surface, as plotted in Fig. 15c). As shown by Hulot et al. (2010a)
it also is independent of the way and time t0 (including shortly before a reversal, as is the
case here) the perturbation is initially introduced (be it in the magnetic, flow, or temperature
fields). Thus, this error growth rate appears to be an intrinsic property of each given dynamo.
It can be defined as λe = τ−1

e , where τe is the associated e-folding time. This e-folding time
of course depends on the dimensionless parameters governing the dynamo simulation under
consideration. But as noted by Hulot et al. (2010a), and at least for the parameter range
they investigated, as soon as the magnetic Reynolds number Rm produced by the dynamo is
large enough, and even more so when considering E, Pr, and Pm parameter ranges closest
(though still very remote, see below) to those thought relevant for the geodynamo, it appears
that τe only depends on a time scale τsv that statistically characterizes the time variations of
the field produced at the core surface, roughly as

τe = 0.05τsv. (30)

The time scale τsv can be recovered from observations by inspection of the spatial power
spectra of the field and of its first time derivative (see Hulot and Le Mouël 1994; Christensen
and Tilgner 2004; Hulot et al. 2010a, for details). For the geodynamo, τsv turns out to be of
order 535 years (Christensen and Tilgner 2004). Thus, the study of Hulot et al. (2010a)
would suggest a value of about 30 years for τe , amounting to a doubling time of roughly 20
years, analogue of the 1.5 days doubling time in meteorology.

Assessing how far in the future the core field could then be forecasted (that is, assessing
the practical limit of predictability of the Earth’s dynamo) also requires some consideration
on how well the state of the geodynamo x could possibly be known at some initial time.
This is clearly not a trivial issue. Given the current status of data assimilation schemes, it is
fair to say that at present, many of the quantities that define x are poorly known (particularly
those defining the state of the field and flow deep inside the core). As the methods described
in Sects. 4.1 and 4.2 improve, it is not unreasonable to expect some significant progress in
the coming years. But it also is clear that the basic state of the geodynamo will never be
known with better accuracy than the core field that can directly be observed at the Earth’s
surface. As already noted in Sect. 3, this accuracy is intrinsically limited by the crustal field,
which does not make it possible to recover the static component of the core field beyond
spherical harmonic degree 14, and its time variations beyond degree 18. In addition, in
practice, even those degrees of the core field that can be recovered in principle are only
recovered with some uncertainties. Using the order of magnitude of the error associated
with current IGRF models (typically of order 10–20 nT at the Earth’s surface at the epoch
of reference of the model, the average magnitude of the field being of order 40,000 nT), and
the fact that current linear IGRF type of forecasts lead to errors typically of order 100 nT
after just 5 years, Hulot et al. (2010a) note that the above results would suggest that using
an ideal assimilation scheme could possibly lead to a prediction of similar quality after 50
to 70 years, thus leaving some room for significant improvements compared to the current
simple IGRF linear forecasts.
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Probably the main limitation of the Hulot et al. (2010a) investigation is the parameter
regimes in which the simulations operate, which are still very remote from the one thought
to be relevant for the geodynamo (with E = 10−3–10−5, Pr = 1, and Pm = 0.5–15, whereas
E = 10−9–10−14, Pr = 0.1–1, and Pm = 10−5–10−6 are thought to be appropriate for the
Earth). In this respect, extrapolating the asymptotic rule given by (30) to the Earth can be
considered as a strong move. However there is far less doubt that those results essentially
apply to all fully consistent 3D numerical dynamos that could be used in practice for data
assimilation. Since those would have to produce a field with the same τsv time scale as
the geodynamo and be fed by the observed field with the same initial error as described
above, forecasts based on such 3D dynamos would then indeed be limited by the limit of
predictability identified by Hulot et al. (2010a). Unfortunately, additional limitations could
then also arise as a result of the fact, already mentioned (see Sect. 1.3), that all such 3D dy-
namos tend to damp out high frequency magnetohydrodynamic phenomena such as torsional
oscillations and geomagnetic jerks (both of which could be related, see e.g. Bloxham et al.
2002). Interestingly however, we also note that such phenomena tend to only mildly affect
the medium-term trend of the geomagnetic field. Perhaps the best data assimilation approach
in terms of forecasting could be one smartly combining 3D modelling of medium to long-
term dynamo processes (along the lines described in Sect. 4.1), with 2D quasi-geostrophic
modelling of short-term processes (along the lines described in Sect. 4.2).

One last outcome of the Hulot et al. (2010a) study worth mentioning is that it also implies
that the timing of the next geomagnetic reversal is essentially unpredictable. As is indeed
illustrated by Fig. 15, as soon as a perturbed solution has started diverging macroscopically
from the reference solution, it behaves in a totally unrelated way. In particular, even if the
reference solution was about to reverse, with already a fairly low axial dipole component,
the perturbed solution may either postpone the reversal, or eventually decide not to reverse.
Since it is well-known from examination of past reversals that these can hardly occur within
less than a couple of thousand years when starting from dipole field value comparable to the
present value (see e.g. Constable and Korte 2006; Hulot et al. 2010b), it is quite unavoidable
that given the value of τe = 30 y expected for the geodynamo, predicting a reversal several
millennia ahead of time would require a knowledge of the present state of the core way
beyond our observational capacity.

5 Summary and Outlook

In this paper, we have motivated the development and implementation of data assimilation
techniques for the purpose of geomagnetic data analysis. The ongoing era of magnetic ob-
servation of the Earth with satellites is a great and exciting incentive for investigating to
what extent such techniques could be beneficial for improving both our understanding of
core dynamics and our ability to model the core field. Of particular interest are the possibil-
ities, on the one hand, to combine satellite data with observatory data to try and perform a
reanalysis of historical field models over the past four hundred years or so, and, on the other
hand, to produce better forecasts of the secular variation in the years to come.

We have succinctly introduced the basics of the algorithmic machinery in operational use
in the atmospheric and oceanic communities in order to explain how to construct formally
the relationship between a numerical model of core dynamics and geomagnetic observa-
tions. As we saw, the most critical points for its application to geomagnetism, compared to
that in atmospheric or oceanic weather prediction, are

– that the observations directly access a much smaller fraction of the state vector,
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– and that we still have to convince ourselves, in a trial-and-error fashion, that the various
models that we use are adequate for this task.

Specific to the core problem is the remote, blurred and incomplete observation of its state.
Accordingly, we lack a well-defined background state (the equivalent of a “climatological”
mean), about which the dynamics of the secular variation is likely to take place, even though
we have a fairly good idea of the large to medium length scales of the poloidal field at the top
of the core over a 400 year period, and for the largest scales much longer back in time (e.g.
Hulot et al. 2010b, and references therein). Also specific and important for geomagnetic
data analysis is the need we are in to separate the various sources contributing to the field
measured at a given location (in particular at satellite altitude). Our hope is that a better
description of the core field by dynamical models could contribute to better recover it, in the
same way similar approaches have already improved our understanding of the ionospheric
and magnetospheric fields (e.g. Scherliess et al. 2006; Tsyganenko and Sitnov 2007).

The first results described in Sect. 4 indicate that, in the assimilation framework, surface
measurements of Br can provide some information and constraints about the structure of
the field and the flow within the core. The propagation of the information (the innovation)
from the core-mantle boundary to the bulk of the core is achieved either through the non-
linear interactions between the dynamical actors (the various components of the state vector,
which include the poloidal field), when operating with a three-dimensional model of the
geodynamo, or by some a priori constraint imposed on the nature of the dynamics (under the
quasi-geostrophic assumption, the invariance of the flow in the direction of rotation). There
is room for improvement with respect to the way surface information is transferred to the
bulk of the fluid: An appealing direction for future research in that area would be to resort to
multivariate statistics and relate surface dynamical patterns with their roots, using empirical
orthogonal functions. In oceanography, their use in conjunction with surficial observations
leads to much better estimates of the state of the ocean, at least above the thermocline; see
e.g. Penduff et al. (2002) for an illustration in the South Atlantic Ocean.

The issue of the climatological mean (the background state) for the core need also be
looked at in detail. That mean could reflect the thermal control exerted on the core by the
overlying mantle, which could thereby influence the long-term secular variation (e.g. Aubert
et al. 2007). In addition, theoretical arguments favor a geodynamo operating close to a so-
called Taylor state (Taylor 1963). It might then prove useful to seek an average core state
xb satisfying Taylor’s constraint, which, following Sasaki (1970), could be enforced using
either a weak or a strong formalism. For recent developments in that direction, the reader is
referred to Livermore et al. (2009, 2010).

To conclude, let us emphasize that further understanding of the mechanisms control-
ling the short- and long-term secular variation and the internal structure and dynamics of
the core could be gained by assimilating experimental results obtained with liquid metal
analogs of the core. Such analogs are in use in several places around the globe (e.g. Cardin
and Olson 2007, for a recent review): a container is filled with a liquid metal (sodium is
today’s favorite working fluid), which is set in motion (most of the time by mechanical forc-
ing), and can eventually support dynamo action in a turbulent environment (Monchaux et al.
2007). When well instrumented, liquid metal experiments have the advantage of provid-
ing a detailed mapping of the field at the surface of the container, possibly complemented
by in-situ flow and field measurements (Nataf et al. 2006). Surface magnetic time series
of the experimental secular variation can exhibit interesting features, which can be in turn
interpreted as the signature of hydromagnetic waves (Schmitt et al. 2008). These time se-
ries have the advantage of lasting for several magnetic diffusion times (several hundreds of
thousands of years when upscaled to the core). This is much more than the few centuries
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of well-documented record of observations we have at hand for geomagnetic data assimi-
lation practice. Even if the modest size of experimental analogs of the core (≈1 m) creates
a collapse of the various time scales over which the dynamical phenomena at work oper-
ate, it is almost certain that assimilating such experimental data could complement well the
efforts currently led to better understand and model the physical principles governing the
geomagnetic secular variation.
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Lab 1

Lorenz’s (1963) model: forward
modelling

Very special thanks to Matthias Morzfeld (math.lbl.gov/˜mmo) for making this lab (and the next)
possible.

1.1 Introduction

A good understanding of the forward model is mandatory before any practice of data assimilation.
The goal of this first lab is to get familiar with the numerical model we will deal with in the
practicals. The model we are interested in is the famous model proposed by Edward Lorenz
(1963). This model is the canonical example of a set of coupled deterministic, nonlinear, ordinary
differential equations (ode) able to exhibit chaotic behaviour. It is an admittedly simplified, 3-
variable representation of atmospheric cellular convection, based on the earlier work of Saltzman
(1962). The state vector x has only three components x ≡ [X,Y, Z]

T
. Its time evolution is

governed by the following set of nondimensional equations

dX

dt
= −Pr(X − Y ), (1.1)

dY

dt
= −XZ + rX − Y, (1.2)

dZ

dt
= XY − bZ, (1.3)

which has to be supplemented with a (column) vector of initial conditions

x0 = [X(t = 0), Y (t = 0), Z(t = 0)]
T
.

The variable X is connected with the streamfunction describing atmospheric flow, while both
variables Y and Z are connected with the temperature deviation responsible for convection (for
further details, please consult Lorenz (1963) – a great read, see appendix B). So the state of
atmospheric quiescence (no convection) is described by x = [0, 0, 0]T . Three nondimensional
numbers define the parameter space

• Pr, the Prandtl number, which is the ratio of kinematic viscosity to thermal diffusivity

• r, which is the ratio of the Rayleigh number Ra to the critical value of the Rayleigh number
Rac (in convection parlance, r tells you how many times supercritical the system is).
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• b, which is a geometrical factor.

(Note that time had been non-dimensionalized using the thermal diffusion timescale as the timescale
of reference.) In what follows, we will first stick to Lorenz’s original choice, and pick

Pr = 10, (1.4)

r = 28, (1.5)

b = 8/3. (1.6)

1.2 Forward integration

The previous set of equations is integrated numerically using a standard explicit integration
scheme, known as the explicit Runge-Kutta scheme of order 4 (aka RK4). This means in practice
that the time axis is discretized, being divided into segments of width ∆t; 4th order accuracy
means that the error characterizing this numerical approximation is proportionnal to ∆t4 1.

As an initial condition, we will begin by using Lorenz’s initial choice

x0 = [0, 1, 0]T , (1.7)

which is a slight departure from a state of atmospheric rest.

Q1: The matlab code lab1 runq1.m reads in a file called inparam lab1 q1,in which the initial
condition and time step size ∆t are specified. It integrates Lorenz’s model for 30 nondimensional
time units and plots the variations of X,Y, and Z. Edit the inparam lab1 q1.m file in order to
specify the initial condition (1.7), letting ∆t equal to its value 0.01. Run the code. Compare what
you get for Y (t) with Fig. (1) of Lorenz (1963). Comment.

Q2: Now let us look more precisely on the impact of the value of ∆t on the solution obtained. We
want to estimate what value of ∆t is necessary to ensure stability and, more importantly, conver-
gence. We will proceed in a simple trial and error fashion. The matlab code lab1 runq2.m reads
in a file called inparam lab1 q2.m, which contains three different values of ∆t. It computes the
three dynamical trajectories and plots them on top of each other. Figure 1.1 shows a screenshot
of the results I obtained (using octave, matlab’s opensource cousin). Use this code to determine
empirically the largest value of ∆t (denoted by ∆tmax), which ensures adequate numerical con-
vergence. Empirically means that over the time window of integration, the trajectories obtained
using ∆tmax and a comparatibely smaller value of ∆t look alike when compared on the screen.

Q3: We now want to estimate how ∆tmax is sensitive to the vigor of convection, which is controlled
by the Rayleigh number r. The parameter file inparam lab1 q3.m allows you to set the value of
r along with (again) three different values of the ∆tmax. The lab1 runq3.m script integrates
the model for each value of ∆t (using the initial condition (1.7)) and plots the corresponding
trajectories. Use this tool to fill the following table

r 28 40 56
∆tmax

Is there a scaling law relating ∆tmax to r? In other words, are the results you found compatible
with a law of the form

∆tmax ∝ rα,

in which α is a (real) exponent? Try to find α. A caveat here: 3 points is certainly not enough to
find a robust estimate, but we do not want to spend to much time on this. I will leave it up to
you to perform a more systematic study if you feel so inclined.

1A good and concise introduction to time integration can be found in appendix D of Canuto et al. (2006)
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Figure 1.1: A screenshot obtained after using the lab1 runq2 matlab command.

1.3 Sensitivity to initial conditions

Q4: Let us now consider the sensitivity of the model to the initial conditions, x0. We use the
following parameters

Pr = 10, (1.8)

r = 35, (1.9)

b = 8/3. (1.10)

(Following the previous question, ∆t is set to an admissible value in the code - you do not have
to worry about it.) The lab1 runq4.m script reads in the value of two different initial conditions,

x
(1)
0 and x

(2)
0 , in the inparam lab1 q4.m file. The two solutions, x(1)(t) and x(2)(t), are computed,

and superimposed on the left panel of a plot. On the right panel, the difference between the two
solutions, is plotted versus time, on a log− log plot, for each component of the state vector. Fix

the value of x
(1)
0 to Lorenz’s choice, and choose x

(2)
0 close to x

(1)
0 (by close we mean that the

difference between the two must be much smaller than 1, which corresponds to a macroscopic
difference). Run the lab1 runq4.m script and describe what you observe.

The sensitivity to the initial condition has important consequences, since we never have perfect
knowledge of the state of the system we are interested in. The uncertainty in the knowledge is
what imposes a limit of predictability on dynamical systems (similar to the Lorenz’s model)
governed by equations capable of generating chaotic dynamics, even though those dynamics are
deterministic. An example is the Earth’s atmosphere: we do not have perfect knowledge of the
state of the atmosphere, and we can not make a good weather prediction above a limit which
is now on the order of 5 days (for an account of the progress of operational numerical weather
prediction over the past few decades, read the first chapter of Kalnay (2003).)
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Lab 2

Application of the ensemble
Kalman filter (EnKF) to Lorenz’s
1963 model

The goal of this lab is to get familiar with the working of a sequential assimilation scheme running
a so-called twin experiment: A true, reference model trajectory xti is generated, and is used to
construct a catalog of synthetic observations. These observations are then assimilated in order to
correct a second model trajectory, which differs from the first one (the true one). In our case it
will differ because we will assume a different initial condition, x0 6= xt0.

Twin experiments (also called OSSE, Observing System Assimilation Experiments) are a logical
first step when implementing an assimilation scheme, since they allow to develop an understanding
for the behaviour of the scheme, without the additional complexity which may arise from the
inability of the forward model to represent some of the physics expressed in the observations.
Today we will run these twin experiments using Lorenz (1963) model, and we will resort to the
ensemble Kalman filter, as described in Sect. 3.3.4.2.

2.1 Statistical ingredients

We need to begin by specifying the statistical bits of information needed by the scheme, in the
form of the covariance matrices Pb and R of background and observation error, respectively. Since
we are dealing with the EnKF here, Pb is not really explicitly needed, since the knowledge of the
ensemble is sufficient to compute the statistical moments of the distribution it aims at representing.
The ensemble comprises Ne members.

2.1.1 Model

On the account of our perfect control of both the physics we are interested in and its numerical
approximation (thanks to lab1), we will neglect modelling errors (as introduced for the first time
in the notes in Eq. 1.15)

η = 0. (2.1)
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Again, the knowledge of each ensemble member xi,e, e ∈ {1, . . . , Ne}, at any discrete time ti
suffices to compute the mean and covariances, according to

〈xi〉 =
1

Ne

Ne∑
e=1

xi,e, (2.2)

Pi =
1

Ne − 1

Ne∑
e=1

(xi,e − 〈xi〉) (xi,e − 〈xi〉)T . (2.3)

To initialize our EnKF, we have to choose Ne and specify the Gaussian distribution N (x0,P0)
that the various members of the ensemble will follow. To keep things simple we will assume a
diagonal P0 having uniform variance σens. The initial mean x0 is not a priori the true initial
condition, xt0.

2.1.2 Observations

The true (reference) trajectory xti is used to generate observations. The state vector in the Lorenz’s
model comprises 3 variables, X, Y , and Z (recall Equations (1.1)–(1.3)). Depending on the
questions that you will find below, the observation of the system will be either complete or partial
(restricted to one of the variables).

Observations are made every ∆Tobs in time. This value (which we will be able to specify) controls
the frequency at which observations are made, and information brought into the system. It can
imply success or failure of the assimilation process.

2.2 Algorithm

2.2.1 Preparation of data

In this lab, all the parameters are defined in inparam lab2.m.

We set the duration of the experiment (duration in matlab) to a value T = 20 non-dimensional
time units. We use the following parameters

Pr = 10, (2.4)

r = 35, (2.5)

b = 8/3, (2.6)

and the following ’true’ initial condition

x0 = [0, 2, 0]
T
.

The specification of the standard deviation of the observation error σobs allows us to generate
observations on-the-fly, while computing the sequence of xti, by the now well-known formula

yoi = Hxti + εoi , (2.7)

in which every component εoi of the vector of size εoi is drawn randomly following a normal distri-
bution with zero mean and standard deviation σobs.

The observation operator H is a rectangular 3 × 3 matrix, whose exact shape depends on the
components of x which are effectively observed.

Here is what inparam lab2.m looks like :
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%% parameters for lab2 (EnKF applied to the Lorenz model)

%% ........................................................................

dtobs = 1; % time between observations

WhichVariablesAreObserved = [1 0 1];

% Determines which variables are available to

% the EnKF. For example:

% WhichVariablesAreObserved = [1 1 1];

% means: X, Y, Z are observed

% WhichVariablesAreObserved = [1 0 1];

% means: X and Z are observed

% WhichVariablesAreObserved = [1 0 0];

% means: X is observed

sigobs = sqrt(8); % standard deviation of the observation noise

%Initial mean for the ensemble

x0ens=[0,2,0];

%

sigens = 2; % standard deviation of the ensemble

M = 50; % Number of ensemble members

WhatToPlot = [1 1 1]; % Determines what to plot when applying the EnKF

% For example:

% What to plot = [1 1 1] means:

% plot the truth, EnKF

% reconstruction and the data.

%

% What to plot = [1 1 0] means:

% plot the truth, EnKF

% reconstruction.

%% ........................................................................

The last parameters listed have to do with the EnKF itself, but you can already play around with
the first parameters, and see how they affect the reference trajectory and the database of synthetic
observations that will be generated. To do so, please run the lab2 demo.m script. What will be
displayed will be the reference dynamical trajectory, and the catalog of synthetic observations. An
example of a screenschot is shown in Fig. 2.1.

2.3 Application of the EnKF

In inparam lab2.m, you can edit the value of the initial condition x0ens, x0: this is the mean value
about which the Ne members of the ensemble will be generated (drawn for a normal distribution
characterized by a diagonal covariance matrix P0, with diagonal variance equal to σ2

obs).

The script lab2 runenkf.m does everything for you: it uses what is in inparam lab2 to generate
the true trajectory, the set of observations, the initial ensemble and its evolution with time. Any
time observations are present, the analysis step of the EnKF is performed.

A final plot allows you to judge visually of the quality of the job done by the EnKF, the mean
of the ensemble 〈x〉 being plotted againt the truth, xt. In addition, once you have run the
lab2 runenkf.m script, you can also use the lab2 plotdiff command which will create a second
figure showing the difference

x− 〈x〉(EnKF)

as a function of time. Finally, the lab2 rmsdiff.m command returns the value of the root mean
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Figure 2.1: A screenshot of what I obtained running the lab2 demo.m script with the fol-
lowing parameters: ∆Tobs = 1 nondimensional time unit, σobs =

√
8 (why not?) and

WhichVariablesAreObserved = [1 0 1] (meaning that only X and Z are observed). The obser-
vations plotted with their error bars are going to be used subsequently by the ensemble Kalman
filter.

squared difference between the truth and the EnKF estimate over the [0, T ] window, defined as

{
1

T

∫ T

0

[(
Xt − 〈X〉EnKF

)2
+
(
Y t − 〈Y 〉EnKF

)2
+
(
Zt − 〈Z〉EnKF

)2]
dt

}1/2

.

You may find this indicator useful.

2.3.1 Influence of the quality of observations

In practice observations are always contaminated by errors. We begin by choosing the following
parameters

dtobs = 0.5;% time between observations

WhichVariablesAreObserved = [1 1 1];

% Determines which variables are available to

% the EnKF. For example:

% WhichVariablesAreObserved = [1 1 1];

% means: X, Y, Z are observed

% WhichVariablesAreObserved = [1 0 1];

% means: X and Z are observed

% WhichVariablesAreObserved = [1 0 0];

% means: X is observed

sigobs = 5; % standard deviation of the observation noise

%Initial mean for the ensemble

120/142, Workshop on Geophysical Data Analysis and Assimilation, ICTP, Trieste, 2012



2.3. APPLICATION OF THE ENKF 121/142

x0ens=[0,-5,0];

%

sigens = 2 ; % standard deviation of the ensemble

M = 20; % Number of ensemble members

WhatToPlot = [1 1 1]; % Determines what to plot when applying the EnKF

in the inparam lab2 file. The fact that x0ens=[0,-5,0] means in particular that our guess for
the initial condition is ‘suboptimal’.

Q1: All other parameters remaining constant, find the maximum value of σobs which leads to
an acceptable behaviour of the EnKF (define what you would consider an acceptable behaviour
of the EnKF).

2.3.2 Influence of the frequency of observations

Q2: Now with all other parameters remaining constant (σobs being equal to the value you just
found), find the largest value of ∆Tobs which leads to an acceptable behaviour of the EnKF.

Q3: Is there a connection between this value and the typical time scale of the dynamics of the
model?

2.3.3 Influence of the portion of the state vector observed

Set ∆Tobs to half the maximum value you just found. Keeping all the other parameter constant,
assume now that only X or Y is observed.

Q4: Comment on the quality of the EnKF estimate based on either option.

Q5: It may be that the quality of the results depend strongly on the variable which is observed
(X or Y ). Would you have an explanation for this, based on a simple analysis of the equations
(1.1)–(1.3) which govern the dynamics of the L63 model?

2.3.4 Influence of the ensemble size

We now define inparam lab2.m as such

dtobs = 1.;% time between observations

WhichVariablesAreObserved = [1 1 1];

% Determines which variables are available to

% the EnKF. For example:

% WhichVariablesAreObserved = [1 1 1];

% means: X, Y, Z are observed

% WhichVariablesAreObserved = [1 0 1];

% means: X and Z are observed

% WhichVariablesAreObserved = [1 0 0];

% means: X is observed

sigobs = 4; % standard deviation of the observation noise

%Initial mean for the ensemble

x0ens=[0,-5,0];

%

sigens = 4 ; % standard deviation of the ensemble

M = 15; % Number of ensemble members

WhatToPlot = [1 1 1]; % Determines what to plot when applying the EnKF
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Q5: All other parameters remaining constant, find the minimum number of elements of the
ensemble which leads to a good behaviour of the EnKF.

Note: One could also use a Monte-Carlo sampling of the initial probability density of the state
vector to represent a non-Gaussian density. The sampling converges rather slowly towards the

sought pdf, like N
−1/2
e . This implies that for real problems rather large ensemble are required to

avoid too big sampling errors (Evensen, 1994).

122/142, Workshop on Geophysical Data Analysis and Assimilation, ICTP, Trieste, 2012



Bibliography

Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang, 2006: Spectral methods: Fundamentals
in Single Domains. Scientific Computation, Springer, Berlin Heidelberg.

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using
Monte Carlo methods to forecast error statistics. Journal of Geophysical Research, 99 (C5),
10 143–10 162, doi:10.1029/94JC00572.

Kalnay, E., 2003: Atmospheric modeling, data assimilation, and predictability. Cambridge Univer-
sity Press, Cambridge.

Lorenz, E. N., 1963: Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20 (2),
130–141.

Saltzman, B., 1962: Finite amplitude free convection as an initial value problem–I. Journal of the
Atmospheric Sciences, 19 (7), 329–341.

123



Part V

Appendix

124



Appendix A

Derivation of the discrete adjoint
equation

This derivation is rather standard, and can be found in review papers and textbooks (Talagrand,
1997; Bennett, 2002; Wunsch, 2006), as well as in the thesis of Canet (2009), in the specific context
of the geomagnetic secular variation. We start with the definition of the misfit function (Eq. (4.1)),
expressed directly as a function of the initial condition x0

J (x0) =
1

2

{
n∑
i=0

[Hixi − yoi ]
T

R−1i [Hixi − yoi ] +
[
x0 − xb

]T
Pb−1 [x0 − xb

]}
, (A.1)

in which xi = Mi,i−1 · · ·M1,0x0. Any infinitesimal change δx0 in the initial condition x0 will
result in a change in xi, δxi, which writes to first order

δxi = Mi,i−1 · · ·M1,0δx0, (A.2)

or, in a more compact form,

δxi =

j=1∏
j=i

Mj,j−1

 δx0, (A.3)

where Mj,j−1 is the tangent linear operator, the Jacobian matrix of local partial derivatives of the
components of xj with respect to those of xj−1. Introducing in a similar manner the tangent linear
approximation Hi of the observation operator Hi, we find that a change in the initial condition
δx0 results in a variation of the objective function δJ given by

δJ =
1

2

{
n∑
i=0

δxTi HT
i R−1i [Hixi − yoi ] +

n∑
i=0

[Hixi − yoi ]
T

R−1i Hiδxi

}

+
1

2

{
δxT0 Pb−1 [x0 − xb

]
+
[
x0 − xb

]T
Pb−1δx0

}
. (A.4)

Because of the symmetry of both R and Pb, it is easy to show that

δxTi HT
i R−1i [Hixi − yoi ] = [Hixi − yoi ]

T
R−1i Hiδxi (A.5)

and that

δxT0 Pb−1 [x0 − xb
]

=
[
x0 − xb

]T
Pb−1δx0. (A.6)
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Using these two equalities along with the compact notation introduced in Eq. (A.3) yields

δJ =


n∑
i=0

[Hixi − yoi ]
T

R−1i Hi

j=1∏
j=i

Mj,j−1δx0

+
[
x0 − xb

]T
Pb−1δx0. (A.7)

Reminding ourselves that ∇x0J (a row vector) is defined by δJ = ∇x0J x0, we see that

∇x0J =


n∑
i=0

[Hixi − yoi ]
T

R−1i Hi

j=1∏
j=i

Mj,j−1

+
[
x0 − xb

]T
Pb−1. (A.8)

A correction (update) of the initial condition will require to take the transpose of this row vector

∇x0J T =


n∑
i=0

j=i∏
j=1

MT
j,j−1H

T
i R−1i [Hixi − yoi ]

+ Pb−1 [x0 − xb
]
. (A.9)

Let us rewrite this equation in the more inductive following form

∇x0J T = MT
0,1

{
MT

1,2

[
· · ·
[
MT

n−1,nHT
nR−1n [Hnxn − yon]

]
· · ·+ HT

1 R−11 [H1x1 − yo1]
]

+ HT
0 R−10 [H0x0 − yo0]

}
+ Pb−1 [x0 − xb

]
. (A.10)

If one introduces the auxiliary adjoint field ai, subject to the terminal condition an+1 = 0, and
whose backward time evolution is governed by

ai−1 = MT
i−1,iai + HT

i−1R
−1
i−1(Hi−1xi−1 − yoi−1) + δi1P

b−1 (xi−1 − xb
)
, n ≥ i ≥ 1, (A.11)

the inductive form (A.10) shows why the column vector sought simply writes

∇x0
J T = a0. (A.12)

(δi1 = 1 if i = 1, 0 otherwise.)
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Lorenz 1963

c© the American Meteorological Society
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Appendix C

Bibliography on geomagnetic data
assimilation

Here is (up to my knowledge) a list of references dealing with the application of data assimilation
methods to geomagnetism, or more generally, magnetohydrodynamic systems.
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