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Talk Plan 

•  How to write a simple 
mantle convection program 

•  How to deal with more 
complex physics 

•  Recent models, including 
– Self-consistent plate 

tectonics 
– Detailed models of Earth, 

Mars, Venus, Mercury, 
super-Earths 



Technical challenges 
•  Rheology 

– Large temperature-dependence (~40+ orders of 
magnitude) 

– Nonlinear 
– Brittle failure & plasticity 
– Elasticity 

•  Multi-scale problem 
– Length: mm to 1000s km 
– Time: seconds to billions of years 

•  Resolution: no limit to what is needed! 



Must consider many things! 



Need huge number of grid points / 
cells /elements! 

•  e.g., to fill mantle volume: 
•   (8 km)3 cells (oceanic 

crust) -> 1.9 billion cells 
•  (2 km)3 cells -> 123 billion 

cells 



Simplest equations  
(Boussinesq, nondimensional, constant 

properties except viscosity) 

−∇P +∇⋅σ = −Ra.Tẑ

  ∇ ⋅
 

v = 0

 

∂T

∂ t
+ v ⋅∇T =κ∇2T + H

σ xx = 2η ∂vx

∂x

σ zz = 2η ∂vz

∂z

σ xz =σ zx =η ∂vx

∂z
+
∂vz

∂x
⎛
⎝⎜

⎞
⎠⎟

Conservation of momentum 

Conservation of mass 

Conservation of energy 

Stresses (2D) 



Example: Force balance in x 
direction (2D) 

σ xx − Pσ xx − P

σ xz

σ xz

− ∂P

∂x
+ ∂σ xx

∂x
+
∂σ xz

∂z
= 0



Concept of Discretization 
•  True solution to equations is continuous in 

space and time 
•  In computer, space and time must be 

discretized into distinct units/steps/points 
•  Equations are satisfied for each unit/step/

point but not necessarily inbetween 
•  Numerical solution approaches true solution 

as number of grid or time points becomes 
larger 



Numerical methods: comparison 
Name How fields 

represented 
Form of 
equations 

Pros Cons 

Finite 
difference 

Grid points Simple 
transformation 
of differential 
equations 

Simple Structured 
grids only. 
Interpolation 
undefined. 

Finite volume Nodes Integrated over 
volumes -> 
finite difference 

Conservative. 
Unstructured 
grids. Simple 

Finite element Nodes + shape 
functions for 
interpolation 

Integral 
(‘weak’) form 

Unstructured 
grids 

More complex; 
equations don’t 
resemble 
original ones 

Spectral 
transform 

Global 
functions 

Decouple for 
each harmonic 
(IF constant 
coefficients) 

Accurate, fast Poor 
performance 
for lateral 
viscosity 
variations 



Structured vs. Unstructured grid 



Finite volume grids 



Derivatives using finite-differences 

•  Graphical interpretation: df/dx(x) is 
slope of (tangent to) graph of f(x) vs. x 

•  Calculus definition: 

•  Computer version (finite differences): 

df

dx
≡ ′ f (x) ≡ lim

dx→ 0

f (x + dx) − f (x)

dx

df

dx
≈ f (x2 )− f (x1)

x2 − x1



•  Grid points x0, x1, x2…xN 
•  Here xi=x0+i*h 

•  Function values y0, y1, y2…yN 
•  Stored in array y(i) 

Finite Difference grid in 1-D 

dy

dx
⎛
⎝⎜

⎞
⎠⎟

i

≈ Δy

Δx
= y(i +1)− y(i)

h



Second derivative 

∂ 2 y

∂ x2

⎛
⎝⎜

⎞
⎠⎟

i

≈ yi+1 − 2yi + yi−1

h2



The staggered grid

• All derivatives involve adjacent points
• Avoids checkerboard pressure solution
•  Extensively used in numerical modelling
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Detail: with stresses 



Boundary conditions (typical) 

T=1 

dT/dx=0 

T=0 

dT/dx=0 

x 

y 

x=0,y=0 
i=1,j=1 

x=xmax 
i=nx 

y=ymax 
j=ny 



Start: Initialize T 

  Solve for P and v: 

Step T forward in time: 

Solution method 

−∇P +∇⋅σ = −Ra.Tẑ
  ∇ ⋅

 
v = 0

 

∂T

∂ t
=κ∇2T + H − v ⋅∇T

Finished? 

END 

No 

Yes 



Start: Initialize T 

  Solve for P and v: 

Step T forward in time: 

1. Solving for P and v 

−∇P +∇⋅σ = −Ra.Tẑ
  ∇ ⋅

 
v = 0

 

∂T

∂ t
=κ∇2T + H − v ⋅∇T

Finished? 

END 

No 

Yes 



Example: Force balance in x 
direction (2D) 

σ xx − Pσ xx − P

σ xz

σ xz

− ∂P

∂x
+ ∂σ xx

∂x
+
∂σ xz

∂z
= 0



− pIJ − pI−1J

Δx
+ σ xx.IJ −σ xx.I−1J

Δx
+
σ xz.ij+1 −σ xz.ij

Δz
= 0

Finite volume version of the x-momentum equation 



...continued 

− pIJ − pI−1J

Δx
+ 1

Δx

ηxx,IJ ui+1J − uiJ( )−ηxx,I−1J uiJ − ui−1J( )
Δx

⎛
⎝⎜

⎞
⎠⎟

+ 1

Δz
ηxz,ij+1

uiJ+1 − uiJ

Δz
+

wIj+1 −wI−1J+1

Δx

⎛
⎝⎜

⎞
⎠⎟
−ηxz,ij

uiJ − uiJ−1

Δz
+

wIj −wI−1J

Δx

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = 0

− pIJ − pI−1J

Δx
+ σ xx.IJ −σ xx.I−1J

Δx
+
σ xz.ij+1 −σ xz.ij

Δz
= 0



Similarly for z-momentum and 
mass conservation 



=> an equation for each velocity 
point & pressure point. How to 
solve them all simultaneously? 

1.  Direct (matrix) solver 
2.  Iterative multigrid solver 



Example: 1D Poisson 

∇2u = f
∂2u

∂x2 = f

1

h2 ui−1 − 2ui + ui+1( ) = fi

Poisson: In 1-D: 

Finite-difference form: 

u0 − 2u1 + u2 = hf1
u1 − 2u2 + u3 = hf2

u2 − 2u3 + u4 = hf3

u0 = 0

u4 = 0

Example with 5 grid points: 

Problem: 
simultaneous 
solution needed 



Ways to solve Poisson equation 
•  Problem: A large number of finite-difference equations 

must be solved simultaneously 
•  Method 1. Direct 

–  Put finite-difference equations into a matrix and call a subroutine to 
find the solution 

–  Pro: get the answer in one step 
–  Cons: for large problems  

•  matrix very large (nx*ny)^2 
•  solution very slow: time~(nx*ny)^3 

•  Method 2. Iterative 
–  Start with initial guess and keep improving it until it is “good enough” 
–  Pros: for large problems 

•  Minimal memory needed.  
•  Fast if use multigrid method: time~(nx*ny) 

–  Cons: Slow if don’t use multigrid method 



Direct (matrix) method 
•  Arrange unknowns u into a single vector 
•  Put 'unknown’ terms u on the left-hand side, 

known terms on the right-hand side vector f 
•  Put coefficients of unknowns into a matrix 
•  => system of linear equations 

•  lth row of A => coefficients of equation at lth point 
•  Call a standard subroutine to solve this for u 

 A k uk = f



Matrix for 2D Poisson 

From  
Numerical Recipes 



2. Iterative (Relaxation) Methods 

•  An alternative to using a direct matrix solver 
for sets of coupled PDEs 

•  Start with guess , then iteratively improve it 
•  Approximate solution relaxes  to the correct 

numerical solution 
•  Stop iterating when the error ( residue ) is 

small enough 



Why? 
•  Storage: 

– Matrix method has large storage requirements: 
(#points)^2. For large problems, e.g., 1e6 grid 
points, this is impossible! 

–  Iterative method just uses #points 
•  Time: 

– Matrix method takes a long time for large 
#points: scaling as N^3 operations 

– The iterative multigrid method has 
#operations scaling as N 



Now 2D Poisson eqn. 
∇2u = f

Finite-difference approximation:

1
h 2 ui, j+1 + ui, j−1 + ui+1, j + ui−1, j − 4ui, j( ) = fij

R = ∇2 ˜ u − f

˜ u iAssume we have an approximate solution 

The error or residue: 

Now calculate correction to       to reduce residue ˜ u i



Correcting  ˜ u i

From the residue equation note that: 

 

∂Rij

∂uij

= − 4

h2

So adding a correction               to        should zero R 
  

+ 1
4 h2Rij  uij

i.e.,  

Unfortunately it doesn t zero R because the surrounding points 
also change, but it does reduce R 

α is a relaxation parameter  of around 1: 
α > 1  => overrelaxation  
α < 1  => underrelaxation  

˜ u ij
n+1 = ˜ u ij

n +αRij
h2

4



•  Higher N => slower convergence 

Convergence of iterations 



Iterations smooth the residue 
=>solve R on a coarser grid 

=>faster convergence 
Start
rms residue=0.5

5 iterations
Rms residue=0.06

20 iterations
Rms residue=0.025



2-grid Cycle 
•  Several iterations on the fine grid 
•  Approximate ( restrict ) R on coarse grid 
•  Find coarse-grid solution to R (=correction to 

u) 
•  Interpolate ( prolongate ) correction=>fine 

grid and add to u 
•  Repeat until low enough R is obtained 



Multigrid cycle 
•  Start as 2-grid cycle, but keep going to coarser and 

coarser grids, on each one calculating the correction 
to the residue on the previous level 

•  Exact solution on coarsest grid (~ few points in each 
direction) 

•  Go from coarsest to finest level, at each step 
interpolating the correction from the next coarsest 
level and taking a few iterations to smooth this 
correction 

•  All lengthscales are relaxed @ the same rate! 



V-cycles and W-cycles 



•  Convergence rate independent of grid size 
•  =>#operations scales as #grid points 
•  Only a few iterations needed 



So, v and P are now found 
using a direct or multigrid 

solver, next comes.... 



Start: Initialize T 

  Solve for P and v: 

Step T forward in time: 

2. Time-stepping 

−∇P +∇⋅σ = −Ra.Tẑ
  ∇ ⋅

 
v = 0

 

∂T

∂ t
=κ∇2T + H − v ⋅∇T

Finished? 

END 

No 

Yes 



Advection-diffusion equation 
for a known velocity field v 

 

∂T

∂ t
+ v ⋅∇T =κ∇2T + H

∂T

∂ t
= −vx

∂T

∂ x
− vy

∂T

∂ y
+∇2T + H

advection diffusion 

internal heating 



Diffusion first 

•  Now discretise this using finite differences 
•  Explicit method (use derivatives at current t) 

•  T(t2) only on left, so simple to program! 
 

∂T

∂ t
= ∇2T = ∂ 2T

∂ x2 + ∂ 2T

∂ y2

⎛
⎝⎜

⎞
⎠⎟

Ti, j
(t1+Δt ) −Ti, j

(t1 )

Δt
=

Ti−1, j
(t1 ) − 2Ti, j

(t1 ) + Ti+1, j
(t1 )

(Δx)2 +
Ti, j−1

(t1 ) − 2Ti, j
(t1 ) + Ti, j+1

(t1 )

(Δy)2

⎛

⎝⎜
⎞

⎠⎟

Ti, j
(t1+Δt ) = Ti, j

(t1 ) + Δt
Ti−1, j

(t1 ) − 2Ti, j
(t1 ) + Ti+1, j

(t1 )

(Δx)2 +
Ti, j−1

(t1 ) − 2Ti, j
(t1 ) + Ti, j+1

(t1 )

(Δy)2

⎛

⎝⎜
⎞

⎠⎟



Finite-volume advection 

  ∇ ⋅
 

v T( ) =
 

v ⋅ ∇T + T∇ ⋅
 

v 

but for incompressible flows,    ∇ ⋅
 

v = 0

so,  
  
 

v ⋅ ∇T = ∇ ⋅
 

v T( )

  
∇ ⋅

 
v T( ) = ∂

∂x
vxT( ) + ∂

∂y
vyT( )expanding: 

consider 
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p,T

p,T p,T

p,T

p,T p,T

p,T

p,Tu u

u

u u
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(vT) is the flux in/out of the cell 

but which T to use at each cell side? 

Advantage: CONSERVATIVE (conserves energy) because  
flux out of one cell=flux into another 



Which T to use to calculate fluxes? 
     For stability reasons: 
•  Use the T from the cell that material 

is coming from to calculate vT at each 
cell boundary (‘donor cell’, ‘upwind’) 

•  Then the advective term is: 

  
∇ ⋅

 
v T( )[ ]ij

=
(vxT)i+0.5, j − (vxT)i−0.5, j

Δx
+

(vyT)i, j+0.5 − (vyT)i, j−0.5

Δy



A note on numerical advection 

Advection is very difficult to treat accurately.  
•  Simple schemes either go unstable or smear out 
temperature anomalies (numerical diffusion; the 
donor cell scheme has plenty of this).  
•  More sophisticated schemes can cause artificial 
ripples (numerical dispersion) and other types of 
distortion.  
•  Many papers have been written on numerical 
advection! 
•  TVD schemes or MPDATA are good ones to 
choose. 



Stability of time stepping 
•  The explicit method is unstable if the time 

step is too large. This means, you get 
oscillations whose amplitude grows 
exponentially with time. 

•  This happens if material moves/diffuses 
more than ~1 grid spacing in a time-step 

•  Diffusion: 

•  Advection:     

Δtcritical = 0.25(Δx)2 /κ

 Δtcritical 0.7Δx / max( v )



Putting the time-step together 

 
Ti, j

(t1+Δt ) = Ti, j
(t1 ) + Δt κ ∇2T( )

i, j

(t1 )
−∇⋅ vT( )i, j

(t1 ) + H⎡
⎣

⎤
⎦

∇2T( )
i, j

(t1 )
=

Ti, j−1
(t1 ) − 2Ti, j

(t1 ) + Ti, j+1
(t1 )

(Δx)2 +
Ti−1, j

(t1 ) − 2Ti, j
(t1 ) + Ti+1, j

(t1 )

(Δy)2

⎛

⎝⎜
⎞

⎠⎟

where 

Δt = min adiff

min(Δx,Δz)( )2

κ
,aadv min

Δx

vx,max

,
Δz

vz,max

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Upwind (donor cell)  temperatures 

  
∇ ⋅

 
v T( )[ ]ij

=
(vxT)i+0.5, j − (vxT)i−0.5, j

Δx
+

(vyT)i, j+0.5 − (vyT)i, j−0.5

Δy



Start: Initialize T 

  Solve for P and v: 

Step T forward in time: 

Putting everything together 

−∇P +∇⋅σ = −Ra.Tẑ
  ∇ ⋅

 
v = 0

 

∂T

∂ t
=κ∇2T + H − v ⋅∇T

Finished? 

END 

No 

Yes 



Convection2D.m 
Matlab program for 2D convection  

•  Solves either 
– Variable-viscosity convection using a direct solver 
– Constant-viscosity convection using 

streamfunction-vorticity formulation and a 
multigrid solver (faster) 

•  Inputs 
– Physical: Ra, H, initial_temperature, 

variable_viscosity, 
viscosity_contrast_temperature, 
viscosity_contrast_depth 

– Numerical: nx, nz, nsteps 



Exercises (later) 
1.  Determine critical Rayleigh number for 

onset of convection (try values 1e1 to 1e5) 
2.  Observe effect of internal heating on 

convection (with Ra=1e6, try several H 
values from 0 to 30). 

3.  Observe effect of box width (try nx from 1* 
to 4* nz) 

4.  What temperature-dependent viscosity 
contrast is needed to obtain stagnant lid? 



Explanation: streamfunction-vorticity 
For highly viscous flow (e.g., Earth s mantle) with constant 
viscosity  (P=pressure, Ra=Rayleigh number): 

 −∇P +∇2v = −Ra.Tẑ

∇2ψ = −ω

∇4ψ = −Ra
∂T

∂x

Substituting the streamfunction for velocity, we get: 

∇2ω = Ra
∂T

∂x

writing as 2 Poisson equations: 

the streamfunction-vorticity formulation 

vx ,vz( ) = ∂ψ
∂ z

,− ∂ψ
∂ x

⎛
⎝⎜

⎞
⎠⎟



Advantages of using the 
streamfunction 

•  Two vector velocity components are 
reduced to one scalar 

•  Continuity is automatically satisfied 
•  If also solving the Navier-Stokes 

equation, pressure can be algebraically 
eliminated from the momentum 
equation, reducing the number of 
variables further 



p,T

u

w

x

z

p,T

p,T p,T

p,T

p,T p,T

p,T

p,Tu u

u

u u

w w w

ww

Staggered grid 
+streamfunction 

S 
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Streamfunction derivatives also involve advacent points 



Complexities 

“Mantle convection is much more 
complicated than thermal 
convection” (G. Schubert) 



Lagrangian tracers (markers) for composition 

Figure by T. Gerya 

“Marker-In-Cell” or “Particle-In-Cell” method 



2. Spherical geometry 



‘Yin-Yang’ spherical grid 
(Kageyama & Sato 2004 G3)  

• Orthogonal => finite-differences possible 
• Small overlap (minimum overlap version) 



3. Nonlinear rheology 
 (plasticity and/or dislocation creep) 

Calculate viscosity(T,p,stress) 

Calculate v field -> new stress 

Are stress 
&viscosity 
consistent 
enough? 

Requires iterations at each moment in time 

no 

yes 



•  Modification to continuity & normal stress terms 
•  Viscous heating & adiabatic heating 
•  Variable expansivity, conductivity 

4. Compressibility 



5. Visco-elasticity 

(see Moresi, 2002)

ηeff =η Δt e

Δt e +α

τ t +Δt e

= ηeff 2 ˆ D t +Δt e

+ τ t

μΔt e
+ W tτ t

μ
− τ tW t

μ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Alpha=relaxation time

Can be treated with a viscous flow solver using  
(i)  an effective viscosity 
(ii)  Adding elastic stress to the total stress tensor 



6. Other complexities 
•  Phase transitions 

– Modify density/buoyancy, also latent heat 
term in energy equation 

•  Melting 
– Calculate melting & form crust 

instantaneously, OR 
– Melt migration (Darcy’s law) 

•  Tracking of trace element geochemistry 
– On tracers/markers 
– Radiogenic decay, outgassing 



Application to Earth & planets 

Recent results from my research 
group, all calculated using the finite 

volume + marker-in-cell method 



Examples: 2D Crustal shortening and 
magma pipe intrusion (Taras Gerya, 

ETH, and coworkers) 

Analog

Analog

Numerical
I2ELVIS



Mid-ocean ridges: Gerya (Science 2010) 



Plate tectonics: 
 Earth unusual ? 

  Mars: rigid lid 
  Had plate tectonics early? 

  Venus: rigid lid 
  Plate tectonics->rigid lid? 
  Episodic overturn? 

  Earth: Different early on? 



The plate problem 
  Viscous, T-dependent rheology appropriate for 
the mantle leads to a stagnant lid 
  exp(E/kT)  where E~340 kJ/mol 
  T from 1600 -> 300 K 
  =>1.3x1048 variation  
  => RIGID/STAGNANT LID! 

Only small ΔT participates 
in convection: enough to 
give Δη factor ~10 



We don’t understand plate 
tectonics at a fundamental level 

  Rock deformation is complex 
  Viscous, brittle, plastic, elastic, nonlinear 
  Dependent on grain size, composition (major 
and trace element, eg water) 

  Multi-scale 
  Lengthscales from mm to 1000s km 
  Timescales from seconds - Gyr 



Strength of rocks 

  Increases with confining 
pressure (depth) then 
saturates 



Strength profile of lithosphere 
Continental (granite): Shimada 1993 Oceanic: Kohlstedt 1995



  Varying yield 
strength, 
including 
asthenosph. 



Spherical: 
 van Heck 
 & me,  
GRL 2008 



Stagnant lid mode 

H. Van Heck 



Mobile lid mode 

H. Van Heck 



Mobile lid mode 

H. Van Heck 



Influence of continents on self-
consistent plate tectonics? 

Tobias Rolf & me 





Continents help plate tectonics! 

Presence of 
continent allows 
plate tectonics at 
higher yield stress 

Rolf and Tackley, GRL 2011











Distribution 
shape varies 
with time



A problem: 2-sided subduction! 



Mantle convection codes assume 
a free-slip upper boundary: 
surface is FLAT  

  Zero shear stress but finite normal stress, 
proportional to what the topography would 
be if allowed.  
  But this may create unnatural geometries at 
subduction zones…. 



Real subduction zone: NOT FLAT 



Trench due to bending 



Geophys. Res. 
Lett. 2012



3 regimes 

Depends on friction coefficient AND increase of viscosity with depth



3D 





Compositional variations exist at all scales! 
Large scale Small scale 



Geochemical mantle: Old cartoons (2000) 



Entrainment of primordial dense piles: can 
explain high 3He/4He of ocean island basalts  
Deschamps, Kaminski & Tackley, Nature Geoscience 2011 



Calculations of Earth’s mantle thermo-
chemical evolution over 4.5 Gyr 

•  Include melting->crustal production,  
•  viscosity dependent on T, d, and stress,  
•  self-consistent plate tectonics,  
•  decaying radiogenic elements and cooling 
core,  
•  compressible anelastic approximation 

•  Many papers by Takashi Nakagawa & me 



Long-term evolution 

Nakagawa & Tackley 2010 Gcubed 



MARS: Modelling 

mantle dynamics 

and crustal 

formation 

Tobias Keller   &   Paul J. Tackley 

 
ETH Zürich, Geophysical Fluid Dynamics 



The crustal dichotomy 

MOLA data: Zuber (2001), Watters et. al (2007)

Causes: Extrinsic (impacts) or intrinsic (degree 1 mantle convection)?



Results 
Temperature [K]

Ra = 7.0 e+6

Crustal thickness [km]



Results at time = 1.0 Gyr 

Ra = 3e+6

Ra = 5e+6

Ra = 7e+6



Interpretation 

Striking first-order similarity!



Mars data

Discussion 

Crustal thickness distribution histograms
•   two peaks for northern plains and southern highlands

MOLA data from Watters et al. (2007)

N-S difference = 26 km

bad fit best fit

PROBLEM: Takes 100s Myr to form – probably too slow



Impact -> higher T -> more melting -> thicker crust 

Golabek, Keller et al., 2011



Subsequent evolution 









1021 Pa s

1020 Pa s

2.1020 Pa s



Topo Model

Topo Venus

Geoid Model

Geoid Venus

Admittance Model

Admittance Venus

Correlation Model

Correlation Venus

Topo Model

Topo Venus

Geoid Model

Geoid Venus

Admittance Model

Admittance Venus

Correlation Model

Correlation Venus

Topo Model

Topo Venus

Geoid Model

Geoid Venus

Admittance Model

Admittance Venus

Correlation Model

Correlation Venus

1021 Pa s

1020 Pa s

2.1020 Pa s







Cédric 
Gillmann

•  Volcanism -> volatiles (CO2, H2O) to atmosphere
•  Amospheric escape removes them
•  Surface T acts as a boundary condition for mantle 

convection.
•  Atmosphere model:

•  1D gray radiative convective model
•  Greenhouse gases (CO2, H2O) modify surface T
•  Takes into account the faint young sun hypothesis

•  Escape model:
•  Hydrodynamic escape during first 100 Myr
•  Only non-thermal escape mechanisms (sputtering, 

ionospheric outflow, dissociative recombination, ion 
pick up) during main evolution

•  Efficiency decreases with time, as depends on 
Extreme UV flux from the Sun (not total 
luminosity)



Outgassing

Atmosphere





 

 

 

 

 



Mercury: 3D spherical model 





• 

• 

– 

– 

COROT-7b 

Dynamics of extrasolar super-Earths? 





η(T , p) =η0 exp H (p)
RT

− H (0)
RT0

⎡

⎣
⎢

⎤

⎦
⎥

 
ηeff = ηdiff

−1 + 2e
σY

⎛

⎝
⎜

⎞

⎠
⎟

−1









• 

• 

– 

– 

• 






