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The Purpose of Data Assimilation

Why do data assimilation? (Answer: Common Sense)

MYTH: “It’s just an engineering tool”



The Purpose of Data Assimilation

Why do data assimilation? (Answer: Common Sense)

MYTH: “ ring tool”

If Truth matters,

“It’s our most important science tool”



The Purpose of Data Assimilation

 Why do data assimilation?
1. | want better model initial conditions for better model forecasts
2. | want better calibration and validation (cal/val)
3. | want better acquisition guidance
4

| want better scientific understanding of

* Model errors (and their probability distributions)
» Data errors (and their probability distributions)

« Combined Model/Data correlations

* DA methodologies (minimization, computational optimizations, representation
methods, various method approximations)

* Physical process interactions
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VIRTUOUS CYCLE



The Data Assimilation Community

e Who isinvolved in data assimilation?

NWP Data Assimilation Experts

NWP Modelers

Application and Observation Specialists

Cloud Physicists / PBL Experts / NWP Parameterization Specialists
Physical Scientists (Physical Algorithm Specialists)

Radiative Transfer Specialists

Applied Mathematicians / Control Theory Experts

Computer Scientists

Science Program Management (NWP and Science Disciplines)
Forecasters

Users and Customers



The Data Assimilation Community

*  What skills are needed by each involved group?

NWP Data Assimilation Experts (DA system methodology)

NWP Modelers (Model + Physics + DA system)

Application and Observation Specialists (Instrument capabilities)
Physical Scientists (Instrument + Physics + DA system)

Radiative Transfer Specialists (Instrument config. specifications)
Applied Mathematicians (Control theory methodology)
Computer Scientists (DA system + OPS time requirements)
Science Program Management (Everything + $S$ + Good People)
Forecasters (Everything + OPS time regs. + Easy/fast access)

Users and Customers (Could be a wide variety of responses)
e.g., NWS / Army / USAF / Navy / NASA / NSF / DOE / ECMWF



The Data Assimilation Community

* Are you part of this community?

— Yes, you just may not know it yet.

e  Who knows all about data assimilation?

— No one knows it all, it takes many experts

* How large are these systems?

— Typically, the DA systems are “medium”-sized projects

using software industry standards

* Medium = multi-year coding effort by several individuals
(e.g., RAMDAS is ~230K lines of code, ~3500 pages of code)

« Satellite “processing systems” tend to be larger still

— Our CIRA Mesoscale 4DVAR system was built over ~7-8 years with heritage from
the ETA 4DVAR system



DA History by examples

 Mathematician and astronomers of
seventeenth and eighteen centuries who
made use of Newton laws to calculate the
orbit of comets were the first assimilators

 Newton was among them and discussed the
problem in Principia (Book I, Prop. XLI):
“This being a problem of very difficulty | tried
many methods of resolving it”.



DA History (continue)

* The task of finding the path of comets relied on the
coupled set of non linear differential equation that
described its paths under the assuntion of two body
celestial mechanics. The motion was controlled by the
gravitational attraction of the comet to the Sun

* Looking a celestial object in heavens one can express the
position from its angular measurements by azimuth and
elevation. We are ignorant of its distance from us and then
we are unable to estimate its velocity from successive
observations.

* |t was clear that the observation of celestial bodies that
were available to us could not easily translate into
“standard” initial conditions, velocity and position.



DA History (continue)

* |n order to take into account velocity it became
necessary to obtain additional observation at
other times.

* |In the interval of time before the second
observation is made, the Earth will have moved
and the observed body will have gone to another
place in its orbit. The second oservation simply
determines another line on which the body is
located at another date (that is the “difficulty”)



DA History

* At each epoch one could obtain two
observation angles right ascension and
declination.

* The six constants arising from the governing
differential equations should be determined
from three complete observations (i.e. two

angular measurements at each of the three
instants in time)



DA History

* Supposing we made three observations at the
time t1, t2, t3 and the angular measurement be
right ascension and declination.

* Right ascension (a) is the astronomical term for
one of the two direction coordinates of a point
on the celestial spheres in the equatorial
coordinates system, usually combined with
Declination J . Right ascension's angular distance
is measured eastward along the celestial equator
celestial equator from the vernal equinox to the
hour circle of the point in question.



DA History




DA History

a1 = P(Q, 4, w,a,e,T;t1)
as = Y(Q,i4,w,a,e,T;ts)
az = YP(Q,1,w,a,e,T;ts)

o)
—

= (¢, w,a,e,T;t1)
= (2,1, w,a,e,T;ts)
= (2,1, w,a,e,T;t3)

%
(\V)

,
S
w

® and W are highly trascendental
functions and involve the elements in a
very complicated fashion that prevents to
have direct solution of equation by
ordinary processes

There are six elements, which are independent
functions of these constants. They are:

1. The position of the plane of the orbit defined by:
Q2= longitude of ascending node, and

i = inclination to plane of the ecliptic

2. a = major semi-axis, which defines the size of the
orbit and the period of revolution.

3. e =the eccentricity, which defines the shape of
the orbit.

4. The orientation of the orbit in its plane defined
by:

w= longitude of the perihelion point measured from
the node,

or it = longitude of the perihelion. m=Q+w

5. T = time of perihelion passage, defining, with the
other elements, the position of the body in its orbit
at any time.



DA History: Gaussian approach

e Semplified assumptions that allow us to solve
the problem meaningfully yet more simply
than the problem discussed by Gauss in
Theoria

e 1° step Solve the problem with the minimum
set of observations: reduction of unknowns

e 2° step outline the method of solution in
presence of more than the minimum requisite
set



DA History: Gaussian approach

1.We assume a
co-planar

circular orbit of
Earth E, Sun S,
Planet C

2. The observation
are made by E

E:
C:
s

g

n
a, o : Positional Angles from E to C, C’
6, 8’ : Positional Angles from Sto C, C’
SE, SE’ : Sun-Earth Distance (R)
8§C, §C’ : Sun-Unknown Body Dietance )
Q : Earth's Rotation Rate
6 :Rotation rate of C

Measurement symbols associated with tracking of a planetoid (C) from earth (E).



DA History: Gaussian approach

Derive a formula for finding r and 6
radius and rotation rate of C
from the measurements of «

Observation 0

= —_—

Observation1 <~ TN )] = rsin(6 + Ht) — Rsin Q¢
rcos(f + 0t) — Rcos Ot

x(t) = —RcosQt+ rcos(f+ 6t)

z(t) = —RcosQt+ rcos(f+ 6t)
¢ =
ana = =
7

:Sun
a, o : Positional Angles from Eto C, C’
6, 8" : Positional Angles from Sto C, C’
SE, SE' : Sun-Earth Distance (R)
8C, 8C’ : Sun-Unknown Body Dietance )
Q : Earth's Rotation Rate
6 :Rotation rate of C

Measurement symbols associated with tracking of a planetoid (C) from earth (E).



Taking the derivative of o with respect to time

y — xtan o

o= 3
Psece v

Now at t = 0 (where 6 is the unknown initial angle) we have

rsin6

rcos — R

tan o =

Evaluating & at t = 0 we get

: ] [y(O) — 2(0) tan
t=0 =

o

z(0) sec? i
From the Kepler’s 3rd law we also know
: 472
2 _—

9 T—B
z(0) = —R+rcosf
y(O0) =i
#(0) = —rfsind
7(0) = rfcosf — RN

Remembering that at a, &|t—¢ R and ) are kwown

equations 2.3,4 are three equations in terms of the three unknowns r, # and 0



DA History: Gaussian approach

OBSERVATION 1 ~ OBSERVATION 0

Celestial
Sphere

Rotation rates determined from Kepler’s 3rd Law. An object at unknown dis-
tance from earth is observed at two times —*“0”" and “1” (earth at E and E’, respectively).
Use of Kepler’s law yields its distance from the Sun (2.0 A.U.).

We start our iteration by “guessing” atr,
avalup — 3

We measured o. so from eq. 2 will give us
a guessat 0, g

If we substitute from eq 4 into eq. 3
eliminating d6/dt then eq. 3 contains 6
andr.

We have measured do/dt|,_.,and we can
solve for an improvedvalue of r= 7 + D
linearizing ea. 3 as a function only of

p, 8 and then solve for p.

We then return to eq 2 to get the new
estimate of O using 7 + p in placer.
Continue to iterate until p become
vanishing small (Newton Raphson
method)



DA History: Gaussian approach

 Assume now the observations of angle Q{(t)

are subject to error. How would be accomodate more
than two oservations?

 For example assume we have three measurements
denote by:

&O (t)a 6‘1 (t)a 6‘2 (t)

e We furthermore assume we know the time that each
observation is made t,,t,,t,

* Gauss assumed to build up a measure of the fit of the
model (Kepler’s law) to the observations by using the
least squares approach.

J = (o — Gg)* + (1 — @1)* + (g — G2)°



DA History: Gaussian Approach

* In essence we find the set 7, §, @ the gives us the
a’s that minimize J, i.e. the least squares fit
between the model derived state and the
observations

 We can start assuming that the initial guesses are:

o) = &

r(l) =3

and the solution to eq.1 where oo and r are
given by the guesses.

05"



DA History: Gaussian approach

* Since the coordinates x and y are known as
function of r, g g we have a forecast
equation to get values of the os at the
various times downstream.

* |s our initial guess a minimum?Generally not
but if we know the fisrt derivatives at our
operating point (the initial guess) we can open
to find an improved estimate by moving along
the direction of the negative gradient of J



History: Time evolution

Time

Classical mechanics Probability (late) 1600s
determinism
Newton
* Pascal, Fermat
Mechanistic view > *
| A4
Laplace | e .\-b Conditional probability (late) 1700s
4+_l ]
/T Ba
Least squares yes
(data assimilation) > '\ ~N . (early) 1800s
3 | (
. Legendre, Gauss o .
Dynamical systems Statistical thermodynamics (late) 1800s
|
Poinlcaré y Maxwell, Bolt'zmann, Gibbs
Experimental design X l l
Birkhoff
| Stochastic dynamics Quantum mechanics 1900
Lyapunov Fisher l l
l Markov, Wiener, Kolmogorov
\ B
A
Filtering/Smoothing/Prediction (mid)
Manhattan Project 1900s
|
v Swerling, Kalman, Bucy,
Kushner, Stratonovich, Zakai
Predictability LA ¥ 4
| Minimum variance (data assimilation) Monte Carlo
T
Lorenz Evensen I
4 Ulam (late) 1900s
»|  Ensemble forecasting/filtering |« |




DA Meaning

 What do we mean by data assimilation?

* Assimilation is an analysis in which the
information is accumulated in the state of a
dynamic model, exploiting the consistency of
constraints inherent in the physics laws and
time processes, combining the observations

distributed in time with the dynamic model
itself.



DA meaning

 The process analysis corresponds to various
degrees:
(1) as an approximation of the true state of a
physics system at a given time;
(2) as including diagnosis and self consisting of a
physics system;
(3) as a reference by which to make a test of the
quality of the observation
(4) as an input data useful for another operation,
such as the initial state of a predictive model.



DA Meaning

The more usual case is to use the assimilation to make a time
prediction.

Such approach implies that errors due to initial conditions must be
reduced as far is possible only leaving to the model the possibility
to generate the errors and then to proceed in a more realistic
direction.

The assimilation combines the observation data with the data
produced by the model to reproduce an "Optimal" estimate of the
evolving state of the system.

The model provides consistency to the observed data
allowing also to interpolate or extrapolate data into regions of
space and time in which these are lacking.

Furthermore the observed data adjust the trajectory of a model
through the state space of the model, keeping in line in a loop
prediction-osservation-correction.



DA Approach

0o UTC 06 UTC 12 UTC
@’—t'\ s e o
servations) servatio ervations)
h_ﬂ—// = _._/ &__/

v A 4 v
Initialization | | Initialization | | Initialization '

F Ana;ysis | —'{ Anal;fsis ‘ -’| Ana;;/sis ’

Forecast Forecast Forecast

Typical 6-hour analysis cycle.

Bayes interpretation: a forecast (the “prior”),
is combined with the new observations, to
create the Analysis (IC) (the “posterior”)




DA Approach

Geo-stationary Polar-orbiting satellites

ERS-2 satellites
382,299

_Cloud @
w7 motion
vector

SATOB SATEM
26,674 TOVS

e

}94,935

SHIP 4,706




DA toy model

e \We want to measure the temperature in this room, and we have two
thermometers that measure with errors:

T1:Tt—|—€1
TQZTt—I—GQ

 We assume that the errors are unbiased:
€1 =— €9 — 0_ i
that we know their variances 6% = 01 6% — 09

e and the errors of the two thermometers are
uncorrelated:

€1ea = 0

* The question is: how can we estimate the true temperature
optimally? We call this optimal estimate the “analysis of the
temperature”



DA: toy model

 We try to estimate the analysis from a linear
combination of the observations:

To = a1ly + a9y
and assume that the analysis errors are unbiased:
Ta — Tt
* This implies that
a1 + Qo = 1
[, will be the best estimate if the coefficientsd1, 42
are chosen to minimize the mean squared error of Lo

0 = (To—T1)* =[a(T1 = T;) + (1 — a1 )(Tz — T,))?



DA toy model

* the minimization 02 of with respect a7 to gives

2 2
30’2 - 05 n 01
O » a1_02—|—02 a2_02—|—02
aq 1 2 1 2
ol 1/o} 1/03
ai a9

8 1/0% 4+ 1/02

* The first formula says that the weight of obs 1 is given by
the variance of obs 2 divided by the total error.

* The second formula says that the weights of the
observations are proportional to the "precision" or

accuracy of the measurements(defined as the inverse of
the variances of the observational errors).




DA as a inverse problem

* A forecast and an observation optimally
combined (analysis):

 [f the statistics of the errors are exact, and if the
coefficients are optimal, then the "precision” of
the analysis (defined as the inverse of the

variance) is the sum of the precisions of the
measurements.

 The importance of these toy examples is that the
equations are identical to those obtained with big
models and many observations.



DA as a inverse problem

e Let us now see why DA is an inverse problem

* A boundary value problem in mathematical
physics is said to be well-posed in the senso of
Hadamard if it satisfies the following three

conditions
1. The solution exists
2. The solution is unique
3. The solution depends continuosly on the

data



DA Inverse Problem: Ocean basin toy

model

e Let us use a simple toy model of the ocean:

* Define an “ocean basin” given in the interval
0 < 2 < L while the time of interest is

0t <7

T

The ocean dynamics are espressed
by the differential equation

O O

. - C@x

c is a known, constant,

positive phase speed specified
F=F(x,t) is a specified forcing field

An Initial Condition is u(xy O) 2= 1(37)

A boundary Condition is U(O, t) = B(t)

— W/




Is the solution unique?

In order to determine the uniqueness of solution let ul and
u2, two solutions for the same choiches of F, | and B. Define
the difference U = U1 — U9

Then Ov | C@—O
ot  Oxr

with  v(x,0) =0 v(0,t) =0

The solution is U($, t) = 0 then

ui(z,t) = us(x,t)



Does the solution exist?
We may construct the solution
* Using the Green’s function G = G(x,t,(, T)
 Our equation becomes:

oG  0G
= N =d(x — ()o(t — 1)

* The inizialization and boundary conditions are:

G(L,t,¢,7)=0  G(z,T,(,7)=0
e The solution is:

w(@,t) = Jy dr f, dCG(¢, 2 )F (¢ T)+ ]y G (¢ 0,2, )I(Q)+ [y, drG(0, 7,2, t)B(r

The solution depends continuously on changes to I,F and B . We conclude eq. is WELL POSED



Inverse problem

Let’s now introduce additional information about the toy
ocean circulation field u(x,t). This information will consist of
imperfect observations of u at isolated point in space and
time. Then the forward model become overdetermined and
must be regarded as ill posed problem.

Let’s assume to collect M measurements defined by:
Y=gl 1 ; ) S

The equation of the ocean circulation becomes
?91; | Cax v f
With the conditions
u(0,t) = B(t) + b(t)
u(z,0) = I(x) +i(x)




IFIVErse proolem

We have established that for any choice of F+f, 1+i and B+b
there is a unique solution for u.

We have only the M data values to guide us

The error field f,i and b are undetermined while the errors on
data are unknown

We shall seek the minimum of the quadratic or cost
unct'lonalJ

j j[ Wffo dtfo :Bthm—I—WfO r)%dx +

W fo

th + Wop Z

Rewrmng explicitely the dependence on F,I,B and¢;

}w Wf fO dt [{%% 4 2% — F)2dx + W; [ {u(z,0) — I(z)}?dz +
fo {u(0,

)}th+Wome Ru(Te, ty) — Yi}Q






