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Talk Plan

 How to write a simple
mantle convection program

 How to deal with more
complex physics
 Recent models, including

— Self-consistent plate
tectonics

— Detailed models of Earth,
Mars, Venus, Mercury,
super-Earths




Technical challenges

 Rheology

— Large temperature-dependence (~40+ orders of
magnitude)

— Nonlinear
— Brittle failure & plasticity
— Elasticity
e Multi-scale problem
— Length: mm to 1000s km
— Time: seconds to billions of years

e Resolution: no limit to what I1s needed!



Must consider many things!
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Need huge number of grid points /
cells /elements!

e e.d., to fill mantle volume:

e (8 km)3 cells (oceanic
crust) -> 1.9 billion cells

e (2 km)3 cells -> 123 billion
cells




Simplest equations

(Boussinesq, nondimensional, constant
properties except viscosity)

Conservation of momentum

-VP+V.c =—RaTz Stresses (2D)
- v,
. O =21
Conservation of mass X
VV:O Gzzzznavz
0Z
Conservation of energy ( V. oV
c,=0,= * 4+ —=
oT 2 = O =1l 0z OX

—+V-VT =«V°T +H
ot
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Example: Force balance in X
direction (2D)
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Concept of Discretization

True solution to equations is continuous In
space and time

In computer, space and time must be
discretized into distinct units/steps/points

Equations are satisfied for each unit/step/
point but not necessarily inbetween

Numerical solution approaches true solution
as number of grid or time points becomes
larger



Numerical methods: comparison

How fields Form of
represented equations
Finite Grid points Simple Simple Structured
difference transformation grids only.
of differential Interpolation
equations undefined.
Finite volume Nodes Integrated over Conservative.
volumes -> Unstructured
finite difference grids. Simple
Finite element  Nodes + shape Integral Unstructured More complex;
functions for (‘weak’) form grids equations don’t

interpolation

resemble
original ones

Spectral
transform

Global
functions

Decouple for
each harmonic
(IF constant
coefficients)

Accurate, fast

Poor
performance
for lateral
ViScosity
variations




Structured vs. Unstructured grid

(@)

(b)

Examples of two-dimensional structured (a) and unstructured (b) grids.



Finite volume grids
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Volume

Nodes (dots) and control volumes for a rectangular structured grid.




Derivatives using finite-differences

o Graphical interpretation: df/dx(x) Is
slope of (tangent to) graph of f(x) vs. X

e Calculus definition:

X _ f(x) = lim 22X P~ T
ax dx— 0 ax

o Computer version (finite differences):

df _ T0%)—1(x)

dx X, — %




Finite Difference grid in 1-D

y=f(x)

e Grid points Xg, X1, X5...Xy
e Here xi=x,+I*h

e Function values y,, Y4, Y,-..Yn
e Stored in array y(i)
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Second derivative

Y] V= 2¥ +Yi
29 h?



The staggered grid
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= All derivatives involve adjacent points
e Avoids checkerboard pressure solution
e Extensively used in numerical modelling



Detall: with stresses
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Boundary conditions (typical)

y=ymax T=0

Jj=ny
dT/dx=0 dT/dx=0
Yy
A

x=0,y=0 X=xXmax

i=1,j=1 T=1 i=nx

>X



Solution method

[Start: Initialize T }

g Solve for P and v: \< No
-VP+V.o = —~RaTz

v

/Step T forward In time:

O;—IZK'VZT+H—\7~VT Yes
N Y, END_|




1. Solving for P and v

[Start: Initialize T J

Solve for P and v: No

/Step T forward In time:

i)—I:KVZT'FH—V-VT Yes
N Y, END_|




Example: Force balance in X
direction (2D)
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Finite volume version of the x-momentum eqguation

X-momentum

ul‘_” i
Uij)-1
e
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...continued
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Similarly for z-momentum and
mass conservation

Z-momentum

+wtj+1 continuity

Uj) Pu Ozl Ui+1J

Uj+1)
Oxz,i+1j fwlﬂj

Uj+1J1

Pu-1 Ozz,1)-1

1‘ Wij-1

I




=> an equation for each velocity
point & pressure point. How to
solve them all simultaneously?

1. Direct (matrix) solver
2. lterative multigrid solver



Example: 1D Poisson

2 0°u _
Poisson: V U= f In 1-D: y = f
1
Finite-difference form: —( —2U + U ) f
h2 1+1 |

Example with 5 grid points:
u, =0
u, —2u, +u, = hf;
u, — 2u, + U, = hf,

u, — 2u, + u, = hf; Problem:
simultaneous

u, =0 solution needed



Ways to solve Poisson equation

Problem: A large number of finite-difference equations
must be solved simultaneously

Method 1. Direct

— Put finite-difference equations into a matrix and call a subroutine to
find the solution

— Pro: get the answer in one step
— Cons: for large problems
e matrix very large (nx*ny)"2
 solution very slow: time~(nx*ny)"3
Method 2. Iterative
— Start with initial guess and keep improving it until it is “good enough”

— Pros: for large problems
« Minimal memory needed.
» Fast if use multigrid method: time~(nx*ny)

— Cons: Slow if don’t use multigrid method



Direct (matrix) method

Arrange unknowns u into a single vector

Put 'unknown’ terms u on the left-hand side,
Known terms on the right-hand side vector f

Put coefficients of unknowns into a matrix
=> system of linear equations

A,u =1,

th row of A => coefficients of equation at I point
Call a standard subroutine to solve this for u



Matrix for 2D Poisson
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Figure 19.0.3. Matrix structure derived from a second-order elliptic equation (here equation 19.0.6). All
elements not shown are zero. The matrix has diagonal blocks that are themselves tridiagonal, and sub-
and super-diagonal blocks that are diagonal. This form is called “tridiagonal with fringes.” A matrix this
sparse would never be stored in its full form as shown here.



2. lterative (Relaxation) Methods

An alternative to using a direct matrix solver
for sets of coupled PDEs

Start with ‘guess’, then iteratively improve it

Approximate solution ‘relaxes’ to the correct
numerical solution

Stop iterating when the error ( ‘residue’) is
small enough



Why?

e Storage:

— Matrix method has large storage requirements:
(#points)*2. For large problems, e.g., 1e6 grid
points, this is impossible!

— Iterative method just uses #points
e Time:
— Matrix method takes a long time for large
#points: scaling as N3 operations

— The Iiterative multigrid method has
#operations scaling as N



Now 2D Poisson eqgn.
Vau= f

Finite-difference approximation:

1
h2

(ui,j+1+ U -1t Uagj T U —4Ui,j) = 1

~S

Assume we have an approximate solution U

The error or residue: R =V 2{j_ f

Now calculate correction to U; to reduce residue



~

Correcting Uy

j | IR, 4
From the residue equation note that: —— = —
J; h
So adding a correction +%hZR,- to G-- should zero R
2
~ ~ h
.e., UIT+1 = n + aRJ
4

Unfortunately it doesn’t zero R because the surrounding points
also change, but it does reduce R

ais a ‘relaxation parameter’ of around 1:
a>1 => ‘overrelaxation’
a <1 => ‘underrelaxation’



Scalar Poisson problem - fine grid iters

Convergence of iterations
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lterations smooth the residue
=>so0lve R on a coarser grid
=>faster convergence

Start 5 iterations 20 iterations
rms residue=0.5 Rms residue=0.06 Rms residue=0.025




2-grid Cycle

Several iterations on the fine grid
Approximate (“restrict”) R on coarse grid
Find coarse-grid solution to R (=correction to

u)
Interpolate (“prolongate”) correction=>fine
grid and add to u

Repeat until low enough R Is obtained



Multigrid cycle

Start as 2-grid cycle, but keep going to coarser and
coarser grids, on each one calculating the correction
to the residue on the previous level

Exact solution on coarsest grid (~ few points in each
direction)

Go from coarsest to finest level, at each step
Interpolating the correction from the next coarsest
level and taking a few iterations to smooth this
correction

All lengthscales are relaxed @ the same rate!




V-cycles and W-cycles

2-grid E
he Ty
A
E E E
R
E E E E E
y=1 v=2

Figure 19.6.1.  Structure of multigrid cycles. S denotes smoothing, while E denotes exact solution
on the coarsest grid. Each descending line \ denotes restriction (R) and each ascending line / denotes
prolongation (P). The finest grid is at the top level of each diagram. For the V-cycles (v = 1) the E
step is replaced by one 2-grid iteration each time the number of grid levels is increased by one. For the
W-cycles (y = 2), each E step gets replaced by two 2-grid iterations.



Scalar Poisson problem - MULTIGRID
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So, v and P are now found
using a direct or multigrid
solver, next comes....



2. Time-stepping

[Start: Initialize T J

g Solve for P and v: \< No

-VP+V.o =—-Ralz

Step T forward In time:




Advection-diffusion equation
for a known velocity field v

85)—-[+V-VT =xV°T +H

advection diffusion

T 9T oT
—=-v,—-V,—+V*T+H
ot Xax Yy

Internal heating



Diffusion first
2 2
IT _or (9T, T
ot X &’y

 Now discretise this using finite differences
* EXxplicit method (use derivatives at current t)

(t;+At) (tl) (t1 (tl) 1)
le T :(-I-I -1, 2T T|+1J_|_T|]1 2T -I-Ij+1
At (AX) (Ay)
1) (L) 4 1) 1) (t)
T_(FﬁAt) :T_(Fl) + At T' tlJ 2T y T|+11 + TI Jt 1 2T ) T| Jt+1
(& &y

* T(t,) only on left, so simple to program!



Finite-volume advection

consider V-(\7T)=\7-V +TV -V

but for incompressible flows, V-V =0

., V.VT=V.(VT)

expanding: V. (\7T) = % (VXT) + %(VYT)



(VT) Is the flux infout of the cell

U u
p,T 1™ p.T -+ p,T
Wy wA WA
| | | Z
u u
p,T > p’T —> p,T
—_— >
WA WA Wi X
| | |
u
p,T E-» pT 1 BT

Advantage: CONSERVATIVE (conserves energy) because
flux out of one cell=flux into another

but which T to use at each cell side?



Which T to use to calculate fluxes?

For stability reasons:

« Usethe T from the cell that material
IS coming from to calculate vT at each

cell boundary (‘donor cell’, ‘upwind’)
e Then the advective term Is:

v _ (vDivosj —xDicosj . (Wi jr05—(VyT)i j—05
[V'(VT)]ij B AX * Ay




A note on nhumerical advection

Advection is very difficult to treat accurately.

e Simple schemes either go unstable or smear out
temperature anomalies (numerical diffusion; the
donor cell scheme has plenty of this).

* More sophisticated schemes can cause artificial
ripples (numerical dispersion) and other types of
distortion.

 Many papers have been written on numerical
advection!

 TVD schemes or MPDATA are good ones to
choose.



Stability of time stepping

The explicit method Is unstable If the time
step Is too large. This means, you get
oscillations whose amplitude grows
exponentially with time.

This happens if material moves/diffuses
more than ~1 grid spacing in a time-step

Diffusion: At = 0.25(AX)* I &

crltlcal

Advection: At = 0.7Ax/max()

critical



Putting the time-step together
T =T ot (V) - )

where
(ty) (t1) () (ty) () (ty)
(VZT)(tl) _ (Ti,jl 2T+ T N T =207 + T ]

' (Ax)° (Ay)*

I ]

Upwind (donor cell) temperatures

¥

v (W Divos ;= (VkDicosj . (Wi j+o5= (Wi j—o0s
[V'(VT)] ij AX " Ay

. min(AXx, Az ’ . AX Az
At:mm{adm( (K )) ,aadvmln(V Y ]:I

X, max Z,max




Putting everything together

[Start: Initialize T }

g Solve for P and v: \< No
-VP+V.o = —~RaTz

v

/Step T forward In time:

%—I:KVZT+H—\7~VT Yes
N Y, END_|




Convection2D.m
Matlab program for 2D convection

e Solves either
— Variable-viscosity convection using a direct solver

— Constant-viscosity convection using
streamfunction-vorticity formulation and a
multigrid solver (faster)

e |nputs

— Physical: Ra, H, initial _temperature,
variable_viscosity,
VISCOSIty contrast _temperature,
viscosity contrast_depth

— Numerical: nx, nz, nsteps



Exercises (later)

. Determine critical Rayleigh number for
onset of convection (try values 1el to 1e5)

. Observe effect of internal heating on
convection (with Ra=1e6, try several H
values from 0 to 30).

. Observe effect of box width (try nx from 1*
to 4* nz)

. What temperature-dependent viscosity
contrast Is needed to obtain stagnant lid?



Explanation: streamfunction-vorticity

For highly viscous flow (e.g., Earth’ s mantle) with constant
viscosity (P=pressure, Ra=Rayleigh number):

-VP+V% =-RaTz

Substituting the streamfunction for velocity, we get:

_(9v _5_‘/f) P
()= %) Viy=-Ral
writing as 2 Poisson equations:
Vw=-w Vo = Raﬂ
oX

the streamfunction-vorticity formulation



Advantages of using the
streamfunction

 Two vector velocity components are
reduced to one scalar

o Continuity Is automatically satisfied

e If also solving the Navier-Stokes
equation, pressure can be algebraically
eliminated from the momentum
equation, reducing the number of
variables further



Staggered grid
+Streamfunction
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Streamfunction derivatives also involve advacent points



Complexities

“Mantle convection Is much more
complicated than thermal
convection” (G. Schubert)



1. Compositional variations

Lagrangian tracers (markers) for composition

T,V P Grid
o (R X o e s T
Eoll R e S TR S e
A A e e
Markers b Tede L rl Ll FE s
s 0 g e Y D L
Rock-1 =8 AL A LT Ry e
Rock-2<..:-_.-= _ 1‘_::

Geological boundary

“Marker-In-Cell” or “Particle-In-Cell” method
Figure by T. Gerya



2. Spherical geometry

Spherical meshes. (a) An isocahedron projected onto a sphere, and (b) subdivided eight ways in
each direction (reprinted from Baumgardner, 1985). (c) The mesh of Tabata and Suzuki (2000),
which can be regarded as subdividing a projected octahedron, first into six triangular blocks for
each face then further using tetrahedral finite elements (the figure taken from Tabata, 2006).

(d) The mesh used by CitComsS, which can be regarded as subdividing each face of a projected
tetrahedron into three rhombohedral blocks that are then further subdivided (the figure reprinted
from Zhong et al., 2000). (e) The cubed sphere grid (figure reprinted from Hernlund and Tackley,
2003). (f) The Yin-Yang grid (Kageyama and Sato, 2004). (g)(h) The spiral grid (from Huettig and
Stemmer, 2008b).



Yin-Yang’ spherical grid
(Kageyama & Sato 2004 G3)

e Orthogonal => finite-differences possible
e Small overlap (minimum overlap version)



3. Nonlinear rheology
(plasticity and/or dislocation creep)

Requires iterations at each moment in time

l
Y no

[Calculate viscosity(T,p,stress) h

Are stress
&Viscosity
consistent
enough?

/

[Calculate v field -> new stress




4. Compressibility

e Modification to continuity & normal stress terms
e Viscous heating & adiabatic heating
e Variable expansivity, conductivity

Conservation of mass:

V-(pv)=0 , (1)
momentum
V-0-Vp=Ra.t.p(C.r,T)/APyermal (2)
and energy
pC, DT =-DiopTv, + V*(kVT) + pH + &g ¥ (3)

Dt Ra -



5. Visco-elasticity

Can be treated with a viscous flow solver using
() an effective viscosity
(i) Adding elastic stress to the total stress tensor

(see Moresi, 2002)

At®
At® +

Netf = 1] Alpha=relaxation time

ot _p | optear Tte JWiT ow
HAL u u

T



6. Other complexities

e Phase transitions

— Modify density/buoyancy, also latent heat
term in energy equation

* Melting

— Calculate melting & form crust
Instantaneously, OR

— Melt migration (Darcy’s law)

e Tracking of trace element geochemistry
— On tracers/markers
— Radiogenic decay, outgassing



Application to Earth & planets

Recent results from my research
group, all calculated using the finite
volume + marker-in-cell method



Examples: 2D Crustal shortening and
magma pipe infrusion (Taras Gerya,
ETH, and coworkers)

Numerical
I2ELVIS
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Plate tectonics:
Earth unusual ?
= Mars: rigid lid
= Had plate tectonics early?
= Venus: rigid lid

= Plate tectonics->rigid lid?
= Episodic overturn?

= Earth: Different early on?




The plate problem

= Viscous, T-dependent rheology appropriate for
the mantle leads to a stagnant lid

= exp(E/KT) where E~340 kJ/mol
= T from 1600 -> 300 K

m=> variation

m=>

Only small AT participates
In convection: enough to
give An factor ~10

aunid pron




We don't understand plate
tectonics at a fundamental level

= Rock deformation is complex
m Viscous, brittle, plastic, elastic, nonlinear

= Dependent on grain size, composition (major
and trace element, eg water)

= Multi-scale
= Lengthscales from mm to 1000s km
= Timescales from seconds - Gyr




Strength of rocks

= Increases with confining
pressure (depth) then

saturates

Low confining
Undeformed pressure

Low-1 deformation: E

Intermediate
confining pressure

ect of P

High confining
pressure

Low T: Effect of P
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Fig. 6. Effect of confining pressure on the strength of Sleaford Bay
clinopyroxenite tested in triaxial compression (S. H. Kirby and A. K.
Kronenberg, unpublished data, 1978): (a) stress-strain curves, (b) ulti-
mate strength or stress at 10% strain as a function of confining pres-
sure.



Strength profile of lithosphere

Continental (granite): Shimada 1993 Oceanic: Kohlstedt 1995

Differential Stress (MPa)
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Low vyield stress: weak plates, diffuse deformation
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cold T (downwellings)

by Paul J. Tackley 2000




Spherical:
van Heck

& me,
GRL 2008




Stagnant lid mode

i ] . . .
EEEEEEEEE Yield Stress = 3.5*10000 (420 MPa)

H. Van Heck




Mobile lid mode

H. Van Heck




Mobile lid mode

Yield Stress = 8.5*1000 (102 MPa)

H. Van Heck




Influence of on self-
consistent plate tectonics?

Tobias Rolf
Mid Ocean

Ridge
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Continents help plate tectonics!
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W

Presence of
continent allows
plate tectonics at
higher yield stress
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Rolf and Tackley, GRL 2011
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Dynamic Causes of the Relation Between
Area and Age of the Ocean Floor

N. Coltice,™?* T. Rolf,? P. ]. Tackley,® 5. Labrosse'?

SCIENCE VOL 336 20 APRIL 2012
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A problem: 2-sided subduction!
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Mantle convection codes assume
a upper boundary:
surface iIs

i Zero shear stress but finite normal stress,
proportional to what the topography would
be If allowed.

i But this may create unnatural geometries at
subduction zones....




Real subductlon zone NOT FLAT
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Compositional variations exist at all scales!

Large scale

Small scale

Deschamps, Trampert, Tackley (2005)

Normal
mid-ocean
ridge basalt

Societies
Azores

N. Cape Verde

Cameroons




Geochemical mantle: Old cartoons (2000)

from Tackley, Science, 2000: Figure 2




Entrainment of primordial dense piles: can
explain high 3He/4He of ocean island basalts

Deschamps, Kaminski & Tackley, Nature Geoscience 2011
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Calculations of Earth’s mantle thermo-

chemical evolution over 4.5 Gyr

 Include melting->crustal production,
e viscosity dependent on T, d, and stress,
o self-consistent plate tectonics,
e decaying radiogenic elements and cooling

core,
e compressible anelastic approximation
 Many papers by Takashi Nakagawa & me




Long-term evolution
t=-3.6 Gyrs t=-1.8 Gyrs t = present

Nakagawa & Tackley 2010 Gcubed
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The crustal dichotomy

E— I
240°E 300°E 0°E 60°E 120°E 180°E

Causes. Extrinsic (impacts) or intrinsic (degree 1 mantle convection)?

MOLA data: Zuber (2001), Watters et. al (2007)



Results

Temperature [K] Crustal thickness [km]
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Interpretation




% area

Discussion

Crustal thickness distribution histograms
for northern plains and southern highlands

bad fit Mars data best fit
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PROBLEM: Takes 100s Myr to form — probably too slow

MOLA data from Watters et al. (2007)



Impact -> higher T -> more melting -> thicker crust

d Time = 5 Ma
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Subsequent evolution
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Stagnant Lid Cases

Heference Case

. 20
Ra=6.1SE8->n=2x10 Pas

lemperature Composition
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Spectra: Topography & Geoid
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Episodic Lid Cases

20
Ra=123E9->1n=1x10 Pas
oy =100 MPa

lemperature Composition




Episodic 3-D model




;E

Gillmann

Interior-Atmosphere coupling

Volcanism -> volatiles (CO2, H20) to atmosphere
Amospheric escape removes them
Surface T acts as a boundary condition for mantle
convection.
Atmosphere model:
« 1D gray radiative convective model
» Greenhouse gases (CO2, H20) modify surface T
e Takesinto account the faint young sun hypothesis
Escape modd!:
e Hydrodynamic escape during first 100 Myr
e Only non-thermal escape mechanisms (sputtering,
lonospheric outflow, dissociative recombination, ion
pick up) during main evolution
Efficiency decreases with time, as depends on
Extreme UV flux from the Sun (not total
luminosity)
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Surface T evolution
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Venus Conclusions

#* Rigid lid: Magmatism dominant heat transport
mode, crustal delamination. Match geoid &
topography for reference viscosity ~10%° Pa s

% Episodic overturn: deep crustal recycling,
conduction more important, geoid & topo OK

%* Geoid, topography, admittance ratios favour
viscosity~10%°-10%! Pa s

% Preferred case: episodic yielding with ys 100 Mpa
%* Atmosphere-surface coupling under evaluation
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Effect of Rheology on Mantle
Dynamics and Plate Tectonics
I
P. J. Tackley (ETH Zurich)

M. Ammann, J. P. Brodholt, D. P. Dobson (UCL)
D. Valencia (MIT)




Dynamics of extrasolar super-Earths?

& . ’ COROT-7b

e Several super-Earths (2-10 * mass of Earth) have been

found; many more expected.

e Habitability: Atmosphere & interior strongly linked ->
understand interior dynamics & evolution

— Plate tectonics? (van Heck & Tackley 2011)




Activation enthalpy(p): Density Function Theory

Fig. 4 Sketch of magnesium

migration pathways in .

orthorhombic MgSiO; L. % | |
perovskite [left view in . . - @ ’ . ._"'. (B
z-direction, right projection onto t O_. . ﬁ _-_,_&u

(110)]. Straighs-line pathways

are i!1|:|iu;iktl:r'.1 as solid m‘fm'-':'-. .‘J o\ k . (S @J ....... ¢
Darker atoms are farther away W ._1 1 b
from the observer. On the . i

curved pathways, the migrating - a® o " [ ] t
magnesium is positioned a1 the .Q s t) '0 .

~ 2 L J
saddle-point location (only in / S J: 2 ® v | !
the left figure). Vacancy F - / > ! 7,
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circles
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Simulating Diffusion

n

First-principles constraints on diffusion in
lower-mantle minerals and a weak D'’ layer Michast'W, Ammann, John P. Brodhok and Daved . Dobson

M. W, Ammann', L. P. Brodholt', 1. Woekey & D. P, Dobsen'
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H(p) results & fit

Activation Enthaply

Hact (kJ/mol)

Perovskite (DFT)
——— PPV (DFT lower bound)
—*— PPV (DFT upper bound)
fit

1 1
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Pressure (GPa)

Arrhenius viscosity law Plastic yielding

e P




Viscosity profile along adiabat

Viscosity (1600 K adiabat)

L3
o

—
o

@
m
g
F
‘D
O
3]
A2,
=

400 600 800 1000 1200 1400
Pressure(GPa)




6l1+01
oz+ol &

wn
Q
) -
>
)
O
>
) -
)
wn
>~
e
wn
O
O
D
>
od
_I

ecto|
ve+ol
9c+o|

LZ+O]
ALISODSIA




Mean profiles

Temperature Profiles Viscosity Profiles
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Super-E Discussion/Conclusions

* Plate tectonics easier on larger planets (Valencia et al.

2007, 2009; van Heck & Tackley 2011; Korenaga 2011)

» Self-requlation of viscosity: if adiabatic viscosity too

high, T increases until mantle can lose radiogenic heat

— Superadiabatic T profile

— ~lsoviscous viscosity profile

e Resultsin
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