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DA Definition

* Data Assimilation is a anlysis technique that helps
to integrate observed information to our model
state by taking advantage of the consistency of
constraints with respect to laws of time evolution
and physical properties

* There are two approach:

1. Continuous assimilation where information are
nandled in long batches (more realistic)

2. Intermittent assimilation where information are
orocesses in small batches (more convenient)




Primitive scheme

* One of the first is the local polynomial,
assuming that in our investigation domain
data are irregularly distributed (squares).

* In order to have an input
for numerical models we
interpolate these .
observations to grid points SN
(circles) with coordinate (x,y) '




Primitive scheme

e A quadratic polynomial in x and y is defined as:
2(x,y) = aoo + ar0® + an1y + a20x” + a117y + a2y’

* We need to find the coefficients @ j which
matches observation to each grid points

e Should be perfect if we could integrate data from
all station but:

1. Calculation explode

2. Data excessely distant from grid points are
profitless



Primitive scheme

 The solution is to define a radius of influence
where z(x,y) mantain a projper precision.

* Coefficients a,; are determined by

K.
J=) prla(ar ) — 271> —2 min
k=1

N

Local observation

Empirical weighting coefficients



Issues of DA models

. When we do not have any observation within
the radius of influence no inizialization can be
done.

. Not all data can be directly assimilated (remote
sensing data for instance)

. Observations are not uniform in space and time

As a result we need to merge into the model a
first guess estimate at grid point that are the
initial condition for nowcast and forecast.

Such information is called prior information or
background information



Forecast vs Nowcast

Background
or first guess

Background Observations

Observations or first guess 30 min

3h

1h forecast

Global analysis
(statistical Regional analysis
interpolation) and (statistical interpolation)

balancing 6h forecast and balancing

Initial conditions

Initial conditions

Global forecast
model Regional forecast model

Operational Operational
Forecast Nowcast



DA State vector, observations and
errors

The set of numbers to represent the state of
of model is collected as a column matrix
named state vector x.

The true state vector describing the real state
of the physical environment is denoted as x,

The background state vector is x,, which
represents the true state before the analysis

The analysis state vector x, is the target of our
study



continue

In seeking the solution for model state analysis it is
impossible to solve all the components of the model due

to:

1. Our limited capability to model all components

2.

Insufficient computational power to perform the analysis

Instead of striving the true analysis we may restrict our
interest to find the correction of background vector so that
the analysis vector come closest to the true vector

In case where our objective space is not the analyisis but
the correction, they are the so called control space, we

have:

Tq = Tp + 0 — T4

correction



continue

ne observed value or observation vector is y
ne observation operator is H

ne key of data assimilation is to recognize the
difference between observation and state vector

y=H(x)
The observation operator can be linear or not
linear

In this last case the general approch is to linearize
it by a first order Taylor expansion. Other
approaches will be seen in successive slides.




Errors and their covariances

e Errorisin form of differences bewteen true
state vector and other state vectors.

* [n modeling tese errors the most powerfull
means to represent the uncertaintiy is to use
the probability density function (pdf).

* This is because we know exactly what error
occur in each individual case but we can own

its statistics and its average



continue

e We can define:

background € = Tp — CEt fb_Eb Eb_ﬁb
observation €ob =Y — H(xe)D- [, _; =T They consist of

’ = R_(E‘)b EOb)(EOb EOb) instrument errors
analysis — _ . .

€ = Lo — It A= (6 -l —&)" Tr(4)=||(en — &)[*

The average of errors are called biases



Optimal Least Square Method

* |[n the 1° toy model we have learned the least
square method of a scalar at a fixed point

* Now we discus how to find optimal analysis
for several variables. Such analysis is called
Optimal Least Square Estimator or BLUE (Best
Linear Unbiased Estimation) analysis.

e At beginning we use the linear assumption of
observation operator with h=x-x,

y— H(x)~y— H(xp) — H(x — xp)



continue

* The departure of true state vector x, after
swapping positions of H(x;)and H(azb) is:

y— H(zy) =y — H(xe) — H(xy — )
* Apply the definition of errors we have:

y—H(CEb) :Gob—HGb

* Assume now thlated by the
background x, and the observation departure

through the linear equation

o
vo = oy + Kly = Hia)] |




continue

* |nstead seeking their state vectors the
equivalence is to find their errors:

* Adding x, into the previous equation:
Ty, — X =xp — X + Kly — H(xp)
to have:

Eazeb—K[EOb—HGb] ([ KH)Eb—I—KEOb

where | is the Identity Matrix



continue

e Remembering the Analysis Errors Covariance A

A= (e, €€, —€)"

we obtain:
A= (I -KH)B(I- KH)Y + KRK"®
* To obtain K j_; 280

K =BH'(HBH' + R)™!
That is called Weight Matrix or Gain.



Variational Method and 3D-Var

* An alternative approach to obtain the optimal
solution is to use the variational method also
named Cost Function approach.

* The idea is to obtain the minimum of the misfit of
the estimate with respect to

/
\ /
\

the observations. |\
* We could apply the VM in N\ /
- - N
general form by introducinga S

cost function J



continue

* A specific variational assimilation problem is
that finds the optimal analysis x, field that
minimizes a (scalar) cost function.

* The cost function is defined as the (weighted)
distance between x and the background x,,
plus the (weighted) distance to the
observationsy,

* The Cost Function, J, is the link between the
observational data and the model variables

7= {(e—2) B @)+ Iy~ H@)"R [y~ H@)))

Observations are either assumed unbiased, or
are “debiased” by some adjustment method



Bayes Theorem

Maximum Conditional Probability is given by:

P(x[y)~P(y]|x)P(x)
Assuming Gaussian distributions...

Py | x)~exp{-1/2 [y—H (X)]"R [y —H (x)]} W o
P (x) ~exp{-1/2 [x—x,]" B [x —x,]} 3DVAR

Lorenc (1986)



What Do We Trust for “Truth”?

Minimize discrepancy between model and observation data over time
1 L =
J={z—2)" B (@ —a) +ly— H@)" R [y — H@)]}

Model Background or
Observations?

Trust = Weightings
Just like your financial credit score!



Who are the Candidates for “Truth”?

Minimize discrepancy between model and observation data over time

7= {(@—m)"B & —x) + [y~ H@) Ry — H(x)]}

Candidate 1: Background Term
“x” is the model state vector at the initial time t,
this is also the “control variable”,
the object of the minimization process
“x,” is the model background state vector
“B” is the background error covariance

of the forecast and model errors



Who are the Candidates for “Truth”?

Minimize discrepancy between model and observation data over time

7= {(e—2) B @~ )+ ly— H@) R [y~ H@)))

Candidate 2: Observational Term
“y” is the observational vector, e.g., the satellite input data (typically
radiances), salinity, sounding profiles

“(x)” is the model state at the observation time

w:n
[

“h” is the observational operator, for example the
“forward radiative transfer model”
“R” is the observational error covariance matrix that specifies the

instrumental noise and data representation errors (currently assumed
to be diagonal...)



What Do We Trust for “Truth”?

Minimize discrepancy between model and observation data over time

7= {(@— @) B & —x) + ly - H@)] Ry — H(z)]}

Candidate 1: Background Term

The default condition for the assimilation when

1. data are not available or

2. the available data have no significant sensitivity to the

model state or
3. the available data are inaccurate



Model Error Impacts our “Trust”

Minimize discrepancy between model and observation data over time

J= % {(z —2p)" B~ (z —zp) + [y = H(z)]" B[y — H(2)]]

Candidate 1: Background Term

Model error issues are important

Model error varies as a function of the model time

Model error “grows” with time

Therefore the background term should be trusted more at the
initial stages of the model run and trusted less at the end
of the model run



How to Adjust for Model Error?

Minimize discrepancy between model and observation data over time

7= {(e—2)"B™ @~ m) + Iy~ H@)| R [y~ H@)))

Candidate 1: Background Term

1. Add a model error term to the cost function so that the weight at

that specific model step is appropriately weighted or

Use other possible adjustments in the methodology, i.e., “make an
assumption” about the model error impacts

If model error adjustments or controls are used the DA
system is said to be “weakly constrained”



What About Model Error Errors?

Minimize discrepancy between model and observation data over time

T =5 {(e—2) B @~ )+ ly - H@)"R [y~ H@))}

Candidate 1: Background Term
Model error adjustments to the weighting can be “wrong”
In particular, most assume some type of linearity
Non-linear physical processes may break these assumptions and be
more complexly interrelated
A data assimilation system with no model error control is said to be
“strongly constrained” (perfect model assumption)



What About other DA Errors?

Overlooked Issues?
1. Data debiasing relative to the DA system “reference”.
It is not the “Truth”,

however it is self-consistent.

2. DA Methodology Errors? Synoptic vs. Mesoscale?

Assumptions: Linearization, Gaussianity, Model errors
Representation errors (space and time)

Poorly known background error covariances
Imperfect observational operators
Overly aggressive data “quality contro
Historical emphasis on dynamical impact vs. physical

I”

O U1 R



Lognormal
Variables
Clouds
Precipitation
Water vapor
Emissivities

Many other
hydrologic
fields

DA Theory is Still Maturing

The Future: Lognormal DA (Fletcher and Zupanski, 2006, 2007)

Gaussian systems typically force lognormal variables to become Gaussian
introducing an avoidable data assimilation system bias

PLOT OF LOGNORMAL DISTRIBUTIONS
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Many important variables
are lognormally distributed

PLOT OF TRANSFORMED NORMAL DISTRIBUTIONS
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Gaussian data assimilation system

variables are “Gaussian”



What Do We Trust for “Truth”?

Minimize discrepancy between model and observation data over time

7= {(@—2)"B & —x) + ly - H@) Ry — H(x)]}

Candidate 2: Observational Term
The non-default condition for the assimilation when
1. data are available and
2. data are sensitive to the model state and
3. data are precise (not necessarily “accurate”) and
4. data are not thrown away by DA “quality control”
methods



What “Truth” Do We Have?

Minimize discrepancy between model and observation data over time

J= % 1@ — apiER (o — oM@ )| RN y=H ()]

MODEL DATA
CENTRIC CENTRIC



3D-Var

* The minimum of J(x) is attained for x=x, such
that:

%:VxJ(ma):O (>

* Assuming the analysis is closed to the truth we
write:
r = |xp+ (r — xp)]
* Assuming x-x, is small we can linearize the
observation operator

y— H(z)| =y — Hlzp + (x —xp)] = 1y — H(wp) ) — H(z — 20)



continue

e Substitute it into the Cost Function we obtain:
20 () — T ENE (1 Ny )
i [ UG (: S 1y )| R [y <~ H (23) f B GRS
 Expanding the products we get:
W = I AP AR ) I g — )
=1y —EE) | R H(z 25
— (@ —wp) H' R {y $ELEHE
+{y — H(zs)} R~ {y + H(zs)}

* The cost function is a quadratic function of the
analysis increment x-x,



A
J(x)

continue

The two dimensions
Cost Function.

The minimum is
found by moving
down-gradient in
discrete steps.



continue

e Recall the cost function and combine the first
two terms we get:

2lEP™—(r ;)" [B~! 1+ H el
—{y — H(zp)} R H(z — z)
— (@ —x)" H' R {y — H(xp)}
+{y — H(zp)} R~ {y — H(xp)}

 The gradient of J respect x is:

Vid(z) =[B! + Hin' O[S e, — H(zp) )



continue

* Setting the gradient Vv.j(x) — () wWe obtain:

2,

T — roadls s HERUH| T HT R {EEEE
 This is the solution of the 3 Dimensional
Variational (3D-Var) analysis problem

e This is the formal solution

* |n pratical 3D-Var we do not invert a huge
matrix



continue

The idea is to proceed downhill as quickly possible:
example are Steepest Descend algorithms, Newton’
method, Levenberg Marquardt method, etc

The location of the minimum depends on the nature of J
function

As an example we consider the shape of the surface J=J(x,y)

f

et

For a purely elliptic surface the minimum is easily located



continue

IS

INMum

For a banana shaped surface the m

much harder to find.



4AD-Var

e 4D-var is generalizion of 3D-Var including
observation at different times

J( (to)) = (wo(to) — s(to))" By *(x(to) — s (to))
+ Z yi — Hi(z:)]" R ' [y; — Hi(z)]

______

0




continue

* Need to define V J (x(tg))in oder to
minimize J(x(tg))

Separate J(x(z,)) into “background” and “observation” terms

o] A,  aJ,

J=J,+J,, - +
Ix(t,) JIx(t,) Ix(t,)

First, let's consider J,(x(7,))

Given a symmetric matrix A, and

a functionJ= %xTAx , the gradient 1s g1ven by % = Ay



continue

Ty = 5 [o(to) — a(to)” B~ [u(to) — wa(to)]

5o = B a(to) — w(to)]




VJ, Is more complicated, because it involves the
Integration of the model:

2[H<x> y/IRI[H(x,)—-y’]

—10

If J=yTAy and v = y(x), the 5”:[33’]' <
y'Ay and y = y(x) en 2|2 i A

where [ﬁ} - Dk s a matrix.
oxl, o
X =M;[x(2))]
r)(H(xl.)—y,-): JdH IM, =HL(,.t)=HL_L ,--L
axo ()X’- on

HL, L, LT =L L' L' H =L(,.t,)H’

i—i-1

0

} ZL’ (t,.t. JH'RIH(x,)—y’]

i=0

[31((’0

Adjoint model integrates
increment backwards to t,

weighted increment at
observation time, t, in
model coordinates



4AD-Var

 The 4D-Var problem constraints sequence of
model state to be a solution of model
equations

r; = M;|z(to)]

where M;|x(tg)]| is the Predefined Model
Forecast Operator.

* Then 4D-Var becomes a non linear
optimization problem which is hard to solve



o 4D-Var finds the 12-hour

3D-Var vs. 4D-Var forecast evolution that best fits
the available observations

X o It does so by adjusting 1)
J surface pressure, and the
- upper-air fields of 2)
~ analysis J1 .............. temperature, 3) wind, 4)

1 > specific humidity and 5) ozone
A corrected
I N forecast 1. 4D-Var assumes a perfect

model. It will give the same

E..f.j.!?- ----------- I J credence to older bservations
° as to newer observations.

»
>

I I I >
3z 6z 9z 12z 15z time 2. Background error covariance

<
- »~

assimilation window 1s time-independent in 3D-

Var, but evolves implicitly in
4D-Var.
3. In 4D-Var, the adjoint model

is required to compute VJ



Practical implementation: use the incremental form

1 —_ 1 A 0 — o
J(0x,) = ;(&O)TBOI&O + ;Z[H,.L(to,t,.)ﬁxo —d°T R [HL(1,,1,)0x, —d]
= <~ =0

where ox=x-X,and d=y_-H(x)

With this form, it is possible to choose a “simplification
operator, S” to solve the cost function in a low dimension
space (change the control variable).

Now, ow=Sox and minimize J(ow)

The choice of the simplification operator
» Lower resolution

« Simplification of physical process



Example of using simplification operator

Tg =Ty

i - — — = High resolution non linear trajoctory
Depamm d=y—H{x)
(=) >  Low regolution non li Both TLM and ADJ use a

Jm'_ﬂ\\,\ \ / / / low resolution and also
{ simplified physics due to
4 ‘ | the limitation of the

] Larey el Hriegs ipyic] — 7 computational cost.

E Low resalution adjoint. model —aVJ

B | Iterative minimisation algorithm

T4t = :r¢-+-3'1(dz4)

TLM=Tangent Linear Model

ADJ= Adjoint model
Ta — — — —>  High resolution non linear forecast



Conclusions

€®Broad, Dynamic, Evolving, Foundational Science
Field!

®Flexible unified frameworks, standards, and
funding will improve training and education

€ Continued need for advanced DA systems
for research purposes (non-OPS)

€ Can share OPS framework components,
e.g., JCSDA http://www.jcsda.noaa.gov/

€ JCSDA CRTM http://www.star.nesdis.noaa.gov/
smcd/spb/CRTM/index.html
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Back up slides:The Role of the Adjoint,
etc.

Adjoints are used in the cost function minimization procedure

But first...

Tangent Linear Models are used to approximate the non-linear model behaviors

Lx" = [M(x,) —M(x,)] / a
L is the linear operator of the perturbation model

M is the non-linear forward model

A is the perturbation scaling-factor
X, = X, + oX’



Useful Properties of the Adjoint

V4
<|.X ) Lx'> = <L"Lx’, x’>

LT is the adjoint operator of the perturbation model

Typically the adjoint and the tangent linear operator can be
automatically created using automated compilers

Yy =1 Xy s X, Y)

O*x. = 0*x. + 0*y df/ox.
O*y =90*y df/dy where 6*x. and d*y are
the “adjoint” variables



Useful Properties of the Adjoint

)
<|.X , > = <y, x>

LT is the adjoint operator of the perturbation model

Typically the adjoint and the tangent linear operator can be
automatically created using automated compilers

Of course, automated methods fail for
complex variable types
(See Jones et al., 2004)
E.g., how can the compiler know when the variable is
complex, when codes are decomposed into real and
imaginary parts as common practice? (It can’t.)





