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8 Data assimilation methods

8.1 Introduction

Many geodynamic problems can be described by mathematical models, i.e. by a set of
partial differential equations and boundary and/or initial conditions defined in a specific
domain. A mathematical model links the causal characteristics of a geodynamic process
with its effects. The causal characteristics of the process include, for example, parameters
of the initial and boundary conditions, coefficients of the differential equations, and geo-
metrical parameters of a model domain. The aim of the direct mathematical problem is to
determine the relationship between the causes and effects of the geodynamic process and
hence to find a solution to the mathematical problem for a given set of parameters and
coefficients. An inverse problem is the opposite of a direct problem. An inverse problem is
considered when there is a lack of information on the causal characteristics (but information
on the effects of the geodynamic process exists). Inverse problems can be subdivided into
time-reverse or retrospective problems (e.g. to restore the development of a geodynamic
process), coefficient problems (e.g. to determine the coefficients of the model equations
and/or boundary conditions), geometrical problems (e.g. to determine the location of heat
sources in a model domain or the geometry of the model boundary), and some others. In
this chapter we will consider time-reverse (retrospective) problems in geodynamics.

Inverse problems are often ill-posed. Jacques Hadamard (1865–1963) introduced the
idea of well- (and ill-) posed problems in the theory of partial differential equations
(Hadamard, 1902). A mathematical model for a geophysical problem has to be well-posed
in the sense that it has to have the properties of existence, uniqueness and stability of a
solution to the problem. Problems for which at least one of these properties does not hold
are called ill-posed. The requirement of stability is the most important one. If a problem
lacks the property of stability then its solution is almost impossible to compute because
computations are polluted by unavoidable errors. If the solution of a problem does not
depend continuously on the initial data, then, in general, the computed solution may have
nothing to do with the true solution.

The inverse (retrospective) problem of thermal convection in the mantle is an ill-posed
problem, since the backward heat problem, describing both heat advection and conduction
through the mantle backwards in time, possesses the properties of ill-posedness (Kirsch,
1996). In particular, the solution to the problem does not depend continuously on the initial
data. This means that small changes in the present-day temperature field may result in large
changes of predicted mantle temperatures in the past. Let us explain this statement in the
case of the one-dimensional (1-D) diffusion equation.

Source: Ismail-Zadeh, A., and P. Tackley, 2010. Computational Methods for Geodynamics,  
            Cambridge University Press, Cambridge. 
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Consider the following boundary-value problem for the 1-D backward diffusion equation:

∂u(t, x)/∂t = ∂2u(t, x)/∂x2, 0 ≤ x ≤ π , t ≤ 0 (8.1)

with the following boundary and initial conditions

u(t, 0) = 0 = u(t, π), t ≤ 0, (8.2)

u(0, x) = φn(x), 0 ≤ x ≤ π . (8.3)

At the initial time we assume that the function φn(x) takes the following two forms:

φn(x) = sin((4n + 1)x)

4n + 1
(8.4)

and

φ0(x) ≡ 0. (8.5)

Note that

max
0≤x≤π

|φn(x) − φ0(x)| ≤ 1

4n + 1
→ 0 at n → ∞. (8.6)

The following two solutions of the problem correspond to the two chosen functions of
φn(x), respectively:

un(t, x) = sin((4n + 1)x)

4n + 1
exp(−(4n + 1)2t) at φn(x) = φn (8.7)

and

u0(t, x) ≡ 0 at φn(x) = φ0. (8.8)

At t = −1 and x = π/2 we obtain

un(−1, π/2) = 1

4n + 1
exp((4n + 1)2) at n → ∞. (8.9)

At large n two closely set initial functions φn and φ0 are associated with the two strongly
different solutions at t = −1 and x = π/2. Hence, a small error in the initial data (8.6) can
result in very large errors in the solution to the backward problem (8.9), and therefore the
solution is unstable, and the problem is ill-posed.

Despite the fact that many inverse problems are ill-posed, there are methods for solving
the problems. Andrei Tikhonov (1906–1993) introduced the idea of conditionally well-posed
problems and the regularisation method (Tikhonov, 1963). According to Tikhonov, a class
of admissible solutions to conditionally ill-posed problems should be selected to satisfy
the following conditions: (i) a solution exists in this class, (ii) the solution is unique in
the same class and (iii) the solution depends continuously on the input data. The Tikhonov
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Fig. 8.1. Flowchart of forward and backward numerical modelling in geodynamics.

regularisation is essentially a trade-off between fitting the observations and reducing a norm
of the solution to the mathematical model of a geophysical problem.

Forward modelling in geodynamics is associated with the solution of direct mathematical
problems, and backward modelling with the solution of inverse (time-reverse) problems.
Figure 8.1 illustrates the flow in forward and backward numerical modelling. In forward
modelling one starts with unknown initial conditions, which are added to a set of gov-
erning equations, rheological law and boundary conditions to define properly the relevant
mathematical problem. Once the problem is stated, a numerical model (a set of discrete
equations) is solved forward in time using computational methods. The initial conditions
of the numerical model vary (keeping all other model parameters unchanged) to fit model
results to reality (present observations). Because the model depends on the initial conditions
and they are unknown a priori, the task ‘to fit model results to reality’ becomes difficult.

Another approach is to use backward modelling. In this case present observations are
employed as input conditions for the mathematical model. We shall use the term of ‘input
conditions’ in backward modelling to distinguish it from the term of ‘initial conditions’
for the forward modelling, although the ‘input conditions’ are the initial conditions for the
mathematical model in backward modelling. The aim of backward modelling in geodynam-
ics is to find the ‘initial conditions’ in the geological past from the present observations and
to restore mantle structures accordingly. Special methods are required to assimilate present
observations to the past (Ismail-Zadeh et al., 2009). In the following sections we describe
the methods for data assimilation.
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8.2 Data assimilation

The mantle is heated from the core and from inside owing to decay of radioactive elements.
Since thermal convection in the mantle is described by heat advection and diffusion, one can
ask: is it possible to tell, from the present temperature distribution estimations of the Earth,
something about the Earth’s temperature distribution in the geological past? Even though
heat diffusion is irreversible in the physical sense, it is possible to predict accurately the
heat transfer backwards in time by using data assimilation techniques without contradicting
the basic thermodynamic laws (see, for example, Ismail-Zadeh et al., 2004a, 2007).

To restore mantle dynamics in the geological past, data assimilation techniques can be
used to constrain the initial conditions for the mantle temperature and velocity from their
present observations. The initial conditions so obtained can then be used to run forward
models of mantle dynamics to restore the evolution of mantle structures. Data assimilation
can be defined as the incorporation of observations (in the present) and initial conditions
(in the past) in an explicit dynamic model to provide time continuity and coupling among
the physical fields (e.g. velocity, temperature). The basic principle of data assimilation
is to consider the initial condition as a control variable and to optimise the initial con-
dition in order to minimise the discrepancy between the observations and the solution
of the model.

If heat diffusion is neglected, the present mantle temperature and flow can be assimilated
into the past by using the backward advection (BAD). Numerical approaches to the solution
of the inverse problem of the Rayleigh–Taylor instability were developed for a dynamic
restoration of diapiric structures to their earlier stages (Ismail-Zadeh et al., 2001b; Kaus
and Podladchikov, 2001; Korotkii et al., 2002; Ismail-Zadeh et al., 2004b). Steinberger and
O’Connell (1998) and Conrad and Gurnis (2003) modelled the mantle flow backwards in
time from present-day mantle density heterogeneities inferred from seismic observations.

In sequential filtering a numerical model is computed forward in time for the interval for
which observations have been made, updating the model each time where observations are
available. The sequential filtering was used to compute mantle circulation models (Bunge
et al., 1998, 2002). Despite sequential data assimilation well adapted to mantle circulation
studies, each individual observation influences the model state at later times. Information
propagates from the geological past into the future, although our knowledge of the Earth’s
mantle at earlier times is much poorer than that at present.

The variational (VAR) data assimilation method has been pioneered by meteorologists
and used very successfully to improve operational weather forecasts (see Kalnay, 2003).
The data assimilation has also been widely used in oceanography (see Bennett, 1992) and in
hydrological studies (see McLaughlin, 2002). The use of VAR data assimilation in models
of mantle dynamics (to estimate mantle temperature and flow in the geological past) has
been put forward by Bunge et al. (2003) and Ismail-Zadeh et al. (2003a, b) independently.
The major differences between the two approaches are that Bunge et al. (2003) applied the
VAR method to the coupled Stokes, continuity and heat equations (generalised inverse),
whereas Ismail-Zadeh et al. (2003a) applied the VAR method to the heat equation only. The
VAR approach by Ismail-Zadeh et al. (2003a) is computationally less expensive, because
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it does not involve the Stokes equation in the iterations between the direct and adjoint
problems. Moreover, this approach admits the use of temperature-dependent viscosity.

The VAR data assimilation algorithm was employed for numerical restoration of models
of present prominent mantle plumes to their past stages (Ismail-Zadeh et al., 2004a; Hier-
Majumder et al., 2005). Effects of thermal diffusion and temperature-dependent viscosity
on the evolution of mantle plumes was studied by Ismail-Zadeh et al. (2006) to recover
the structure of mantle plumes prominent in the past from that of present plumes weakened
by thermal diffusion. Liu and Gurnis (2008) simultaneously inverted mantle properties
and initial conditions using the VAR data assimilation method and applied the method to
reconstruct the evolution of the Farallon Plate subduction (Liu et al., 2008).

The quasi-reversibility (QRV) method was introduced by Lattes and Lions (1969). The
use of the QRV method implies the introduction into the backward heat equation of the
additional term involving the product of a small regularisation parameter and a higher-
order temperature derivative. The data assimilation in this case is based on a search of the
best fit between the forecast model state and the observations by minimising the regularisa-
tion parameter. The QRV method was introduced in geodynamic modelling (Ismail-Zadeh
et al., 2007) and employed to assimilate data in models of mantle dynamics (Ismail-Zadeh
et al., 2008).

In this chapter we describe three principal techniques used to assimilate data related
to geodynamics: (i) backward advection, (ii) variational (adjoint) and (iii) quasi-
reversibility methods.

8.3 Backward advection (BAD) method

We consider the three-dimensional model domain � = [0, x1 = 3h] × [0, x2 = 3h] ×
[0, x3 = h], where x = (x1, x2, x3) are the Cartesian coordinates and h is the depth of the
domain, and assume that the mantle behaves as a Newtonian incompressible fluid with a
temperature-dependent viscosity and infinite Prandtl number. The mantle flow is described
by heat, motion and continuity equations (Chandrasekhar, 1961). To simplify the governing
equations, we make the Boussinesq approximation (Boussinesq, 1903) keeping the density
constant everywhere except for buoyancy term in the equation of motion. In the Boussinesq
approximation the dimensionless equations take the form:

∂T/∂t + u · ∇T = ∇2T , x ∈ �, t ∈ (0, ϑ), (8.10)

∇P = div [ηE] + RaTe, E = {∂ui/∂xj + ∂uj/∂xi}, e = (0, 0, 1), (8.11)

divu = 0, t ∈ (0, ϑ), x ∈ �. (8.12)

Here T , t, u = (u1, u2, u3), P and η are dimensionless temperature, time, velocity, pressure
and viscosity, respectively. The Rayleigh number is defined as Ra = αgρref 
Th3η−1

ref κ
−1,

where α is the thermal expansivity, g is the acceleration due to gravity, ρref and ηref are the
reference typical density and viscosity, respectively; 
T is the temperature contrast between
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the lower and upper boundaries of the model domain; and κis the thermal diffusivity. In Eqs.
(8.10)–(8.12) length, temperature and time are normalised by h,
T and h2κ−1, respectively.

At the boundary � of the model domain � we set the impenetrability condition with
no-slip or perfect slip conditions: u = 0 or ∂uτ /∂n = 0, u · n = 0, where n is the outward
unit normal vector at a point on the model boundary, and uτ is the projection of the velocity
vector onto the tangent plane at the same point on the model boundary. We assume zero
heat flux through the vertical boundaries of the box. Either temperature or heat flux are
prescribed at the upper and lower boundaries of the model domain. To solve the problem
forward or backward in time we assume the temperature to be known at the initial time
(t = 0) or at the present time (t = ϑ). Equations (8.10)–(8.12) together with the boundary
and initial conditions describe a thermo-convective mantle flow.

The principal difficulty in solving the problem (8.10)–(8.12) backward in time is the
ill-posedness of the backward heat problem and the presence of the heat diffusion term
in the heat equation. The backward advection (BAD) method suggests neglecting the heat
diffusion term, and the heat advection equation can then be solved backward in time. Both
direct (forward in time) and inverse (backward in time) problems of the heat (density)
advection are well-posed. This is because the time-dependent advection equation has the
same form of characteristics for the direct and inverse velocity field (the vector velocity
reverses its direction, when time is reversed). Therefore, numerical algorithms used to
solve the direct problem of the gravitational instability can also be used in studies of the
time-reverse problems by replacing positive time steps with negative ones.

Using the BAD method, Steinberger and O’Connell (1998) studied the motion of hotspots
relative to the deep mantle. They combined the advection of plumes, which are thought to
cause the hotspots on the Earth’s surface, with a large-scale mantle flow field and constrained
the viscosity structure of the Earth’s mantle. Conrad and Gurnis (2003) modelled the history
of mantle flow by using a tomographic image of the mantle beneath southern Africa as
an input (initial) condition for the backward mantle advection model while reversing the
direction of flow. If the resulting model of the evolution of thermal structures obtained by
the BAD method is used as a starting point for a forward mantle convection model, present
mantle structures can be reconstructed if the time of assimilation does not exceed 50–75 Myr.

8.4 Application of the BAD method: restoration of the
evolution of salt diapirs

Salt is so buoyant and weak compared with most other rocks with which it is found that it
develops distinctive structures with a wide variety of shapes and relationships with other
rocks by various combinations of gravity, thermal effects and lateral forces. The crests of
passive salt bodies can stay near the sedimentation surface while their surroundings are
buried (downbuilt) by other sedimentary rocks (Jackson et al., 1994). The profiles of down-
built passive diapirs can simulate those of fir trees because they reflect the ratio of increase
in diapir height relative to the rate of accumulation of the downbuilding sediments (Talbot,
1995) and lateral forces (Koyi, 1996). Salt movements can be triggered by faulting and
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driven by erosion and redeposition, differential loading, buoyancy and other geological
processes. Many salt sequences are buried by overburdens sufficiently stiff to resist the
buoyancy of the salt. Such salt will only be driven by differential loading into sharp-crested
reactive-diapiric walls after the stiff overburden is weakened and thinned by faults (Vendev-
ille and Jackson, 1992). Such reactive diapirs often rise up and out of the fault zone and
thereafter can continue increasing in relief as by passive downbuilding of more sediment.

Active diapirs are those that lift or displace their overburdens. Although any erosion of
the crests of salt structures and deposition of surrounding overburden rocks influence their
growth, diapirs with significant relief have sufficient buoyancy to rise (upbuild) through
stiff overburdens (Jackson et al., 1994). The rapid deposition of denser and more viscous
sediments over less dense and viscous salt results in the Rayleigh–Taylor instability. This
leads to a gravity-driven single overturn of the salt layer with its denser but ductile overbur-
den. Rayleigh–Taylor overturns (Ramberg, 1968) are characterised by the rise of rocksalt
through overlying and younger compacting clastic sediments that are deformed as a result.
The consequent salt structures evolve through a great variety of shapes. Perturbations of
the interface between salt and its denser overburden result in the overburden subsiding as
salt rises owing to the density inversion.

Two-dimensional (2-D) numerical models of salt diapirism were first developed by Woidt
(1978) who examined how the viscosity ratio between the salt and its overburden affects
the shapes and growth rate of diapirs. Schmeling (1987) demonstrated how the dominant
wavelength and the geometry of gravity overturns are influenced by the initial shape of
the interface between the salt and its overburden. Römer and Neugebauer (1991) presented
numerical results of modelling diapiric structures in a multilayered medium. Later Poliakov
et al. (1993a) and Naimark et al. (1998) developed numerical models of diapiric growth
considering the effects of sedimentation and redistribution of sediments. Van Keken et al.
(1993), Poliakov et al. (1993b), Daudre and Cloetingh (1994), and Poliakov et al. (1996)
introduced non-linear rheological properties of salt and overburden into their numerical
models. The authors mentioned above used various numerical methods to compute the
models of salt diapirism, among them FD method, Lagrangian and Eulerian FE method and
their combination.

Two-dimensional analyses of the evolution of salt structures are restricted and not suitable
for examining the complicated shapes of mature diapiric patterns. Resolving the geometry
of gravity overturns requires three-dimensional (3-D) numerical modelling. Ismail-Zadeh
et al. (2000b) analysed such typical 3-D structures as deep polygonal buoyant ridges, shallow
salt-stock canopies and salt walls. Kaus and Podladchikov (2001) showed how complicated
3-D diapirs developed from initial 2-D perturbations of the interface between salt and
its overburden.

The increasing application of 3-D seismic exploration in oil and gas prospecting points to
the need for vigorous efforts toward numerical modelling of the evolution of salt structures
in three dimensions, both forward and backward in time. Most numerical models of salt
diapirism involved the forward evolution of salt structures toward increasing maturity.
Ismail-Zadeh et al. (2001b) developed a numerical approach to 2-D dynamic restoration
of cross-sections across salt structures. The approach was based on solving the inverse
problem of gravitational instability by the BAD method. The same method was used in
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3-D cases to model Rayleigh-Taylor instability backward in time (Kaus and Podladchikov,
2001; Korotkii et al., 2002; Ismail-Zadeh et al., 2004b).

We consider here the advection problem (slow flow of an incompressible fluid of variable
density and viscosity due to gravity) in the rectangular domain �. A 3-D model of the flow
of salt and of the viscous deformation of the overburden of salt is described by the Stokes
equations (8.11), where the term Ra T is replaced by the term −gρ, and by Eq. (8.10), where
temperature T is replaced by density ρ (viscosity η) and the term on the right-hand side is
omitted. Equation (8.10) in this case describes the advection of density (viscosity) with the
flow. For details of the numerical model see Section 4.10.2.

Although dimensionless values and functions are used in computations, numerical results
are presented in dimensional form for the reader’s convenience. The time step 
t is chosen
from the condition that the maximum displacement does not exceed a given small value
h: 
t = h/umax, where umax is the maximum value of the flow velocity. Salt diapirs in
the numerical model evolve from random initial perturbations of the interface between the
salt and its overburden deposited on the top of horizontal salt layer prior to the interface
perturbation. Initially the evolution of salt diapirs is modelled forward in time as presented
in the model example in Section 4.10.2. Figures 8.2 (a–d, a front view) and 8.3 (a–d, a
top view) show the positions of the interface between salt and overburden in the model at
successive times over a period of about 21 Myr.

To restore the evolution of salt diapirs predicted by the forward model through successive
earlier stages, a positive time is replaced by a negative time, and the problem is solved back-
ward in time. Such a replacement is possible, because the characteristics of the advection
equations have the same form for both direct and inverse velocity fields. The final position
of the interface between salt and its overburden in the forward model (Figs. 8.2d and 8.3d)
is used as an initial position of the interfaces for the backward model. Figures 8.2, d–g and
8.3, d–g illustrate successive steps in the restoration of the upbuilt diapirs. Least square
errors δ of the restoration are calculated by using the formula:

δ(x1, x2) =
⎛
⎝

h∫
0

(ρ(x1, x2, x3) − ρ̃(x1, x2, x3))
2 dx3

⎞
⎠

1/2

, (8.13)

where ρ(x1, x2, x3) is the density at initial time, and ρ̃(x1, x2, x3) is the restored density
(Fig. 8.3h). The maximum value δ does not exceed 120 kg m−3, and the error is associated
with small areas of the initial interface’s perturbation.

To demonstrate the stability of the restoration results with respect to changes in the density
of the overburden, the restoration procedure was tested by synthetic examples. Initially the
forward model is run for 200 computational time steps (about 30 Myr). Then the density
contrast (δρ) between salt and its overburden is changed by a few per cent: namely, δρ

was chosen to be 400, 405, 410 (the actual contrast), 415 and 420 kg m−3. The evolution
of the system was restored for these density contrasts. Ismail-Zadeh et al. (2004b) found
small discrepancies (less than 0.5%) between least square errors for all these test cases.
The tests show that the solution is stable to small changes in the initial conditions, and
this is in agreement with the mathematical theory of well-posed problems (Tikhonov and
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(a)

(b)

(c)

(d)

(e)

(f)

(g)
0 Myr

17.7 Myr

19.2 Myr

21.3 Myr

Fig. 8.2. Evolution (front view) of salt diapirs toward increasing maturity (a)–(d) and restoration of the
evolution (d)–(g). Interfaces between salt and its overburden are presented at successive times.
After Ismail-Zadeh et al. (2004b).

Samarskii, 1990). Meanwhile it should be mentioned that if the model is computed for a
very long time and the less dense salt layer spreads uniformly into a horizontal layer near
the surface, practical restoration of the layered structure becomes impossible (Ismail-Zadeh
et al., 2001b).

8.5 Variational (VAR) method

In this section we describe a variational approach to numerical restoration of thermo-
convective mantle flow. The variational data assimilation is based on a search of the best
fit between the forecast model state and the observations by minimising an objective func-
tional (a normalised residual between the target model and observed variables) over space
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and time. To minimise the objective functional over time, an assimilation time interval is
defined and an adjoint model is typically used to find the derivatives of the objective func-
tional with respect to the model states. The variational data assimilation is well suited for
smooth problems (we discuss the problem of smoothness in Section 8.7).

The method for variational data assimilation can be formulated with a weak constraint (a
generalised inverse) where errors in the model formulation are taken into account (Bunge
et al., 2003) or with a strong constraint where the model is assumed to be perfect except for
the errors associated with the initial conditions (Ismail-Zadeh et al., 2003a). Actually there
are several sources of errors in forward and backward modelling of thermo-convective man-
tle flow, which we discuss in Section 8.12. The generalised inverse of mantle convection
considers model errors, data misfit and the misfit of parameters as control variables. Unfortu-
nately the generalised inverse presents a tremendous computational challenge and is difficult
to solve in practice. Hence, Bunge et al. (2003) considered a simplified generalised inverse
imposing a strong constraint on errors (ignoring all errors except for the initial condition
errors). Therefore, the strong constraint makes the problem computationally tractable.

We consider the following objective functional at t ∈ [0, ϑ]

J (ϕ) = ‖T (ϑ , ·; ϕ) − χ(·)‖2 , (8.14)

where ‖ · ‖ denotes the norm in the space L2(�) (the Hilbert space with the norm defined as
‖y‖ = [∫

�
y2(x)dx]1/2). Since in what follows the dependence of solutions of the thermal

boundary value problems on initial data is important, we introduce these data explicitly
into the mathematical representation of temperature. Here T (ϑ , ·; ϕ) is the solution of the
thermal boundary value problem (8.10) at the final time ϑ , which corresponds to some
(unknown as yet) initial temperature distribution ϕ(x); χ(x) = T (ϑ , x; T0) is the known
temperature distribution at the final time, which corresponds to the initial temperature T0(·).
The functional has its unique global minimum at value ϕ ≡ T0 and J (T0) ≡ 0, ∇J (T0) ≡ 0
(Vasiliev, 2002).

To find the minimum of the functional we employ the gradient method (k = 0, . . . , j, . . .):

ϕk+1 = ϕk − βk∇J (ϕk), ϕ0 = T∗, (8.15)

βk =
{

J (ϕk)/ ‖∇J (ϕk)‖ , 1 ≤ k ≤ k∗
1/(k + 1), k > k∗

, (8.16)

where T∗ is an initial temperature guess. The minimisation method belongs to a class of
limited-memory quasi-Newton methods (Zou et al., 1993), where approximations to the
inverse Hessian matrices are chosen to be the identity matrix. Equation (8.16) is used
to maintain the stability of the iteration scheme (8.15). Consider that the gradient of the
objective functional ∇J (ϕk) is computed with an error ‖∇Jδ(ϕk) − ∇J (ϕk)‖ < δ, where
∇Jδ(ϕk) is the computed value of the gradient. We introduce the function ϕ∞ = ϕ0 −∑∞

k=1 βk∇J (ϕk), assuming that the infinite sum exists, and the function ϕ∞
δ = ϕ0 −∑∞

k=1 βk∇J (
δ ϕk) as the computed value of ϕ∞. For stability of the iteration method (8.15),
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the following inequality should be held:

∥∥ϕ∞
δ − ϕ∞∥∥ =

∥∥∥∥∥
∞∑

k=1

βk(∇Jδ(uk) − ∇J (uk))

∥∥∥∥∥

≤
∞∑

k=1

βk ‖∇Jδ(ϕk) − ∇J (ϕk)‖ ≤ δ

∞∑
k=1

βk .

The sum
∑∞

k=1 βk is finite, ifβk = 1/kp, p > 1.We use p = 1, but the number of iterations is
limited, and therefore, the iteration method is conditionally stable, although the convergence
rate of these iterations is low. Meanwhile the gradient of the objective functional ∇J (ϕk)

decreases steadily with the number of iterations providing the convergence, although the
absolute value of J (ϕk)/‖∇J (ϕk)‖ increases with the number of iterations, and it can result
in instability of the iteration process (Samarskii and Vabischevich, 2004).

The minimisation algorithm requires the calculation of the gradient of the objective
functional, ∇J . This can be done through the use of the adjoint problem for the model
equations (8.10)–(8.12) with the relevant boundary and initial conditions. In the case of the
heat problem, the adjoint problem can be represented in the following form:

∂�/∂t + u · ∇� + ∇2� = 0, x ∈ �, t ∈ (0, ϑ),

σ1� + σ2∂�/∂n = 0, x ∈ �, t ∈ (0, ϑ),

�(ϑ , x) = 2(T (ϑ , x; ϕ) − χ(x)), x ∈ �, (8.17)

where σ1 and σ2 are some smooth functions or constants satisfying the condition σ 2
1 +σ 2

2 
=
0. Selecting σ1 and σ2 we can obtain corresponding boundary conditions.

The solution to the adjoint problem (8.17) is the gradient of the objective functional (8.14).
To prove the statement, we consider an increment of the functional J in the following form:

J (ϕ + h) − J (ϕ) =
∫
�

(T (ϑ , x; ϕ + h) − χ(x))2 dx −
∫
�

(T (ϑ , x; ϕ) − χ(x))2 dx

= 2
∫
�

(T (ϑ , x; ϕ) − χ(x)) ζ(ϑ , x)dx +
∫
�

ζ 2(ϑ , x)dx

=
∫
�

�(ϑ , x)ζ(ϑ , x)dx +
∫
�

ζ 2(ϑ , x)dx

=
∫
�

ϑ∫
0

∂

∂t
(�(t, x)ζ(t, x)) dxdt +

∫
�

�(0, x)h(x)dx +
∫
�

ζ 2(ϑ , x)dx,

(8.18)

where �(t, x) = 2(T (t, x; ϑ) − χ(x)); h(x) is a small heat increment to the unknown initial
temperature ϕ(x); and ζ = T (t, x; ϕ+h)−T (t, x; ϕ) is the solution to the following forward
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heat problem

∂ζ/∂t + u · ∇ζ − ∇2ζ = 0, x ∈ �, t ∈ (0, ϑ),

σ1ζ + σ2∂ζ/∂n = 0, x ∈ �, t ∈ (0, ϑ),

ζ(0, x) = h(x), x ∈ �. (8.19)

Considering the fact that � = �(t, x) and ζ = ζ(t, x) are the solutions to (8.17) and (8.19)
respectively, and the velocity u satisfies (8.12) and the boundary conditions specified,
we obtain

∫
�

ϑ∫
0

∂

∂t
(�(t, x)ζ(t, x)) dtdx =

ϑ∫
0

∫
�

{
∂

∂t
�(t, x)ζ(t, x) + �(t, x)

∂ζ(t, x)

∂t

}
dxdt

=
ϑ∫

0

∫
�

ζ(t, x)
[
−u · ∇� − ∇2�

]
dxdt +

ϑ∫
0

∫
�

�(t, x)
[
−u · ∇ζ + ∇2ζ

]
dxdt

=
ϑ∫

0

∫
�

{�∇ζ · n − ζ∇� · n}d�dt +
ϑ∫

0

∫
�

{∇� · ∇ζ − ∇ζ · ∇�}dxdt

+
ϑ∫

0

∫
�

{ζ�∇ · u + �u · ∇ζ − �u · ∇ζ } dxdt − 2

ϑ∫
0

∫
�

ζ�u · n d�dt = 0.

(8.20)

Hence

J (ϕ + h) − J (ϕ) =
∫
�

�(0, x)h(x)dx+
∫
�

ζ 2(ϑ , x)dx =
∫
�

�(0, x)h(x)dx + o(‖h‖).

(8.21)

The gradient is derived by using the Gateaux derivative of the objective functional.
Therefore, we obtain that the gradient of the functional is represented as

∇J (ϕ) = �(0, ·). (8.22)

Thus, the solution of the backward heat problem is reduced to solutions of series of for-
ward problems, which are known to be well-posed (Tikhonov and Samarskii, 1990). The
algorithm can be used to solve the problem over any subinterval of time in [0, ϑ].

We note that information on the properties of the Hessian matrix (∇2J ) is important in
many aspects of minimisation problems (Daescu and Navon, 2003). To obtain sufficient
conditions for the existence of the minimum of the problem, the Hessian matrix must be
positive definite at T0 (optimal initial temperature). However, an explicit evaluation of the
Hessian matrix in many cases is prohibitive owing to the number of variables.



161 8.6 Variational (VAR) method

We now describe the algorithm for numerical solution of the inverse problem of mantle
convection, that is, the numerical algorithm to solve (8.10)–(8.12) backward in time using
the VAR method. A uniform partition of the time axis is defined at points tn = ϑ − δt n,
where δt is the time step, and n successively takes integer values from 0 to some natural
number m = ϑ/δt. At each subinterval of time [tn+1, tn], the search of the temperature T
and flow velocity u at t = tn+1 consists of the following basic steps.

Step 1. Given the temperature T = T (tn, x) at t = tn solve a set of linear algebraic equations
derived from (8.11) and (8.12) with the appropriate boundary conditions in order
to determine the velocity u.

Step 2. The ‘advective’ temperature Tadv = Tadv(tn+1, x) is determined by solving the
advection heat equation backward in time, neglecting the diffusion term in Eq.
(8.10). This can be done by replacing positive time steps by negative ones (see
Section 8.4). Given the temperature T = Tadv at t = tn+1 steps 1 and 2 are then
repeated to find the velocity uadv = u(tn+1, x; Tadv).

Step 3. The heat equation (8.10) is solved with appropriate boundary conditions and initial
condition ϕk(x) = Tadv(tn+1, x), k = 0, 1, 2, . . . , m, . . . forward in time using
velocity uadv in order to find T (tn, x; ϕk).

Step 4. The adjoint equation of (8.17) is then solved backward in time with appropriate
boundary conditions and initial condition �(tn, x) = 2(T (tn, x; ϕk) − χ(x)) using
velocity u in order to determine ∇J (ϕk) = �(tn+1, x; ϕk).

Step 5. The coefficient βk is determined from (8.16), and the temperature is updated (i.e.
ϕk+1 is determined) from (8.15).

Steps 3 to 5 are repeated until

δϕn = J (ϕn) + ‖∇J (ϕn)‖2 < ε, (8.23)

where ε is a small constant. Temperature ϕk is then considered to be the approximation to
the target value of the initial temperature T (tn+1, x). And finally, step 1 is used to determine
the flow velocity u(tn+1, x; T (tn+1, x)). Step 2 introduces a pre-conditioner to accelerate
the convergence of temperature iterations in steps 3 to 5 at high Rayleigh number. At
low Ra, step 2 is omitted and uadv is replaced by u. After these algorithmic steps, we
obtain temperature T = T (tn, x) and flow velocity u = u(tn, x) corresponding to t = tn,
n = 0, . . . , m. Based on the obtained results, we can use interpolation to reconstruct, when
required, the entire process on the time interval [0, ϑ] in more detail.

Thus, at each subinterval of time we apply the VAR method to the heat equation only,
iterate the direct and conjugate problems for the heat equation in order to find temperature,
and determine backward flow from the Stokes and continuity equations twice (for ‘advec-
tive’ and ‘true’ temperatures). Compared to the VAR approach by Bunge et al. (2003),
the described numerical approach is computationally less expensive, because we do not
involve the Stokes equation in the iterations between the direct and conjugate problems
(the numerical solution of the Stokes equation is the most time consuming calculation).
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8.6 Application of the VAR method: restoration of
mantle plume evolution

A plume is hot, narrow mantle upwelling that is invoked to explain hotspot volcanism. In
a temperature-dependent viscosity fluid such as the mantle, a plume is characterised by a
mushroom-shaped head and a thin tail. Upon impinging under a moving lithosphere, such a
mantle upwelling should therefore produce a large amount of melt and successive massive
eruption, followed by smaller but long-lived hot-spot activity fed from the plume tail (Mor-
gan, 1972; Richards et al., 1989; Sleep, 1990). Meanwhile, slowly rising plumes (a buoyancy
flux of less than 103 kg s−1) coming from the core–mantle boundary should have cooled
so much that they would not melt beneath old lithosphere (Albers and Christensen, 1996).

Mantle plumes evolve in three distinguishing stages: (i) immature, i.e. an origin and
initial rise of the plumes; (ii) mature, i.e. plume–lithosphere interaction, gravity spread-
ing of plume head and development of overhangs beneath the bottom of the lithosphere,
and partial melting of the plume material (see Ribe and Christensen, 1994; Moore et al.,
1998); and (iii) overmature, i.e. slowing-down of the plume rise and fading of the man-
tle plumes due to thermal diffusion (Davaille and Vatteville, 2005; Ismail-Zadeh et al.,
2006). The ascent and evolution of mantle plumes depend on the properties of the source
region (that is, the thermal boundary layer) and the viscosity and thermal diffusivity of
the ambient mantle. The properties of the source region determine the temperature and
viscosity of the mantle plumes. Structure, flow rate and heat flux of the plumes are con-
trolled by the properties of the mantle through which the plumes rise. While properties
of the lower mantle (e.g. viscosity, thermal conductivity) are relatively constant during
about 150 Myr lifetime of most plumes, source region properties can vary substantially
with time as the thermal basal boundary layer feeding the plume is depleted of hot material
(Schubert et al., 2001). Complete local depletion of this boundary layer cuts the plume off
from its source.

A mantle plume is a well-established structure in computer modelling and laboratory
experiments. Numerical experiments on dynamics of mantle plumes (Trompert and Hansen,
1998a,b; Zhong, 2005) showed that the number of plumes increases and the rising plumes
become thinner with an increase in Rayleigh number. Disconnected thermal plume struc-
tures appear in thermal convection at Ra greater than 107 (Hansen et al., 1990; Malevsky
et al., 1992). At high Ra (in the hard turbulence regime) thermal plumes are torn off the
boundary layer by the large-scale circulation or by non-linear interactions between plumes
(Malevsky and Yuen, 1993). Plume tails can also be disconnected when the plumes are
tilted by plate scale flow (see Olson and Singer, 1985; Steinberger and O’Connell, 1998).
Ismail-Zadeh et al. (2006) presented an alternative explanation for the disconnected mantle
plume heads and tails that is based on thermal diffusion of mantle plumes.

A dimensionless temperature-dependent viscosity law (Busse et al., 1993) is employed
in the models discussed in this chapter

η(T ) = exp

(
M

T + G
− M

0.5 + G

)
, (8.24)
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where M = [225/ln(r)] − 0.25 ln(r), G = 15/ln(r) − 0.5, and r is the viscosity ratio
between the upper and lower boundaries of the model domain. The temperature-dependent
viscosity profile has its minimum at the core–mantle boundary. A more realistic viscosity
profile (Forte and Mitrovica, 2001) will influence the evolution of mantle plumes, though
it will not influence the restoration of the plumes.

The model domain is divided into 37 × 37 × 29 rectangular finite elements to approxi-
mate the vector velocity potential by tricubic splines, and a uniform grid 112 × 112 × 88
is employed for approximation of temperature, velocity and viscosity. Temperature in
the heat equation (8.10) is approximated by finite differences and determined by the
semi-Lagrangian method (see Section 7.8). A numerical solution to the Stokes and incom-
pressibility equations (8.11) and (8.12) is based on the introduction of a two-component
vector velocity potential and on the application of the Eulerian finite-element method with
a tricubic-spline basis for computing the potential (Section 4.9 and 4.10). Such a proce-
dure results in a set of linear algebraic equations with a symmetric positive-definite banded
matrix. We solve the set of equations by the conjugate gradient method (Section 6.3.3).

8.6.1 Forward modelling

Here the evolution of mature mantle plumes is modelled initially forward in time. With
α = 3×10−5 K−1, ρref = 4000 kg m−3, 
T = 3000 K, h = 2800 km, ηref = 8×1022 Pa s,
and κ = 10−6 m−2 s−1, the initial Rayleigh number is Ra = 9.5 × 105. While plumes
evolve in the convecting heterogeneous mantle, at the initial time it is assumed that the
plumes develop in a laterally homogeneous temperature field, and hence the initial mantle
temperature is considered to increase linearly with depth.

Mantle plumes are generated by random temperature perturbations at the top of the
thermal source layer associated with the core–mantle boundary (Fig. 8.4a). The mantle
material in the basal source layer flows horizontally toward the plumes. The reduced
viscosity in this basal layer promotes the flow of the material to the plumes. Verti-
cal upwelling of hot mantle material is concentrated in low viscosity conduits near the
centrelines of the emerging plumes (Fig. 8.4b,c). The plumes move upward through the
model domain, gradually forming structures with well-developed heads and tails. Colder
material overlying the source layer (e.g. portions of lithospheric slabs subducted to the
core–mantle boundary) replaces hot material at the locations where the source material
is fed into mantle plumes. Some time is required to recover the volume of source ma-
terial depleted due to plume feeding (Howard, 1966). Because the volume of upwelling
material is comparable to the volume of the thermal source layer feeding the man-
tle plumes, hot material could eventually be exhausted, and mantle plumes would be
starved thereafter.

The plumes diminish in size with time (Fig. 8.4d), and the plume tails disappear before
the plume heads (Fig. 8.4e,f). We note that Fig. 8.4 presents a hot isothermal surface of the
plumes. If colder isotherms are considered, the disappearance of the isotherms will occur
later. But anyhow, hot or cold isotherms are plotted, plume tails will vanish before their
heads. Results of recent laboratory experiments (Davaille and Vatteville, 2005) support
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Fig. 8.4. Mantle plumes in the forward modelling at successive diffusion times: from 335 Myr ago (a) to
the ‘present’ state of the plumes (f). The plumes are represented here and in Figs. 8.5 and 8.6 by
isothermal surfaces at 3000 K. After Ismail-Zadeh et al. (2006).

strongly the numerical findings that plumes start disappearing from the bottom up and fade
away by thermal diffusion.

At different stages in the plume decay one sees quite isolated plume heads, plume heads
with short tails, and plumes with nearly pinched off tails. Different amounts of time are
required for different mantle plumes to vanish into the ambient mantle, the required time
depending on the geometry of the plume tails. Temperature loss is greater for sheet-like
tails than for cylindrical tails. The tails of the cylindrical plumes (e.g. Fig. 8.4c, in the left
part of the model domain) are still detectable after about 155 Myr. However, at this time
the sheet-like tail of the large plume in the right part of the model domain (Fig. 8.4c) is
already invisible and only its head is preserved in the uppermost mantle (Fig. 8.4f). Two-
dimensional numerical experiments of steady-state convection (Leitch et al., 1996) reveal
a significant change in the centreline temperature of sheet-like plume tails compared with
the cylindrical plume tail due to heat conduction in the horizontal direction.

The numerical results may have important implications for the interpretation of seis-
mic tomographic images of mantle plumes. Finite-frequency seismic tomography images
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(Montelli et al., 2004) show that a number of plumes extend to mid-mantle depths but
are not visible below these depths. From a seismological point of view, the absence of the
plume tails could be explained as a combination of several factors (Romanowicz and Gung,
2002): elastic velocities are sensitive to composition as well as temperature; the effect of
temperature on velocities decreases with increasing pressure (Karato, 1993); and wavefront
healing effects make it difficult to accurately image low velocity bodies (Nolet and Dahlen,
2000). The ‘disappearance’ of the plume tails can hence be explained as the effects of poor
tomographic resolution at deeper levels. Apart from this, the numerical results demonstrate
the plausibility of finding a great diversity in the morphology of seismically imaged mantle
plumes, including plume heads without tails and plumes with tails that are detached from
their sources.

8.6.2 Backward modelling

To restore the prominent state of the plumes (Fig. 8.4d) in the past from their ‘present’weak
state (Fig. 8.4f), the VAR method can be employed. Figure 8.5 illustrates the restored states
of the plumes (middle panel) and the temperature residuals δT (right panel) between the
temperature T (x) predicted by the forward model and the temperature T̃ (x) reconstructed
to the same age:

δT (x1, x2) =
⎡
⎣

h∫
0

(
T (x1, x2, x3) − T̃ (x1, x2, x3)

)2
dx3

⎤
⎦

1/2

. (8.25)

To study the effect of thermal diffusion on the restoration of mantle plumes, several exper-
iments on mantle plume restoration were run for various Rayleigh number Ra (typically
less than the initial Ra) and viscosity ratio r. Figure 8.6 presents the case of r = 200 and
Ra = 9.5 × 103 and shows several stages in the diffusive decay of the mantle plumes.

The dimensional temperature residuals are within a few degrees for the initial restoration
period (Figs. 8.5i and 8.6h). The computations show that the errors (temperature residuals)
get larger the farther the restorations move backward in time (e.g. δT ≈ 300 K at the
restoration time of more than 300 Myr, r = 200, and Ra = 9.5 × 103). Compared with
the case of Ra = 9.5 × 105, one can see that the residuals become larger as the Rayleigh
number decreases or thermal diffusion increases and viscosity ratio increases.

The quality of the restoration depends on the dimensionless Péclet number Pe =
humaxκ

−1, where umax is the maximum flow velocity. According to the numerical experi-
ments, the Péclet number corresponding to the temperature residual δT = 600 K is Pe = 10;
Pe should not be less than about 10 for a high quality plume restoration.

8.6.3 Performance of the numerical algorithm

Here we analyse the performance of the VAR data assimilation algorithm for various Ra
and r. The performance of the algorithm is evaluated in terms of the number of iterations
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Fig. 8.5. Mantle plume diffusion (r = 20 and Ra = 9.5× 105) in the forward modelling at successive
diffusion times: from 100 Myr ago to the ‘present’ state of the plumes (left panel, a–d). Restored
mantle plumes in the backward modelling (central panel, e–g) and restoration errors (right panel,
h–j). After Ismail-Zadeh et al. (2006). (In colour as Plate 3. See colour plates section.)

n required to achieve a prescribed relative reduction of δϕn (inequality (8.23)). Figure 8.7
presents the evolution of the objective functional J (ϕn) and the norm of the gradient of the
objective functional ‖∇J (ϕn)‖ versus the number of iterations at time about 0.5θ . For other
time steps we observe a similar evolution of J and ‖∇J‖.

Both the objective functional and the norm of its gradient show a quite rapid decrease
after about seven iterations for Ra = 9.5 × 105 and r = 20 (curves 1). The same rapid
convergence as a function of adjoint iterations is observed in the Bunge et al. (2003)
case. As Ra decreases and thermal diffusion increases (curves 2–4) the performance of the
algorithm becomes poor: more iterations are needed to achieve the prescribed ε. All curves
illustrate that the first four to seven iterations contribute mainly to the reduction of δϕn. The
convergence drops after a relatively small number of iterations. The curves approach the
horizontal line with an increase in the number of iterations, because βk tends to zero with a
large number of iterations (see Eq. (8.6)). The increase of ‖∇J‖ at k = 2 is associated with
uncertainty of this gradient at k = 1.
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Fig. 8.6. Mantle plume diffusion (r = 200 and Ra = 9.5× 103) in the forward modelling at successive
diffusion times: from 305 Myr ago to the ‘present’ state of the plumes (left panel, a–d). Restored
mantle plumes in the backward modelling (central panel, e–g) and restoration errors (right panel,
h–j). After Ismail-Zadeh et al. (2006). (In colour as Plate 4. See colour plates section.)

Implementation of minimisation algorithms requires the evaluation of both the objective
functional and its gradient. Each evaluation of the objective functional requires an inte-
gration of the model equation (8.10) with the appropriate boundary and initial conditions,
whereas the gradient is obtained through the backward integration of the adjoint equations
(8.17). The performance analysis shows that the CPU time required to evaluate the gradient
J is about the CPU time required to evaluate the objective functional itself, and this is
because the direct and adjoint heat problems are described by the same equations.

Despite its simplicity, the minimisation algorithm used in this study provides for a rapid
convergence and good quality of optimisation at high Rayleigh numbers (low thermal
diffusion). The convergence rate and the quality of optimisation become worse with the
decreasing Rayleigh number. The use of the limited-memory quasi-Newton algorithm
L-BFGS (Liu and Nocedal, 1989) might provide for a better convergence rate and quality
of optimisation (Zou et al., 1993). Meanwhile, we note that although an improvement of
the convergence rate by using another minimisation algorithm (e.g. L-BFGS) will reduce
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Fig. 8.7. Relative reductions of the objective functional J (left panel) and the norm of the gradient of J
(right panel) as functions of the number of iterations. Curves: 1, r = 20, Ra = 9.5× 105; 2, r = 20,
Ra = 9.5× 102; 3, r = 200, Ra = 9.5× 103; 4, r = 200, Ra = 9.5× 102. After Ismail-Zadeh
et al. (2006).

the computational expense associated with the solving of the problem under question, this
reduction would be not significant, because the large portion (about 70%) of the computer
time is spent to solve the 3-D Stokes equations.

8.7 Challenges in VAR data assimilation

Although the VAR data assimilation technique described above can theoretically be applied
to many problems of mantle and lithosphere dynamics, practical implementation of the
technique for modelling of real geodynamic processes backward in time (to restore the
temperature and flow pattern in the past) is not a simple task. The mathematical model of
mantle dynamics described by a set of equations (8.10)–(8.12) is simple, and many compli-
cations are omitted. A viscosity increase from the upper to the lower mantle is not included
in the model, although it is suggested by studies of the geoid (Ricard et al., 1993), post-
glacial rebound (Mitrovica, 1996), and joint inversion of convection and glacial isostatic
adjustment data (Mitrovica and Forte, 2004). The adiabatic heating/cooling term in the heat
equation can provide more realistic distribution of temperature in the mantle, especially
near the thermal boundary layer. The numerical models presented in Section 8.6 do not
include phase transformations (Liu et al., 1991; Honda et al., 1993a,b; Harder and Chris-
tensen, 1996), although the phase changes can influence the evolution of mantle plumes
retarding/accelerating their ascent. The coefficient of thermal expansion (see Chopelas
and Boehler, 1989; Hansen et al., 1991; 1993) and the coefficient of thermal conductivity
(Hofmeister, 1999) are not constant in the mantle and vary with depth and temperature.
Moreover, if the findings of Badro et al. (2004) of a significant increase in the radiative
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thermal conductivity at high pressure are relevant to the lower mantle, plume tails should
diffuse away even faster than the studied models predict. To consider these complications
in the VAR data assimilation, the adjoint equations should be derived each time when the
set of the equations is changed. The cost to be paid is in software development since an
adjoint model has to be developed.

8.7.1 Smoothness of observational data

The solution T (ϑ , ·; ϕ) of the heat equation (8.10) with appropriate boundary and initial
conditions is a sufficiently smooth function and belongs to space L2(�). The present temper-
ature χδ derived from the seismic tomography is a representation of the exact temperature
χ of the Earth and so it must also belong to this space and hence be rather smooth; other-
wise, the objective functional J cannot be defined. Therefore, before any assimilation of
the present temperature data can be attempted, the data must be smoothed. The smoothing
of the present temperature improves the convergence of the iterations.

8.7.2 Smoothness of the target temperature

If mantle temperature in the geological past was not a smooth function of space variables,
recovery of this temperature by using the VAR method is not effective because the iterations
converge very slowly to the target temperature. Here we explain the problem of recovering
the initial temperature on the basis of three one-dimensional model tasks: restoration of a
smooth, piece-wise smooth and discontinuous target function. We note that the tempera-
ture in the Earth’s mantle is not a discontinuous function but its shape can be close to a
step function.

The dynamics of a physical system is assumed to be described by the Burgers equation
ut + uux = uxx, 0 ≤ t ≤ 1, 0 ≤ x ≤ 2π with the boundary conditions u(t, 0) = 0,
u(t, 2π) = 0, 0 ≤ t ≤ 1 and the condition uθ = u(1, x; u0), 0 ≤ x ≤ 2π at t = 1, where
the variable u can denote temperature. The problem is to recover the function u0 = u0(x),
0 ≤ x ≤ 2π at t = 0 (the state in the past) from the function uθ = uθ (x), 0 ≤ x ≤ 2π at
t = 1 (its present state). The finite difference approximations and the variational method
are applied to the Burgers equation with the appropriate boundary and initial conditions.

Task 1. Consider the sufficiently smooth function u0 = sin(x), 0 ≤ x ≤ 2π . The functions
u0 and uθ are shown in Fig. 8.8a. Figures 8.8b and c illustrate the iterations ϕk using the
iterative scheme similar to Eq. (8.15) for k = 0, 4, 6 and the residual r6(x) = u0(x)−ϕ6(x),
0 ≤ x ≤ 2π respectively. We see that iterations converge rather rapid for the sufficiently
smooth target function.

Task 2. Now consider the continuous piece-wise smooth function u0 = 3x/(2π), 0 ≤
x ≤ 2π/3 and u0 = 3/2 − 3x/(2π), 2π/3 ≤ x ≤ 2π . Figure 8.8 presents (d) the functions
u0 and uθ , (e) the successive approximations ϕk for k = 0, 4, 1000, and (f) the residual
r1000(x) = u0(x) − ϕ1000(x), 0 ≤ x ≤ 2π , respectively. This example shows that a large
number of iterations is required to reach the target function.
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Fig. 8.8. Recovering function u0 from the smooth guess function uθ . The sufficiently smooth u0 (a–c);
continuous piece-wise smooth function u0 (d–f); and discontinuous function u0 (g–k). Plots of u0
and uθ are presented at (a), (d) and (g); successive approximations to u0 at (b), (e), (h) and (j);
and the residual functions at (c), (f), (i) and (k). After Ismail-Zadeh et al. (2006).

Task 3. Consider the discontinuous function u0, which takes 1 at 2π/3 ≤ x ≤ 4π/3 and
0 in other points of the closed interval 0 ≤ x ≤ 2π . Figure 8.8 presents (g) the functions
u0 and uθ , (h) the successive approximations ϕk for k = 0, 500, 1000, and (e) the residual
r1000(x) = u0(x) − ϕ1000(x), 0 ≤ x ≤ 2π , respectively. We see that convergence to the
target temperature is very poor.

To improve the convergence to the target function, a modification of the variational
method based on a priori information about a desired solution can be used (Korotkii and
Tsepelev, 2003). Figure 8.8 (j) shows the successive approximations ϕ̃k for k = 0, 30, 500,
and (k) the residual r̃500(x) = u0(x) − ϕ̃500(x), 0 ≤ x ≤ 2π , respectively. The approxima-
tions ϕ̃k based on the method of gradient projection (Vasiliev, 2002) converge to the target
solution better than approximations generated by Eq. (8.5).

8.7.3 Numerical noise

If the initial temperature guess ϕ0 is a smooth function, all successive temperature iterations
ϕk in scheme (8.15) should be smooth functions too, because the gradient of the objective
functional ∇J is a smooth function since it is the solution to the adjoint problem (8.17).
However, the temperature iterations ϕk are polluted by small perturbations (errors), which
are inherent in any numerical experiment (Section 8.12). These perturbations can grow
with time. Samarskii et al. (1997) applied a VAR method to a 1-D backward heat diffusion
problem and showed that the solution to this problem becomes noisy if the initial temper-
ature guess is slightly perturbed, and the amplitude of this noise increases with the initial
perturbations of the temperature guess. To reduce the noise they used a special filter and
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illustrated the efficiency of the filter. This filter is based on the replacement of iterations
(8.15) by the following iterative scheme:

B(ϕk+1 − ϕk) = −βk∇J (ϕk), (8.26)

where By = y − ∇2y. Unfortunately, employment of this filter increases the number of
iterations to obtain the target temperature and it becomes quite expensive computationally,
especially when the model is three-dimensional. Another way to reduce the noise is to
employ high-order adjoint (Alekseev and Navon, 2001) or regularisation (Tikhonov, 1963;
Lattes and Lions, 1969; Samarskii and Vabischevich, 2004) techniques.

8.8 Quasi-reversibility (QRV) method

The principal idea of the quasi-reversibility (QRV) method is based on the transformation
of an ill-posed problem into a well-posed problem (Lattes and Lions, 1969). In the case
of the backward heat equation, this implies an introduction of an additional term into the
equation, which involves the product of a small regularisation parameter and higher-order
temperature derivative. The additional term should be sufficiently small compared to other
terms of the heat equation and allow for simple additional boundary conditions. The data
assimilation in this case is based on a search of the best fit between the forecast model
state and the observations by minimising the regularisation parameter. The QRV method is
proven to be well suited for smooth and non-smooth input data (Lattes and Lions, 1969;
Samarskii and Vabishchevich, 2004).

To explain the transformation of the problem, we follow Ismail-Zadeh et al. (2007)
and consider the following boundary-value problem for the one-dimensional heat conduc-
tion problem

∂T (t, x)

∂t
= ∂2T (t, x)

∂x2
, 0 ≤ x ≤ π , 0 ≤ t ≤ t∗, (8.27)

T (t, x = 0) = T (t, x = π) = 0, 0 ≤ t ≤ t∗, (8.28)

T (t = 0, x) = 1

4n + 1
sin((4n + 1)x), 0 ≤ x ≤ π . (8.29)

The analytical solution to (8.27)–(8.29) can be obtained in the following form

T (t, x) = 1

4n + 1
exp(−(4n + 1)2t) sin((4n + 1)x). (8.30)

Figure 8.9 presents the solution (solid curves) for time interval 0 ≤ t ≤ t∗ = 0.14 and
n = 1.

It is known that the backward heat conduction problem is ill-posed (e.g. Kirsch, 1996). To
transform the problem into a well-posed problem, we introduce a term in Eq. (8.27) involving
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Fig. 8.9. Comparison of the exact solutions to the heat conduction problem (red solid curves; a and b) and
to the regularised backward heat conduction problem (a: β = 10−3 and b: β = 10−7; blue dashed
curves). The temperature residual between two solutions is presented in panel c at various values
of the regularisation parameter β. After Ismail-Zadeh et al. (2007). (In colour as Plate 5. See
colour plates section.)

the product of a small parameter β > 0 and the higher-order temperature derivative:

∂Tβ(t, x)

∂t
= ∂2Tβ(t, x)

∂x2
− β

∂4

∂x4

(
∂Tβ(t, x)

∂t

)
, 0 ≤ x ≤ π , 0 ≤ t ≤ t∗, (8.31)
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Tβ(t, x = 0) = Tβ(t, x = π) = 0, 0 ≤ t ≤ t∗, (8.32)

∂2Tβ(t, x = 0)

∂x2
= ∂2Tβ(t, x = π)

∂x2
= 0, 0 ≤ t ≤ t∗, (8.33)

Tβ(t = t∗, x) = 1

4n + 1
exp(−(4n + 1)2t∗) sin((4n + 1)x), 0 ≤ x ≤ π . (8.34)

Here the initial condition is assumed to be the solution (8.30) to the heat conduction problem
(8.27)–(8.29) at t = t∗. The subscript β at Tβ is used to emphasise the dependence of the
solution to problem (8.31)–(8.34) on the regularisation parameter. The analytical solution
to the regularised backward heat conduction problem (8.31)–(8.34) is represented as:

Tβ(t, x) = An exp

( −(4n + 1)2t

1 + β(4n + 1)4

)
sin((4n + 1)x),

An = 1

4n + 1
exp(−(4n + 1)2t∗) exp−1

( −(4n + 1)2t∗

1 + β(4n + 1)4

)
, (8.35)

and the solution approaches the initial condition for the problem (8.27)–(8.29) at t = 0 and
β → 0. Figure 8.9a,b illustrates the solution to the regularised problem at two values of β

(dashed curves) and n = 1. The temperature residual (Fig. 8.9c) indicates that the solution
(8.35) approaches the solution (8.30) with β → 0.

Samarskii and Vabischevich (2004) estimated the stability of the solution to problem
(8.31)–(8.33) with respect to the initial condition expressed in the form Tβ(t = t∗, x) = T ∗

β :

∥∥Tβ(t, x)
∥∥ + β

∥∥∂Tβ(t, x)/∂x
∥∥ ≤ C

(∥∥∥T ∗
β

∥∥∥ + β

∥∥∥∂T ∗
β /∂x

∥∥∥) exp
[
(t∗ − t)β−1/2

]
,

where C is a constant, and showed that the natural logarithm of errors will increase in direct
proportion to time and inversely to the root square of the regularisation parameter.

Any regularisation has its advantages and disadvantages. A regularising operator is used
in a mathematical problem to (i) accelerate a convergence; (ii) fulfil the physical laws (e.g.
maximum principal, conversation of energy, etc.) in discrete equations; (iii) suppress a noise
in input data and in numerical computations; and (iv) take into account a priori information
about an unknown solution and hence to improve a quality of computations. The major
drawback of regularisation is that the accuracy of the solution to a regularised problem is
always lower than that to a non-regularised problem.

We should mention that the transformation to the regularised backward heat problem is
not only a mathematical approach to solving ill-posed backward heat problems, but has
some physical meaning: it can be explained on the basis of the concept of relaxing heat flux
for heat conduction (Vernotte, 1958). The classical Fourier heat conduction theory provides
the infinite velocity of heat propagation in a region. The instantaneous heat propagation is
unrealistic, because the heat is a result of the vibration of atoms and the vibration prop-
agates in a finite speed (Morse and Feshbach, 1953). To accommodate the finite velocity
of heat propagation, a modified heat flux model was proposed by Vernotte (1958) and
Cattaneo (1958).

The modified Fourier constitutive equation (sometimes called the Riemann law of heat
conduction) is expressed as �Q = −k∇T − τ ∂ �Q/∂t, where �Q is the heat flux, and k is the
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coefficient of thermal conductivity. The thermal relaxation time τ = k/
(
ρcpv

2
)

is usually
recognised to be a small parameter (Yu et al., 2004), where ρ is the density, cp is the specific
heat, and v is the heat propagation velocity. The situation for τ → 0 leads to instantaneous
diffusion at infinite propagation speed, which coincides with the classical thermal diffusion
theory. The heat conduction equation ∂T/∂t = ∇2T +τ ∂2T/∂t2 based on non-Fourier heat
flux can be considered as a regularised heat equation. If the Fourier law is modified further

by an addition of the second derivative of heat flux, e.g. �Q = −k∇T +β
∂2 �Q
∂t2

, where small β
is the relaxation parameter of heat flux (Bubnov, 1976, 1981), the heat conduction equation
can be transformed into a higher-order regularised heat equation similar to Eq. (8.31).

8.8.1 The QRV method for restoration of thermo-convective flow

For convenience, we present a set of equations (8.10)–(8.12) with the relevant boundary
and initial conditions as two mathematical problems. Namely, we consider the boundary-
value problem for the flow velocity (it includes the Stokes equation, the incompressibility
equation subject to appropriate boundary conditions)

∇P = div (η(T )E) + RaTe, x ∈ �, (8.36)

divu = 0, x ∈ �, (8.37)

u · n = 0, ∂uτ /∂n = 0, x ∈ ∂�, (8.38)

where uτ is the projection of the velocity vector onto the tangent plane at the same point on
the model boundary, and the initial-boundary-value problem for temperature (it includes
the heat equation subject to appropriate boundary and initial conditions)

∂T/∂t + u · ∇T = ∇2T + f , t ∈ [0, ϑ], x ∈ �, (8.39)

σ1T + σ2∂T/∂n = T∗, t ∈ [0, ϑ], x ∈ ∂�, (8.40)

T (0, x) = T0(x), x ∈ �, (8.41)

where T∗ is the given temperature.
The direct problem of thermo-convective flow can be formulated as follows: find the

velocity u = u(t, x), the pressure P = P(t, x), and the temperature T = T (t, x) satisfying
boundary value problem (8.36)–(8.38) and initial-boundary-value problem (8.39)–(8.41).
We can formulate the inverse problem in this case as follows: find the velocity, pressure,
and temperature satisfying boundary-value problem (8.36)–(8.38) and the final-boundary
value problem that includes Eqs. (8.39) and (8.40) and the final condition:

T (ϑ , x) = Tϑ(x), x ∈ �, (8.42)

where Tϑ is the temperature at time t = ϑ .
To solve the inverse problem by the QRV method, Ismail-Zadeh et al. (2007) considered

the following regularised backward heat problem to define temperature in the past from the
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known temperature Tϑ(x) at present time t = ϑ :

∂Tβ/∂t − uβ · ∇Tβ = ∇2Tβ + f − β�(∂Tβ/∂t), t ∈ [0, ϑ], x ∈ �, (8.43)

σ1Tβ + σ2∂Tβ/∂n = T∗, t ∈ (0, ϑ), x ∈ ∂�, (8.44)

σ1∂
2Tβ/∂n2 + σ2∂

3Tβ/∂n3 = 0, t ∈ (0, ϑ), x ∈ ∂�, (8.45)

Tβ(ϑ , x) = Tϑ(x), x ∈ �, (8.46)

where �(T ) = ∂4T/∂x4
1 + ∂4T/∂x4

2 + ∂4T/∂x4
3, and the boundary value problem to

determine the fluid flow:

∇Pβ = −div
[
η(Tβ)E(uβ)

] + RaTβe, x ∈ �, (8.47)

divuβ = 0, x ∈ �, (8.48)

uβ · n = 0 (and/or ∂(uβ)τ /∂n = 0), x ∈ ∂�, (8.49)

where the sign of the velocity field is changed (uβ by −uβ) in Eqs. (8.43) and (8.47) to
simplify the application of the total variation diminishing (TVD) method (see Section 7.9)
for solving (8.43)–(8.46). Hereinafter we refer to temperature Tϑ as the input temperature for
the problem (8.43)–(8.49). The core of the transformation of the heat equation is the addition
of a high-order differential expression �(∂Tβ/∂t) multiplied by a small parameter β > 0.
Note that Eq. (8.45) is added to the boundary conditions to properly define the regularised
backward heat problem. The solution to the regularised backward heat problem is stable for
β > 0, and the approximate solution to (8.43)–(8.49) converges to the solution of (8.36)–
(8.40), and (8.42) in some spaces, where the conditions of well-posedness are met (Samarskii
and Vabischevich, 2004). Thus, the inverse problem of thermo-convective mantle flow is
reduced to determination of the velocity uβ = uβ(t, x), the pressure Pβ = Pβ(t, x), and the
temperature Tβ = Tβ(t, x) satisfying (8.43)–(8.49).

8.8.2 Optimisation problem

A maximum of the following functional is sought with respect to the regularisation
parameter β:

δ − ∥∥T (t = ϑ , ·; Tβk (t = 0, ·)) − ϕ(·)∥∥ → max
k

, (8.50)

βk = β0qk−1, k = 1, 2, . . . , , (8.51)

where sign ‖ · ‖ denotes the norm in the space L2(�). Since in what follows the dependence
of solutions on initial temperature data is important, we introduce these data explicitly into
the mathematical representation of temperature. Here Tk = Tβk (t = 0, ·) is the solution
to the regularised backward heat problem (8.43)–(8.45) at t = 0; T (t = ϑ , ·; Tk) is the
solution to the heat problem (8.39)–(8.41) at the initial condition T (t = 0, ·) = Tk at time
t = ϑ ; ϕ is the known temperature at t = ϑ (the input data on the present temperature);
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small parameters β0 > 0 and 0 < q < 1 are defined below; and δ > 0 is a given accuracy.
When q tends to unity, the computational cost becomes large; and when q tends to zero, the
optimal solution can be missed.

The prescribed accuracy δ is composed from the accuracy of the initial data and the
accuracy of computations. When the input noise decreases and the accuracy of computa-
tions increases, the regularisation parameter is expected to decrease. However, estimates
of the initial data errors are usually inaccurate. Estimates of the computation accuracy
are not always known, and when they are available, the estimates are coarse. In practi-
cal computations, it is more convenient to minimise the following functional with respect
to (8.51)

∥∥Tβk+1(t = 0, ·) − Tβk (t = 0, ·)∥∥ → min
k

, (8.52)

where misfit between temperatures obtained at two adjacent iterations must be compared.
To implement the minimisation of temperature residual (8.50), the inverse problem (8.43)–
(8.49) must be solved on the entire time interval as well as the direct problem (8.36)–
(8.41) on the same time interval. This at least doubles the amount of computations. The
minimisation of functional (8.52) has a lower computational cost, but it does not rely on a
priori information.

8.8.3 Numerical algorithm for QRV data assimilation

In this section we describe the numerical algorithm for solving the inverse problem of
thermo-convective mantle flow using the QRV method. We consider a uniform temporal
partition tn = ϑ − δt n (as defined in Section 8.5) and prescribe some values to parameters
β0, q and  (e.g. β0 = 10−3, q = 0.1 and  = 10). According to (8.51) a sequence of
the values of the regularisation parameter {βk} is defined. For each value β = βk model
temperature and velocity are determined in the following way.

Step 1. Given the temperature Tβ = Tβ(t, ·) at t = tn, the velocity uβ = uβ(tn, ·) is found
by solving problem (8.47)–(8.49). This velocity is assumed to be constant on the
time interval [tn+1, tn].

Step 2. Given the velocity uβ = uβ(tn, ·), the new temperature Tβ = Tβ(t, ·) at t = tn+1

is found on the time interval [tn+1, tn] subject to the final condition Tβ = Tβ(tn, ·)
by solving the regularised problem (8.43)–(8.46) backward in time.

Step 3. Upon the completion of steps 1 and 2 for all n = 0, 1, . . . , m, the temperature
Tβ = Tβ(tn, ·) and the velocity uβ = uβ(tn, ·) are obtained at each t = tn. Based
on the computed solution we can find the temperature and flow velocity at each
point of time interval [0, ϑ] using interpolation.

Step 4a. The direct problem (8.39)–(8.41) is solved assuming that the initial temperature
is given as Tβ = Tβ(t = 0, ·), and the temperature residual (8.50) is found. If the
residual does not exceed the predefined accuracy, the calculations are terminated,
and the results obtained at step 3 are considered as the final ones. Otherwise,
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parameters β0, q and  entering Eq. (8.51) are modified, and the calculations are
continued from step 1 for new set {βk}.

Step 4b. The functional (8.52) is calculated. If the residual between the solutions obtained
for two adjacent regularisation parameters satisfies a predefined criterion (the
criterion should be defined by a user, because no a priori data are used at this step),
the calculation is terminated, and the results obtained at step 3 are considered as
the final ones. Otherwise, parameters β0, q and  entering Eq. (8.51) are modified,
and the calculations are continued from step 1 for new set {βk}.

In a particular implementation, either step 4a or step 4b is used to terminate the computa-
tion. This algorithm allows (i) organising a certain number of independent computational
modules for various values of the regularised parameter βk that find the solution to the
regularised problem using steps 1–3 and (ii) determining a posteriori an acceptable result
according to step 4a or step 4b.

8.9 Application of the QRV method: mantle plume evolution

To compare the numerical results obtained by the QRV method with that obtained by the
VAR and BAD methods described in this chapter, we develop the same forward model for
mantle plume evolution as presented in Section 8.6. Figure 8.10 (panels a–d) illustrates the
evolution of mantle plumes in the forward model. The state of the plumes at the ‘present’
time (Fig. 8.10d) obtained by solving the direct problem was used as the input temperature
for the inverse problem (an assimilation of the ‘present’ temperature to the past). Note
that this initial state (input temperature) is given with an error introduced by the numerical
algorithm used to solve the direct problem. Figure 8.10 illustrates the states of the plumes
restored by the QRV method (panels e–g) and the residual δT (see Eq. (8.26) and panel h)
between the initial temperature for the forward model (Fig. 8.10a) and the temperature T̃ (x)

assimilated to the same age (Fig. 8.10g). To check the stability of the algorithm, a forward
model of the restored plumes is computed using the solution to the inverse problem at the
time of 265 Myr ago (Fig. 8.10g) as the initial state for the forward model. The result of
this run is shown in Fig. 8.10i.

To compare the accuracy of the data assimilation methods, a restoration model from the
‘present’time (Fig. 8.10d) to the time of 265 Myr ago was developed using the BAD method.
Figure 8.10 shows the BAD model results (panels e1–g1) together with the temperature
residual (panel h1) between the initial temperature (panel a) and the temperature assimilated
to the same age (panel g1). The VAR method was not used to assimilate data within the time
interval of more than 100 Myr (for Ra ≈ 106), because proper filtering of the increasing
noise is required to smooth the input data and solution (Section 8.7).

Figure 8.11a presents the residual J1(β) = ‖T0(·) − Tβ(t = t0, ·; Tϑ)‖ between the initial
temperature T0 at t0 = 265 Myr ago and the restored temperature (to the same time) obtained
by solving the inverse problem with the input temperature Tϑ . The optimal accuracy is
attained at β∗ = arg min{J1(β) : β = βk , k = 1, 2, . . . , 10} ≈ 10−7 in the case of r = 20,
and at β∗ ≈ 10−6 and β∗ ≈ 10−5.5 in the cases of the viscosity ratio r = 200 and r = 1000,
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Fig. 8.10. Model of mantle plume evolution forward in time at successive times: (a–d) from 265 Myr ago to
the present state of the plumes (r = 20). Assimilation of the mantle temperature and flow from
the present state back to the geological past using the QRV (d–g; β = 10−7) and BAD (d, e1–g1)
methods. Verification of the QRV assimilation accuracy: forward model of the plume evolution
starting from the initial (restored) state of the plumes (g) to their present state (i). Temperature
residuals between the initial temperature for the forward model and the temperature assimilated
to the same age using the QRV and BAD methods are presented in panels (h) and (h1),
respectively. After Ismail-Zadeh et al. (2007). (In colour as Plate 6. See colour plates section.)
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Fig. 8.11. Temperature misfit (a) J1 and (b) J2 as functions of the regularisation parameter β. The minimum
of the temperature misfit is achieved at β∗, an optimal regularisation parameter. Solid curves:
r = 20; dashed curves: r = 200; and dash-dotted curves: r = 1000. After Ismail-Zadeh et al.
(2007).
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Fig. 8.12. Model of mantle plume diffusion forward in time (a and b; r = 20). Assimilation of the mantle
temperature and flow to the time of 100 Myrs ago and temperature residuals between the
present temperature model (b) and the temperature assimilated to the same age, using the QRV
(c and f; β = 10−7), VAR (d and g), and BAD (e and h) methods, respectively. After Ismail-Zadeh
et al. (2007). (In colour as Plate 7. See colour plates section.)

respectively. Figure 8.11b illustrates the residual J2(β) = ‖Tβ(t0, ·; Tϑ) − T�
β
(t0, ·; Tϑ)‖

between the reconstructed temperature at t0 = 265 Myr ago obtained for various val-

ues of β in the range 10−9 ≤ β ≤ 10−3 and
�

β = β/2. These results show the choice
of the optimal value of the regularisation parameter using step 4b of the numerical algo-
rithm for the QRV data assimilation (Section 8.8.3). In the case of r = 20 the parameter
β∗ = arg min{J2(β) : β = βk , k = 1, 2, . . . , 12} ≈ 10−8 provides the optimal accuracy for
the solution; in the cases of r = 200 and r = 1000 the optimal accuracy is achieved at
β∗ ≈ 10−7 and β∗ ≈ 10−6.5, respectively. Comparison of the temperature residuals for
three values of the viscosity ratio r indicates that the residuals become larger as the viscosity
ratio increases. The numerical experiments show that the algorithm for solving the inverse
problem performs well when the regularisation parameter is in the range 10−8 ≤ β ≤ 10−6.
For greater values, the solution of the inverse problem retains the stability but is less accu-
rate. For β < 10−9 the numerical procedure becomes unstable, and the computations must
be stopped.
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To compare how the techniques for data assimilation can restore the prominent state of
the thermal plumes in the past from their ‘present’weak state, a forward model was initially
developed from the prominent state of the plumes (Fig. 8.12a) to their diffusive state in
100 Myr (Fig. 8.12b) using 50 × 50 × 50 finite rectangular elements to approximate the
vector velocity potential and a finite difference grid 148 × 148 × 148 for approximation of
temperature, velocity and viscosity. All other parameters of the model are the same.

The VAR method (Fig. 8.12d, g) provides the best performance for the diffused plume
restoration. The BAD method (Fig. 8.12e, h) cannot restore the diffused parts of the plumes,
because temperature is only advected backward in time. The QRV method (Fig. 8.12c, f)
restores the diffused thermal plumes, meanwhile the restoration results are not so perfect
as in the case of VAR method (compare temperature residuals in Fig. 8.12, panels f and g).
Although the accuracy of the QRV data assimilation is lower compared with the VAR data
assimilation, the QRV method does not require any additional smoothing of the input data
and filtering of temperature noise as the VAR method does.

8.10 Application of the QRV method: restoration of descending
lithosphere evolution

8.10.1 The Vrancea seismicity and the relic descending slab

Repeated large intermediate-depth earthquakes in the southeastern (SE-) Carpathians (the
Vrancea region) cause destruction in Bucharest, the capital city of Romania, and shake
central and eastern European cities several hundred kilometres away from the hypocentres
of the events. The earthquake-prone Vrancea region (Fig. 8.13) is bounded to the north and
north-east by the Eastern European platform (EEP), to the east by the Scythian platform
(SCP), to the south-east by the North Dobrogea orogen (DOB), to the south and south-west
by the Moesian platform (MOP), and to the north-west by the Transylvanian basin (TRB).
The epicentres of the sub-crustal earthquakes in the Vrancea region are concentrated within
a very small seismogenic volume about 70 × 30 km2 in planform and between depths of
about 70 and 180 km. Below this depth the seismicity ends abruptly: one seismic event at
220 km depth is an exception (Oncescu and Bonjer, 1997).

The 1940 MW = 7.7 earthquake gave rise to the development of a number of geody-
namic models for this region. McKenzie (1972) suggested that this seismicity is associated
with a relic slab sinking in the mantle and now overlain by continental crust. The 1977
large earthquake and later the 1986 and 1990 earthquakes again raised questions about the
nature of the earthquakes. A seismic gap at depths of 40–70 km beneath Vrancea led to
the assumption that the lithospheric slab had already detached from the continental crust
(Fuchs et al., 1979). Oncescu (1984) proposed that the intermediate-depth events are gen-
erated in a zone that separates the sinking slab from the neighbouring immobile part of the
lithosphere rather than in the sinking slab itself. Linzer (1996) explained the nearly vertical
position of the Vrancea slab as the final rollback stage of a small fragment of oceanic litho-
sphere. Various types of slab detachment or delamination (see, for example, Girbacea and
Frisch, 1998; Wortel and Spakman, 2000; Gvirtzman, 2002; Sperner et al., 2005) have been
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Fig. 8.13. Topography map of the SE-Carpathians and epicentres of Vrancea earthquakes (magnitude ≥3).
The upper right panel presents hypocentres of the same earthquakes projected onto the NW–SE
vertical plane AB. DOB, Dobrogea orogen; EEP, Eastern European platform; MOP, Moesian platform;
SCP, Scythian platform; TRB, Transylvanian basin; and VRA, Vrancea. After Ismail-Zadeh
et al. (2008).

proposed to explain the present-day seismic images of the descending slab. Cloetingh et al.
(2004) argued in favour of the complex configuration of the underthrusted lithosphere and
its thermo-mechanical age as primary factors in the behaviour of the descending slab after
continental collision. The origin of the descending lithosphere in the region, i.e. whether
the Vrancea slab is oceanic or continental, is still under debate. Pana and Erdmer (1996)
and Pana and Morris (1999) argued that because there is no geological evidence of Miocene
oceanic crust in the eastern Carpathians, the descending lithosphere is likely to be thinned
continental or transitional lithosphere.

The Neogene to Late Miocene (c 11 Myr) evolution of the Carpathian region is mainly
driven by the north-eastward, later eastward and south-eastward roll-back or slab retreat
(Royden, 1988; Sperner et al., 2001) into a Carpathians embayment, consisting of the last
remnants of an oceanic or thinned continental domain attached to the European continent
(see Balla, 1987; Csontos et al., 1992). When the mechanically strong East-European and
Scythian platforms started to enter the subduction zone, the buoyancy forces of the thick
continental crust exceeded the slab pull forces and convergence stopped after only a short
period of continental thrusting (Tarapoanca et al., 2004; Sperner et al., 2005). Continental
convergence in the SE-Carpathians ceased about 11 Myr (Jiricek, 1979; Csontos et al.,
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1992), and after that the lithospheric slab descended beneath the Vrancea region due to
gravity. The hydrostatic buoyancy forces promote the sinking of the slab, but viscous and
frictional forces resist the descent. The combination of these forces produces shear stresses
at intermediate depths that are high enough to cause earthquakes (Ismail-Zadeh et al.,
2000a, 2005b).

In this section we present a quantitative model of the thermal evolution of the descending
slab in the SE-Carpathians suggested by Ismail-Zadeh et al. (2008). The model is based on
assimilation of present crust/mantle temperature and flow in the geological past using the
QRV method. Mantle thermal structures are restored and analysed in the context of modern
regional geodynamics.

8.10.2 Temperature model

Temperature is a key physical parameter controlling the density and rheology of the Earth’s
material and hence crustal and mantle dynamics. Besides direct measurements of tempera-
ture in boreholes in the shallow portion of the crust, there are no direct measurements of deep
crustal and mantle temperatures, and therefore the temperatures must be estimated indirectly
from seismic wave anomalies, geochemical data and surface heat flow observations.

Ismail-Zadeh et al. (2005a, 2008) developed a model of the present crustal and mantle
temperature beneath the SE-Carpathians by using the most recent high-resolution seismic
tomography image (map of the anomalies of P-wave velocities) of the lithosphere and
asthenosphere in the region (Martin et al., 2005, 2006). The tomography image shows a
high velocity body beneath the Vrancea region and the Moesian platform interpreted as the
subducted lithospheric slab (Martin et al., 2006). The seismic tomographic model of the
region consists of eight horizontal layers of different thickness (15 km up to 70 km) starting
from the depth of 35 km and extending down to a depth of 440 km. Each layer of about 1000×
1000 km2 is subdivided horizontally into 16×16 km2 blocks. To restrict numerical errors in
our data assimilation we smooth the velocity anomaly data between the blocks and the layers
using a spline interpolation. Ismail-Zadeh et al. (2005a) converted seismic wave velocity
anomalies into temperature considering the effects of mantle composition, anelasticity,
and partial melting on seismic velocities. The temperature in the crust is constrained by
measurements of surface heat flux corrected for palaeoclimate changes and for the effects
of sedimentation (Demetrescu et al., 2001).

Depth slices of the present temperature model are illustrated in Fig. 8.14. The pattern
of resulting mantle temperature anomalies (predicted temperature minus background tem-
perature) is similar to the pattern of observed P-wave velocity anomalies (Martin et al.,
2006), but not an exact copy because of the non-linear inversion of the seismic anomalies
to temperature. The low temperatures are associated with the high-velocity body beneath
the Vrancea region (VRA) and the East European platform (EEP) and are already visible at
depths of 50 km. The slab image becomes clear at 70–110 km depth as a NE–SW oriented
cold anomaly. With increasing depth (110–200 km depth) the thermal image of the slab
broadens in NW–SE direction. The orientation of the cold body changes from NE–SW to
N–S below the depth of 200 km. The slab extends down to 280–320 km depth beneath
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Fig. 8.14. Present temperature model as the result of the inversion of the P-wave velocity model.
Theoretically well-resolved regions are bounded by dashed line (see text and Martin et al., 2006).
Each slice presents a part of the horizontal section of the model domain � corresponding to [x1 =
177.5 km, x1 = 825.5 km ]× [x2 = 177.5 km, x2 = 825.5 km], and the isolines present the
surface topography (also in Figs. 8.15 and 8.17). After Ismail-Zadeh et al. (2008). (In colour as
Plate 8. See colour plates section.)
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the Vrancea region itself. A cold anomaly beneath the Transylvanian Basin is estimated at
depths of 370–440 km. According to Wortel and Spakman (2000) and Martin et al. (2006)
this cold material can be interpreted as a remnant of subducted lithosphere detached dur-
ing the Miocene along the Carpathian Arc and residing within the upper mantle transition
zone. High temperatures are predicted beneath the Transylvanian Basin (TRB) at about 70–
110 km depth. Two other high temperature regions are found at 110–150 km depth below the
Moesian platform (MOP) and deeper than 200 km under the EEP and the Dobrogea orogen
(DOB), which might be correlated with the regional lithosphere/asthenosphere boundary.

8.10.3 QRV data assimilation

To minimise boundary effects, the studied region (650 × 650 km2 and 440 km deep, see
Fig. 8.14) has been bordered horizontally by a 200 km area and extended vertically to the
depth of 670 km. Therefore, a rectangular domain � = [0, l1 = 1050 km] × [0, l2 =
1050 km] × [0, h = 670 km] is considered for assimilation of present temperature and
mantle flow beneath the SE-Carpathians.

Our ability to reverse mantle flow is limited by our knowledge of past movements in
the region, which are well constrained in only some cases. In reality, the Earth’s crust and
lithospheric mantle are driven by mantle convection and the gravitational pull of dense
descending slabs. However, when a numerical model is constructed for a particular region,
external lateral forces can influence the regional crustal and uppermost mantle movements.
Yet in order to make useful predictions that can be tested geologically, a time-dependent
numerical model should include the history of surface motions. Since this is not currently
achievable in a dynamical way, it is necessary to prescribe surface motions by using velocity
boundary conditions.

The simulations are performed backward in time for a period of 22 Myr. Perfect slip
conditions are assumed at the vertical and lower boundaries of the model domain. For the
first 11 Myr (starting from the present time), when the rates of continental convergence were
insignificant (Jiricek, 1979; Csontos et al., 1992), no velocity is imposed at the surface, and
the conditions at the upper boundary are free slip. The north-westward velocity is imposed
in the portion of the upper model boundary (Fig. 8.15a) for the time interval from 11 Myr to
16 Myr and the westward velocity in the same portion of the boundary (Fig. 8.15b) for the
interval from 16 Myr to 22 Myr. The velocities are consistent with the direction and rates of
the regional convergence in the Early and Middle Miocene (Morley, 1996; Fügenschuh and
Schmid, 2005; Sperner et al., 2005). The effect of the surface loading due to the Carpathian
Mountains is not considered, because this loading would have insignificant influence on
the dynamics of the region (as was shown in two-dimensional models of the Vrancea slab
evolution; Ismail-Zadeh et al., 2005b).

The heat flux through the vertical boundaries of the model domain � is set to zero. The
upper and lower boundaries are assumed to be isothermal surfaces. The present temperature
above 440 km depth is derived from the seismic velocity anomalies and heat flow data. The
adiabatic geotherm for potential temperature 1750 K (Katsura et al., 2004) was used to
define the present temperature below 440 km (where seismic tomography data are not
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Fig. 8.15. Surface velocity imposed on the part of the upper boundary of the model domain (see the caption
of Fig. 8.14) in data assimilation modelling for the time interval from 11 Myr to 16 Myr ago (a)
and for that from 16 Myr to 22 Myr ago (b). After Ismail-Zadeh et al. (2008).

available). Equations (8.36)–(8.49) with the specified boundary and initial conditions are
solved numerically.

To estimate the accuracy of the results of data assimilation, the temperature and mantle
flow restored to the time of 22 Myr ago were employed as the initial condition for a model
of the slab evolution forward in time; the model was run to the present; and the temperature
residual (the difference between the present temperature and that predicted by the forward
model with the restored temperature as an initial temperature distribution) was analysed
subsequently. The maximum temperature residual does not exceed 50 K.

A sensitivity analysis was performed to understand how stable is the numerical solution
to small perturbations of input (present) temperatures. The model of the present temperature
(Section 8.10.2) has been perturbed randomly by 0.5% to 2% and then assimilated to the
past to find the initial temperature. A misfit between the initial temperatures related to the
perturbed and unperturbed present temperature is rather small (2% to 4%), which proves
that the solution is stable. The numerical models, with a spatial resolution of 7 km ×
7 km × 5 km, were run on parallel computers. The accuracy of the numerical solutions
has been verified by several tests, including grid and total mass changes (Ismail-Zadeh
et al., 2001a).

8.10.4 What the past tells us

We discuss here the results of assimilation of the present temperature model beneath the SE-
Carpathians into Miocene times. Although there is some evidence that the lithospheric slab
was already partly subducted some 75 Myr ago (Sandulescu, 1988), the assimilation interval
was restricted to the Miocene, because the pre-Miocene evolution of the descending slab, as
well as the regional horizontal movements, are poorly known. Incorporation of insufficiently
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accurate data into the assimilation model could result in incorrect scenarios of mantle and
lithosphere dynamics in the region. Moreover, to restore the history of pre-Miocene slab
subduction, a high-resolution seismic tomography image of the deeper mantle is required
(the present image is restricted to the depth of 440 km).

Early Miocene subduction beneath the Carpathian arc and the subsequent gentle con-
tinental collision transported cold and dense lithospheric material into the hotter mantle.
Figure 8.16 presents the 3-D thermal image of the slab and pattern of contemporary flow
induced by the descending slab. Note that the direction of the flow is reversed, because we
solve the problem backward in time: cold slabs move upward during the numerical mod-
elling. The 3-D flow is rather complicated: toroidal (in horizontal planes) flow at depths
between about 100 km and 200 km coexists with poloidal (in vertical planes) flow.

The relatively cold (blue to dark green) region seen at depths of 40 km to 230 km
(Fig. 8.17b) can be interpreted as the earlier evolutionary stages of the lithospheric slab. The
slab is poorly visible at shallow depth in the model of the present temperature (Fig. 8.17a).
Since active subduction of the lithospheric slab in the region ended in Late Miocene times
and earlier rates of convergence were low before it, Ismail-Zadeh et al. (2006) argue that
the cold slab, descending slowly at these depths, has been warmed up, and its thermal
shape has faded due to heat diffusion. Thermal conduction in the shallow Earth (where
viscosity is high) plays a significant part in heat transfer compared to thermal convection.
The deeper we look in the region, the larger are the effects of thermal advection compared to
conduction: the lithosphere has moved upwards to the place where it had been in Miocene
times. Below 230 km depth the thermal roots of the cold slab are clearly visible in the
present temperature model (Figs. 8.14, 8.16 and 8.17a), but they are almost invisible in
Fig. 8.17b and in Fig. 8.18 of the models of the assimilated temperature, because the slab
did not reach these depths in Miocene times.

The geometry of the restored slab clearly shows two parts of the sinking body (Figs. 8.17b
and 8.18). The NW–SE oriented part of the body is located in the vicinity of the boundary
between the EEP and Scythian platform (SCP) and may be a relic of cold lithosphere
that has travelled eastward. Another part has a NE–SW orientation and is associated with
the present descending slab. An interesting geometrical feature of the restored slab is its
curvature beneath the SE-Carpathians. In Miocene times the slab had a concave surface
confirming the curvature of the Carpathian arc down to depths of about 60 km. At greater
depths the slab changed its shape to that of a convex surface and split into two parts at a
depth of about 200 km. Although such a change in slab curvature is visible neither in the
model of the present temperature nor in the seismic tomography image, most likely because
of slab warming and heat diffusion, we suggest that the convex shape of the slab is likely
to be preserved at the present time. Ismail-Zadeh et al. (2008) proposed that this change in
the geometry of the descending slab can cause stress localisation due to slab bending and
subsequent stress release resulting in earthquakes, which occur at depths of 70–180 km in
the region.

Moreover, the north–south (NS)-oriented cold material visible at the depths of 230 km to
320 km (Figs. 8.14 and 8.17a) does not appear as a separate (from the NE–SW-oriented slab)
body in the models of Miocene time. Instead, it looks more like two differently oriented
branches of the SW-end of the slab at 60–130 km depth (visible in Figs. 8.17b and 8.18).
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Fig. 8.16. A 3-D thermal shape of the Vrancea slab and contemporary flow induced by the descending slab
beneath the SE-Carpathians. Upper panel: top view. Lower panel: side view from the SE toward
NW. Arrows illustrate the direction and magnitude of the flow. The marked sub-domain of the
model domain presents the region around the Vrancea shown in Fig. 8.17 (in horizontal slices)
and in Fig. 8.18. The surfaces marked by blue, dark cyan and light cyan illustrate the surfaces of
0.07, 0.14 and 0.21 temperature anomaly δT, respectively, where δT = (Thav − T)/Thav and Thav is
the horizontally averaged temperature. The top surface presents the topography, and the red star
marks the location of the intermediate-depth earthquakes. After Ismail-Zadeh et al. (2008). (In
colour as Plate 9. See colour plates section.)

Therefore, the results of the assimilation of the present temperature model to Miocene
time provide a plausible explanation for the change in the spatial orientation of the slab
from NE–SW to NS beneath 200 km observed in the seismic tomography image (Martin
et al., 2006).
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(a)

Fig. 8.17. Thermal evolution of the crust and mantle beneath the SE-Carpathians. Horizontal sections of
temperature obtained by the assimilation of the present temperature to the Miocene times. After
Ismail-Zadeh et al. (2008). (In colour as Plate 10. See colour plates section.)

The slab bending might be related to a complex interaction between two parts of the
sinking body and the surrounding mantle. The sinking body displaces the mantle, which, in
its turn, forces the slab to deform due to corner (toroidal) flows different within each of two
sub-regions (to NW and to SE from the present descending slab). Also, the curvature of the
descending slab can be influenced by slab heterogeneities due to variations in its thickness
and viscosity (Cloetingh et al., 2004; Morra et al., 2006).

Martin et al. (2006) interpret the negative velocity anomalies NW of the present slab
at depths between 70 km and 110 km (see the relevant temperature slices in Figs. 8.14
and 8.17a) as a shallow asthenospheric upwelling associated with possible slab rollback.
Also, they mention partial melting as an additional contribution to the reduction of seismic
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(b)

Fig. 8.17. (Continued)

velocities at these depths. The results of our assimilation show that the descending slab is
surrounded by a border of hotter rocks at depths down to about 250 km. The rocks could be
heated owing to partial melting as a result of slab dehydration. Although the effects of slab
dehydration or partial melting were not considered in the modelling, the numerical results
support the hypothesis of dehydration of the descending lithosphere and its partial melting
as the source of reduction of seismic velocities at these depths and probably deeper (see
temperature slices at the depths of 130–220 km). Alternatively, the hot anomalies beneath
the Transylvanian basin and partly beneath the Moesian platform could be dragged down
by the descending slab since the Miocene times, and therefore, the slab was surrounded by
the hotter rocks. Using numerical experiments, Honda et al. (2007) showed recently how
the lithospheric plate subducting beneath the Honshu Island in Japan dragged down a hot
anomaly adjacent to the plate. Some areas of high temperature at depths below 280 km
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Fig. 8.18. Snapshots of the 3-D thermal shape of the Vrancea slab and pattern of mantle flow beneath the
SE-Carpathians in the Miocene times. See Fig. 8.16 for other notations. After Ismail-Zadeh et al.
(2008). (In colour as Plate 11. See colour plates section.)

can be associated with mantle upwelling in the region. High-temperature anomalies are not
clearly visible in the restored temperatures at these depths, because the upwelling was likely
not active in Miocene times.

The numerical results were compared with that obtained by the backward advection of
temperature (using the BAD method). Figure 8.19 (dashed curve) shows that the maximum
temperature residual is about 360 K. The neglect of heat diffusion leads to an inaccurate
restoration of mantle temperature, especially in the areas of low temperature and high
viscosity. The similar results for the BAD data assimilation have been obtained in the
synthetic case study (see Fig. 8.12e and h).

8.10.5 Limitations and uncertainties

There is a major physical limitation of the restoration of mantle structures. If a thermal
feature created, let us say, several hundred million years ago has completely diffused away
by the present, it is impossible to restore the feature, which was more prominent in the past.
The time to which a present thermal structure in the upper mantle can be restored should
be restricted by the characteristic thermal diffusion time, the time when the temperatures
of the evolved structure and the ambient mantle are nearly indistinguishable (Ismail-Zadeh
et al., 2004a). The time (t) for restoration of seismic thermal structures depends on depth
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Fig. 8.19. Temperature misfit in the model of the descending lithospheric slab beneath the southeastern
Carpathians. The misfit is defined as an integral difference between the temperature assimilated
to any time t ∈ [present, 22 Myr ago] and that predicted by the forward model (8.21)–(8.26) to
the same time assuming the assimilated temperature 22 Myr ago as the initial condition for the
forward model. Solid and dashed curves present the misfits for the cases of temperature
assimilation using the QRV and BAD methods, respectively.

(d) of seismic tomography images and can be roughly estimated as t = d/v, where v is
the average vertical velocity of mantle flow. For example, the time for restoration of the
Vrancea slab evolution in the studied models should be less than about 80 Myr, considering
d = 400 km and v ≈ 0.5 cm yr−1.

Other sources of uncertainty in the modelling of mantle temperature in the SE-Carpathians
come from the choice of mantle composition (Nitoi et al., 2002; Seghedi et al., 2004; Szabó
et al., 2004), the seismic attenuation model (Popa et al., 2005; Weidle et al., 2007), and
poor knowledge of the presence of water at mantle depths. The drop of electrical resistivity
below 1 � m (Stanica and Stanica, 1993) can be an indicator of the presence of fluids (due to
dehydration of mantle rocks) below the SE-Carpathians; however, the information is very
limited and cannot be used in quantitative modelling.

Viscosity is an important physical parameter in numerical modelling of mantle dynamics,
because it influences the stress state and results in strengthening or weakening of Earth’s
material. Though it is the least-known physical parameter of the model, the viscosity of
the Vrancea slab was constrained by observations of the regional strain rates (Ismail-Zadeh
et al., 2005a).

The geometry of the mantle structures changes with time, diminishing the degree of
surface curvature of the structures. Like Ricci flow, which tends to diffuse regions of high
curvature into ones of lower curvature (Hamilton, 1982; Perelman, 2002), heat conduc-
tion smoothes the complex thermal surfaces of mantle bodies with time. Present seismic
tomography images of mantle structures do not allow definition of the sharp shapes of these
structures. Assimilation of mantle temperature and flow to the geological past instead pro-
vides a quantitative tool to restore thermal shapes of prominent structures in the past from
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their diffusive shapes at present. High-resolution experiments on seismic wave attenuation,
improved knowledge of crustal and mantle mineral composition, accurate GPS measure-
ments of regional movements, and precise geological palaeoreconstructions of crustal
movements will assist to refine the present models and our knowledge of the regional ther-
mal evolutions. The basic knowledge we have gained from the case studies is the dynamics
of the Earth’s interior in the past, which could result in its present dynamics.

8.11 Comparison of data assimilation methods

We compare the VAR, QRV and BAD methods in terms of solution stability, convergence,
and accuracy, time interval for data assimilation, analytical and algorithmic works, and com-
puter performance (see Tables 8.1–8.3). The VAR data assimilation assumes that the direct
and adjoint problems are constructed and solved iteratively forward in time. The structure of
the adjoint problem is identical to the structure of the original problem, which considerably
simplifies the numerical implementation. However, the VAR method imposes some require-
ments for the mathematical model (i.e. a derivation of the adjoint problem). Moreover, for an
efficient numerical implementation of the VAR method, the error level of the computations
must be adjusted to the parameters of the algorithm, and this complicates computations.

The QRV method allows employing sophisticated mathematical models (because it does
not require derivation of an adjoint problem as in the VAR data assimilation) and hence
expands the scope for applications in geodynamics (e.g. thermo-chemical convection, phase
transformations in the mantle). It does not require that the desired accuracy of computations
be directly related to the parameters of the numerical algorithm. However, the regularising
operators usually used in the QRV method enhance the order of the system of differential
equations to be solved.

The BAD is the simplest method for data assimilation in models of mantle dynamics,
because it does not require any additional work (neither analytical nor computational).
The major difference between the BAD method and two other methods (VAR and QRV
methods) is that the BAD method is by design expected to work (and hence can be used) only
in advection-dominated heat flow. In the regions of high temperature/low mantle viscosity,
where heat is transferred mainly by convective flow, the use of the BAD method is justified,
and the results of numerical reconstructions can be considered to be satisfactory. Otherwise,
in the regions of conduction-dominated heat flow (due to either high mantle viscosity or high
conductivity of mantle rocks), the use of the BAD method cannot guarantee any similarity
of reconstructed structures. If mantle structures are diffused significantly, the remaining
features of the structures can be only backward advected with the flow.

The comparison between the data assimilation methods is summarised in Table 8.2 in
terms of a quality of numerical results. The quality of the results is defined here as a relative
(not absolute) measure of their accuracy. The results are good, satisfactory or poor compared
with other methods for data assimilation considered in this study. The numerical results of
the reconstructions for both synthetic and geophysical case studies show the comparison
quantitatively.
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Table 8.1. Comparison of methods for data assimilation in models of mantle dynamics

QRV method VAR method BAD method

Method Solving the regularised
backward heat
problem with respect
to parameter β

Iterative sequential
solving of the direct
and adjoint heat
problems

Solving of heat
advection equation
backward in time

Solution’s
stability

Stable for parameter β

to numerical errors
(see text; also in1)
and conditionally
stable for parameter β

to arbitrarily assigned
initial conditions
(numerically2)

Conditionally stable to
numerical errors
depending on the
number of iterations
(theoretically3) and
unstable to arbitrarily
assigned initial
conditions
(numerically4)

Stable theoretically
and numerically

Solution’s
conver-
gence

Numerical solution to
the regularised
backward heat
problem converges to
the solution of the
backward heat
problem in the
special class of
admissible solutions5

Numerical solution
converges to the
exact solution in the
Hilbert space6

Not applied

Solution’s
accuracy7

Acceptable accuracy for
both synthetic and
geophysical data

High accuracy for
synthetic data

Low accuracy for
both synthetic and
geophysical data
in conduction-
dominated mantle
flow

Time interval
for data
assimilation8

Limited by the
characteristic thermal
diffusion time

Limited by the
characteristic thermal
diffusion time and the
accuracy of the
numerical solution

No specific time
limitation;
depends on mantle
flow intensity

Analytical
work

Choice of the
regularising operator

Derivation of the
adjoint problem

No additional
analytical work

Algorithmic
work

New solver for the
regularised equation
should be developed

No new solver should
be developed

Solver for the
advection equation
is to be used

1Lattes and Lions, 1969; 2see Fig. 8.11 and relevant text; 3Ismail-Zadeh et al., 2004a; 4Ismail-
Zadeh et al., 2006; 5Tikhonov and Arsenin, 1977; 6Tikhonov and Samarskii, 1990; 7see Table 8.2;
8see text for details.
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Table 8.2. Quality of the numerical results obtained by different methods for data assimilation

Synthetic data Geophysical data

Advection- Diffusion- Advection- Diffusion-
Quality dominated regime dominated region dominated regime dominated region

Good VAR VAR — —
Satisfactory QRV, BAD QRV QRV, BAD QRV
Poor — BAD — BAD

Table 8.3. Performance of data assimilation methods

CPU time (circa, in s)

Solving the Stokes problem Solving the backward heat problem
using 50 × 50 × 50 using 148 × 148 × 148 finite

Method finite elements difference mesh Total

BAD 180 2.5 182.5
QRV 100 to 180 3 103 to 183
VAR 360 1.5 n 360 + 1.5 n

The time interval for the VAR data assimilation depends strongly on smoothness of the
input data and the solution. The time interval for the BAD data assimilation depends on
the intensity of mantle convection: it is short for conduction-dominated heat transfer and
becomes longer for advection-dominated heat flow. In the absence of thermal diffusion the
backwards advection of a low-density fluid in the gravity field will finally yield a uniformly
stratified, inverted density structure, where the low-density fluid overlain by a dense fluid
spreads across the lower boundary of the model domain to form a horizontal layer. Once the
layer is formed, information about the evolution of the low-density fluid will be lost, and
hence any forward modelling will be useless, because no information on initial conditions
will be available (Ismail-Zadeh et al. 2001b; Kaus and Podladchikov 2001).

The QRV method can provide stable results within the characteristic thermal diffusion
time interval. However, the length of the time interval for QRV data assimilation depends
on several factors. Let us explain this by the example of heat conduction equation (8.27).
Assume that the solution to the backward heat conduction equation with the boundary
conditions (8.28) and the initial condition T (t = t∗, x) = T ∗(x) satisfies the inequality
‖∂4T/∂x4‖ ≤ Ld at any time t. This strong additional requirement can be considered as
the requirement of sufficient smoothness of the solution and initial data. Considering the
regularised backward heat conduction equation (8.31) with the boundary conditions (8.32)–
(8.33) and the input temperature Tβ(t = t∗, x) = T ∗

β (x) and assuming that ‖T ∗
β − T ∗‖ ≤ δ,

Samarskii and Vabishchevich (2004) estimated the temperature misfit between the solution
T (t, x) to the backward heat conduction problem and the solution Tβ(t, x) to the regularised
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backward heat conduction equation:

∥∥T (t, x) − Tβ(t, x)
∥∥ ≤ C̃δ exp[β−1/2(t∗ − t)] + βLdt, 0 ≤ t ≤ t∗, (8.53)

where constant C̃ is determined from the a priori known parameters of the backward heat
conduction problem. For the given regularisation parameter β, errors in the input data δ,
and smoothness parameter Ld , it is possible to evaluate the time interval 0 ≤ t ≤ t∗ of data
assimilation for which the temperature misfit would not exceed a prescribed value.

Computer performance of the data assimilation methods can be estimated by a comparison
of CPU times for solving the inverse problem of thermal convection. Table 8.3 lists the CPU
times required to perform one time-step computations on 16 processors. The CPU time for
the case of the QRV method is presented for a given regularisation parameter β; in general,
the total CPU time increases by a factor of , where  is the number of runs required to
determine the optimal regularisation parameter β∗. The numerical solution of the Stokes
problem (by the conjugate gradient method) is the most time consuming calculation: it
takes about 180 s to reach a high accuracy in computations of the velocity potential. The
reduction in the CPU time for the QRV method is attained by employing the velocity
potential computed at βi as an initial guess function for the conjugate gradient method to
compute the vector potential at βi+1.An application of the VAR method requires to compute
the Stokes problem twice to determine the ‘advected’ and ‘true’ velocities (Ismail-Zadeh
et al., 2004a). The CPU time required to compute the backward heat problem using the
TVD solver (Section 7.9) is about 3 s in the case of the QRV method and 2.5 s in the
case of the BAD method. For the VAR case, the CPU time required to solve the direct and
adjoint heat problems by the semi-Lagrangian method (Section 7.8) is 1.5 × n, where n
is the number of iterations in the gradient method (Eq. (8.15)) used to minimise the cost
functional (Eq. (8.14)).

8.12 Errors in forward and backward modelling

A numerical model has three kinds of variables: state variables, input variables and param-
eters. State variables describe the physical properties of the medium (velocity, pressure,
temperature) and depend on time and space. Input variables have to be provided to the
model (initial or boundary conditions), most of the time these variables are not directly
measured but they can be estimated through data assimilation. Most models contain also a
set of parameters (e.g. viscosity, thermal diffusivity), which have to be tuned to adjust the
model to the observations. All the variables can be polluted by errors.

There are three kinds of systematic errors in numerical modelling of geodynamical
problems: model, discretisation and iteration errors. Model errors are associated with the
idealisation of the Earth’s dynamics by a set of conservation equations governing the dynam-
ics. The model errors are defined as the difference between the actual Earth dynamics and
the exact solution of the mathematical model. Discretisation errors are defined as the dif-
ference between the exact solution of the conservation equations and the exact solution of
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the algebraic system of equations obtained by discretising these equations. And iteration
errors are defined as the difference between the iterative and exact solutions of the algebraic
system of equations. It is important to be aware of the existence of these errors, and even
more to try to distinguish one from another.

Apart from the errors associated with the numerical modelling, another two components
of errors are essential when mantle temperature data are assimilated into the past: (i) data
misfit associated with the uncertainties in the present temperature distribution in the Earth’s
mantle and (ii) errors associated with the uncertainties in initial and boundary conditions.
Since there are no direct measurements of mantle temperatures, the temperatures can be
estimated indirectly from either seismic wave (and their anomalies), geochemical analysis
or through the extrapolation of surface heat flow observations. Many models of mantle
temperature are based on the conversion of seismic tomography data into temperature.
Meanwhile, a seismic tomography image of the Earth’s mantle is a model indeed and
incorporates its own model errors. Another source of uncertainty comes from the choice of
mantle compositions in the modelling of mantle temperature from the seismic velocities.
Therefore, if the present mantle temperature models are biased, information on temperature
can be improperly propagated to the geological past.

The temperature at the lower boundary of the model domain used in forward and backward
numerical modelling is, of course, an approximation to the real temperature, which is
unknown and may change over time at this boundary. Hence, errors associated with the
knowledge of the temperature (or heat flux) evolution at the core–mantle boundary are
another essential component of errors, which can be propagated into the past during the
data assimilation.

In numerical modelling sensitivity analysis assists in understanding the stability of the
model solution to small perturbations in input variables or parameters. For instance, if
we consider mantle temperature in the past as a solution to the backward model, what
will be its variation if there is some perturbation on the inputs of the model (e.g. present
temperature data)? The gradient of the objective functional with respect to input parameters
in variational data assimilation gives the first-order sensitivity coefficients. The second-
order adjoint sensitivity analysis presents some challenge associated with cumbersome
computations of the product of the Hessian matrix of the objective functional with some
vector (Le Dimet et al., 2002), and hence it is omitted in our study. Hier-Majumder et al.
(2006) performed first-order sensitivity analysis for two-dimensional problems of thermo-
convective flow in the mantle. See Cacuci (2003) and Cacuci et al. (2005) for more detail
on sensitivity and uncertainty analysis.
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