

2374-8

Joint ICTP-IAEA School of Nuclear Energy Management

5 - 23 November 2012

Advanced Nuclear Reactor Designs and Technologies for Near Term Deployment

SUBKI Mochammad Hadid

International Atomic Energy Agency Division of Nuclear Power Nuclear Power Engineering Section Wagramerstrasse 5, P.O. Box 100 A-1400 Vienna AUSTRIA

The ICTP-IAEA School on *"Nuclear Energy Management"*, 5 – 23 November 2012, in Trieste, ITALY:

Advanced Nuclear Reactor Designs and Technologies for Near Term Deployment

Dr. Mochammad Hadid Subki Technical Lead, SMR Technology Development Nuclear Power Technology Development Section Division of Nuclear Power, Department of Nuclear Energy

Outline

- Near Term Deployable Reactor Designs
- Current Newcomer Countries Plans
- Near Term Deployment Issues
- Global Trends in Advanced Reactor Designs
- OPERATING FUNDAMENTALS (BWR, PWR and PHWR)
 - 11 pages basic presentations on BWR, PWR and PHWR principles
- MAIN TECHNICAL FEATURES of ADVANCED REACTORS for NEAR TERM DEPLOYMENT
 - 63 pages featured technical presentations of 9 advanced reactor designs
- Identified Issues from the TEPCO Fukushima Daiichi Nuclear Accident
- Safety and Technical Improvements in Operating Reactors
- What's New in Global SMR Development Activities?
- IAEA Responses to Global Trends
- Summary and Conclusions

Near Term Deployable Reactor Designs

Country –Designer	Reactor Identification	Туре	Power, MW(e)	Status
Candu Energy Inc.	EC6 & ACR-1000	PHWR	740 & 1000	Detailed design
CHINA				
CNNC	ACP-1000	PWR	1000	Detailed design
CGNPC	ACPR-1000	PWR	1150	Detailed design
CNNC	CNP-300	PWR	375	In operation & under construction
FRANCE				
AREVA	EPR	PWR	1600	Under construction
FRANC	E-JAPAN			
ATMEA	ATMEA1	PWR	1100	Detailed design
NPCIL	PHWR-220, PHWR- 540 & -700	PHWR	220, 540, and 700	In operation & under construction
IGCAR	PFBR-500	SFR	500	In commissioning - Prototype

Near Term Deployable Reactor Designs

Country –Designer	Reactor Identification	Туре	Power, MW(e)	Status	
JAPAN-USA					
Hitachi-GE, Toshiba- Westinghouse	ABWR	BWR	1350 – 1550	In operation & under construction	
Mitsubishi Heavy Industries, Ltd.	APWR	PWR	1400 – 1700	Detailed design	
KHNP	OPR-1000	PWR	1000	In operation & under construction	
KHNP	APR-1400	PWR	1400	Under construction	
KAERI	SMART	Integral PWR	100	Certified design	
RUSSIAN FEDERATION					
OKB Gidropress	VVER-1000	PWR	1000	In operation	
OKB Gidropress	VVER-1200	PWR	1200	Under construction	
OKBM Afrikantov	KLT-40s	Floating PWR	35	Under construction	

Near Term Deployable Reactor Designs

Country –Designer	Reactor Identification	Туре	Power, MW(e)	Status
RUSSIAN FEDERATION				
AKME Engineering	SVBR-100	LBFR	100	Detailed design
UNITED STATES of AMERICA				
GE Hitachi	ESBWR	BWR	1550	Detailed design
Toshiba – Westinghouse	AP1000	PWR	1000	Under construction
CNEA	CAREM-25	Integral PWR	27	Prototype under construction

Current Newcomer Countries Plan

Country	Grid Capacity in GWe	Current Deployment Plan
Bangladesh	5.8	2 x 1000 MWe PWRs in Rooppur in 2018
Vietnam	15.19	4 x 1000 MWe PWRs in Ninh Thuan #1 by 2020 4 x 1000 MWe PWRs in Ninh Thuan #2 by 2025
Jordan	2.6	2 x 1000 - 1100 MWe PWR in + possible interest in SMR
UAE	23.25	4 x 1400 MWe PWR in Braka by 2018
Belarus	8.03	2 x 1200 MWe PWR in Ostrovets by 2018
Turkey	44.76	4 x 1200 MWe PWR in Akkuyu by 2022
Malaysia	25.54	2 x 1000-1200 MWe LWRs, 1 st unit by 2021

Near Term Deployment Issues

- Advanced reactors face several challenges:
 - Regain public acceptance after the Fukushima Daiichi nuclear accident
 - Perceived as safe by the global public
 - Be competitive in deregulated market
 - Capacity building in newcomer countries
 - Final radioactive-waste disposal/repository site
- 4 categories of reactors by the IAEA:
 - Current Technology Plants (e.g. Tomari-3 PWR, Sizewell-B PWR)
 - Evolutionary (e.g. ABWR, APR-1400, VVER-1000,...)
 - Advanced (e.g. AP1000, EPR, ESBWR, APWR, ATMEA1,...)
 - Innovative (e.g. Fast reactors, SMRs, advanced gas cooled reactors, Gen-IV designs)

Advanced Reactor Designs (As defined in IAEA-TECDOC-936)

- Evolutionary Designs achieve improvements over existing designs through small to moderate modifications
- Innovative Designs incorporate radical conceptual changes and may require a prototype or demonstration plant before commercialization

Departure from Existing Designs

Global Trends in Advanced Reactor Design

Cost Reduction

- Standardization and series construction
- Improving construction methods to shorten schedule
- Modularization and factory fabrication
- Design features for longer lifetime
- Fuel cycle optimization ٠
- Economy of scale \rightarrow larger reactors
- Affordability \rightarrow SMRs

Performance Improvement

- Establishment of user design requirements
- Development of highly reliable components and systems, including "smart" components
- Improving the technology base for reducing over-design
- Further development of PSA methods and databases
- Development of passive safety systems ٠
- Improved corrosion resistant materials
- **Development of Digital Instrumentation and Control** ٠
- Development of computer based techniques

Development of systems with higher thermal efficiency and expanded applications (Non-electrical applications)

OPERATING FUNDAMENTALS

!!! Plant Layouts are similar even for different designs ...

urtes of KHNP-Republic of Korea

BWR Operating Fundamental (1)

Courtesy of GE Nuclear Energy, USA.

BWR Operating Fundamental (2)

Courtesy of NRC, USA.

Evolution of BWR steam supply system

Courtesy of GE Nuclear Energy, USA.

Evolution of BWR Containment

Courtesy of GE Nuclear Energy, USA.

PWR Operating Fundamentals (1)

Reactor Coolant System of PWR (1)

Control Rod Mechanism

Courtesy of Mitsubishi Heavy Industries, Japan.

Core

CANDU Operating Fundamentals

CANDU Primary Components

Courtesy of AECL, Canada.

- Fuel bundles
- Fuel channels
- CALANDRIA
- Control system
- Heat Transport System
- Moderator System
- Fuel Handling System
- Auxiliary System
- Safety System
- Support System

CANDU Heat Transport System

Courtesy of AECL, Canada.

Currently Competing Advanced Reactors

- 1. VVER-1000, VVER-1200
- 2. ABWR
- 3. APR-1400, OPR-1000
- 4. EPR
- 5. AP1000
- 6. ESBWR
- 7. APWR
- 8. ATMEA1
- 9. EC-6, ACR-1000

Russia Japan-USA Korea France **USA-Japan USA-Japan** Japan **France-Japan** Canada

AEA What does the above order imply?

VVERs & AES 2006 OKB Gidropress

WWER-1000 / 1200 (AEP)

- The state-owned AtomEnergoProm (AEP), and its affiliates (including AtomStroyExport (ASE) et.al) is responsible for nuclear industry activities, including NPP construction
- Advanced designs based on experience of 23 operating WWER-440s & 27 operating WWER-1000 units
- Present WWER-1000 construction projects
 - Kudankulam, India (2 units)
 - Belene, Bulgaria (2 units)
 - Bushehr, Iran (1 unit) completed
- WWER-1200 design for future bids of large size reactors

- Tianwan
 - first NPP with corium catcher
 - Commercial operation: Unit-1: 5.2007; Unit-2: 8.2007
- Kudankulam-1 & 2
 - Commercial operation expected in 2010
 - Core catcher and passive SG secondary side heat removal to atmosphere

WWER-1200

Commissioning of 17 new WWER-1200s in Russia expected by 2020

- Novovoronezh 2 units
- Leningrad 4 units
- Volgodon 2 units
- Kursk 4 units
- Smolensk 4 units
- Kola 1 unit

- Uses combination of active and passive safety systems
- One design option includes core catcher; passive containment heat removal & passive SG secondary side heat removal
- 24 month core refuelling cycle
- 60 yr lifetime
- 92% load factor

VVER, NPP 2006

<u>What is VVER</u> <u>BBЭP: водо-водяной энергетический р</u> WWER: water-cooled water-moderated є

- Pressurized light water reactor.
- Loop-type reactor plant.
- Horizontal steam generators.
- Hexagonal fuel assemblies.
- High level of inherent safety.
- About 1500 reactor-years of operating time

NPP 2006 Basis

Now VVER-1200 (also known as NPP-2006) is the main design for near term nuclear power program in Russia and for bidding at international market.

NPP-2006 is the evolution of VVER-1000s by improving plant performance and increasing plant safety.

Plant performance

Rated power – 1170 (1000) MWe Primary pressure – 16.2 (15.7) MPa Coolant temperature – 329 (320) C Refueling period – 24 (12) months Burn-up in FA – 70 (50) MWD/kgU

Plant safety

Passive reactor scram system Passive core flooding system Secondary pressure – 7.0 (6.3) MPa Passive decay heat removal system Passive containment cooling system Passive hydrogen removal system Passive corium catcher

NPP 2006 Major Parameters

EA

Parameter	Value
NSSS equipment lifetime, years	60
Load factor, %	92
NSSS availability factor	99
Efficiency factor, net %	35.7
Length of fuel cycle, years	4 - 5
Frequency of refueling, months	12 (18-24)
FA maximum burn-up, MW day/kgU	70
Inter-repair period length, years	4 - 8
Refueling length, days	≤ 16
Number of unplanned reactor shutdowns per year	≤ 1
(A)	

US-ABWR and **EU-ABWR**

Toshiba Corporation & Hitachi GE Nuclear Energy

Advanced Boiling Water Reactor (ABWR)

Courtesy of GE Hitachi Nuclear Energy

- Originally by GE, then Hitachi & Toshiba
- Developed in response to URD
- First Gen III reactor to operate commercially
- Licensed in USA, Japan & Taiwan, China
- 1380 MWe 1500 MWe
- Shorter construction time
- Standardized series
 - 4 in operation (Kashiwazaki-Kariwa -6 & 7, Hamaoka-5 and Shika-2)
 - 7 planned in Japan
 - 2 under construction in Taiwan, China
 - Proposed for South Texas Project (USA)

ABWR Development History

Courtesy of Toshiba, Japan.

Key Features of US, EU ABWR

Principle

- ABWR design based on the integration of the proven technologies of BWR fleet
- Plentiful construction and operation experience of Japanese BWRs and ABWRs
- Latest Westinghouse BWR design mixture

Approach

Extension of the JP- ABWR design for wide application accounting for US,European safety requirements

Approach to US, EU-nized ABWR

APR1400 and OPR1000 Korea Hydro and Nuclear Power (KHNP)

APR-1400

- Developed in Rep. of Korea (KHNP and Korean Industry)
- 1992 development started
- Based on CE's System 80+ design (NRC certified)
- 1400 MWe for economies of scale
- Incorporates experience from the 1000 MWe Korean Standard Plants
- Relies primarily on well proven active safety systems
- First units will be Shin-Kori 3,4
 - completion 2013-14
- Design Certified by Korean Regulatory Agency in 2002
- 4 units to be built in UAE

I. Introduction

Phase IV – Technology advancedment

 Development of Advanced Power Reactor 1400 (1992~2001) Licensing agreement with ABB-CE - Perfect technology self-reliance & technology ownership **EPRI URD/EURD** ADF/PDF Under Construction - SKN # 3, Sys. 80+ Latest Codes & Planning - SUN # 1. Standards (CE, 1300MWe) Sys. 80+ (CE, 1300MWe **Improved OPR 1000** In Operation - YGN #5,6 ('02/'02) - UCN #5,6 ('04/'05) Under Construction - SKN #1.2 - SWN #1.2 **OPR 1000** In Operation - YGN #3,4 ('95/'96) - UCN #3,4 ('98/'99) **NSSS Design Core Design** Palo Verde #2 (CE,1300MWe) ANO #2 (CE,1000MWe)

Quick Comparison of OP1000 & APR1400

OPR1000

APR1400

Parameters	OPR1000	APR1400
Power capacity (MWe)	1000	1400
Design life time (yr)	40	60
Seismic design criteria	0.2g	0.3g
Core damage frequency	6.8×10⁻ ⁶ /RY	2.4×10 ⁻⁶ /RY
Emergency core cooling	2 Train	4 Train
Main control type	Analog + Digital	Digital

• OPR1000: Optimized Power Reactor 1000MW
 • APR1400: Advanced Power Reactor 1400MW

Design Principles

Adoption of ADF based on proven technology

- Direct Vessel Injection of Safety Injection System
- Passive Flow Regulator or Fluidic Device in Safety Injection Tank
- In-containment Refueling Water Storage Tank & Sparger
- Fully Digitalized I&C and Operator-Friendly Man-Machine Interface

Enhanced Plant Safety and Cost Effectiveness

- Improved Severe Accident Mitigation System
- Reinforced Seismic Design Basis (0.3 g)
- Extended plant design lifetime (60 years)
- R educed construction time (48 months for Nth unit)

Improved O & M Convenience

- Extended operator response time
- Reduced occupational exposure
- Easier In-Service Inspection and maintenance for components

APR 1400

Design Goals

Safety

- Core Damage Frequency < 1.0E-5/RY (2.25×10-6/RY)
- Containment Failure Frequency < 1.0E-6/RY (2.84×10-7/RY)
- Seismic Design Basis : 0.3 g
- Occupational radiation exposure < 1 man·Sv/RY

Performance

- Thermal Margin (is greate than) > 10 %
- Plant Availability > 90 %
- Unplanned Trip (less than) < 0.8/RY

Economy

- Plant Capacity (Gross) : 1,455 Mwe
- Plant Lifetime : 60 years
- Refueling Cycle ≥ 18 months
- Construction Period : 48 months (Nth Unit)

8

II. Design Characteristics of APR1400 & OPR1000

Top-Tier of APR1400 vs. OPR1000

Items	APR1400	OPR1000
[Economics/Performance]		
- Design life time	60 yrs	40 yrs
- Capacity	1400 MWe	1000MWe
- Construction period	58 Months(Unit 1,2)	62 Months
- Daily load following	Automatic	Manual
- Refueling interval	18 Months	18 Months
- I&C	Full digital	Partial digital
[Safety]		
- CDF	<1.0E-5/RY	<1.0E-4/RY
- CFF	<1.0E-6/RY	<1.0E-5/RY
- Seimic design	0.3g	0.2g
- Operator action time	30 mins	10 mins
- SBO scoping time	8 hours	4 hours
- ECCS	4 Trains DVI	2 Train CLI
- SG plugging margin	10% (Inconel 690)	8% (Inconel 690)

I. Design Characteristics of APR1400 & OPR1000

Overall Configuration of OPR1000

41

I. Design Characteristics of APR1400 & OPR1000

Overall Configuration of APR1400

 Basically same configuration with OPR1000 except safety system (DVI, IRWST and so on)

Construction Schedule

EPR and US-EPR AREVA

A Plant Layout of EPR

Courtesy of AREVA, France.

EPR Primary System Features

Courtesy of AREVA, France.

- 4 loop configuration, similar to those operating designs
- Enlarged capacity to enhance grace period in transients and accidents
- Extensive use of forgings with integral nozzles
- Adopt corrosion- and cracking-resistance materials

EPR Safety Features

Courtesy of AREVA, France.

- Redundancy to overcome single failure
- Four 100% safety trains and physical separation
- Each enough to extract decay heat and cool the core
- Additional safety valves on the pressurizer allow faster reactor cool-down
- Diversity to avoid common cause failure
- 2 SBO DG + 4 main EDG →

United States of America

AP1000

Westinghouse Electric Company LLC

The Westinghouse AP600

- (And here a land on the first of the second second

- Fergennel Habres (d) Core Variagi Tarice (d) Steam Generation (d)
- Reserve Costant Parrys (4)
- Tenned Insel Package Tenne Yosan

- Freessteret
 Depressionzeren verve Modure Location
 Patove Resolution Frei Remove Heat Exchanger F.
 Reburg Hate Derege Tam
 Referend Scient Contex
 Man Contex Room

- 20 Intelligenter Provention Colomate
- 21 High Pressure Feederser Hannes 27 Feederster Pumps 23 Descriptor

- D4 Los Plataus Fastury Heaters
- 28 Turture Germanical

Westinghouse AP1000

A compact station

© 2011 Westinghouse Electric Company LLC. All Rights Reserved.

Simplification of Safety Systems **Dramatically Reduces Building Volumes**

Standard PWR

AP1000

AP1000 Passive Core Cooling System Eliminate the need for AC Power

- Passive Residual Heat Removal (PRHR HX)
 - Natural circ. heat removal replaces auxiliary feedwater pumps
- Passive Safety Injection
 - Core Makeup Tanks (CMT)
 - Full RCS pres, natural circ. inject (replaces high head injection pumps)
 - Accumulators (ACC)
 - Similar to current plants
 - In-containment Refueling Water Storage Tank (IRWST) Injection
 - Low pres (replaces low head injection pumps)
 - Containment Recirculation
 - Gravity recirc. (replaces pumped recirc)
 - Automatic RCS Depressurization
 - Staged, controlled depressurization

13

ESBWR

GE Hitachi Nuclear Energy

ESBWR

Courtesy of GE Nuclear Energy, USA

- Developed by GE
- Development began in 1993 to improve economics of SBWR
- 4500 MWt (~ 1550 MWe)
- In Design Certification review by the U.S.NRC – approved 10/2010
- Meets safety goals 100 times more stringent than current
- 72 hours passive capability
- Key Developments
 - NC for normal operation
 - Passive safety systems
 - Isolation condenser for decay heat removal
 - Gravity driven cooling with automatic depressurization for emergency core cooling
 - Passive containment cooling to limit containment pressure in LOCA

New systems verified by tests

ESBWR Overall Flowchart

AEA

Copyright 2011 GE Hitachi Nuclear Energy International, LLC - All rights reserved

Courtesy of GE Hitachi Nuclear Energy

ESBWR Containment System

Courtesy of GE Hitachi Nuclear Energy

- Raised Suppression Pool
- High Elevation Gravity Drain Pool
- All Pipes/Valves Inside Containment
- Decay Heat Condensers Above Drywell

Comparison of BWR System

Feature	BWR/6	ABWR	ESBWR
Recirculation System inside RPV	Two external loop Recirc system with jet pumps	Vessel-mounted reactor internal pumps	Natural circulation
Control Rod Drives	Locking piston CRDs	Fine-motion CRDs	Fine-motion CRDs
ECCS	2-division ECCS plus HPCS	3-division ECCS	4-division, passive, gravity-driven
Reactor Vessel	Welded plate	Extensive use of forged rings	Extensive use of forged rings
Primary Containment	Mark III - large, low pressure, not inerted	Compact, inerted	Compact, inerted
Isolation Makeup Water	RCIC	Fluidic Controlled RCIC	Isolation condensers, passive
Shutdown Heat Removal	2-division RHR	3-division RHR	Non-safety system combined with RWCU
Containment Heat Removal	2-division RHR	3-division RHR	Passive
Emergency Power	3 safety-related D/G	3 safety-related D/G	Safety related batteries
Alternate shutdown	2 SLC pumps	2 SLC pumps	2 SLC accumulators
Control & Instrumentation	Analog, hardwired, single channel	Digital, multiplexed, fiber optics, multiple channel	Digital, multiplexed, fiber optics, multiple channel
In-core Monitor Calibration	TIP system	A-TIP system	Gamma thermometers
Control Room	System-based	Operator task-based	Operator task-based
Severe Accident Mitigation	Not specifically addressed	Inerting, drywell flooding, containment venting	Inerting, drywell flooding, core catcher

ESBWR Containment

Courtesy of GE Nuclear Energy, USA

ESBWR Spent Fuel Storage Pool

Courtesy of GE Hitachi Nuclear Energy

US-APWR and **EU-APWR** Mitsubishi Heavy Industries, Ltd.

Advanced Pressurized Water Reactor

Courtesy of Mitsubishi Heavy Industries

APWR Design Characteristics

Enhanced economic

Construction cost Fuel cost Availability

Environment

Reduced wastes and personnel radiological dose

APWR

Improved Safety

4 trains Advanced accumulator I-RWSP

Improved 0 & MAdvanced Control Roomwith Digital I&C

Enhanced Reliability Reactor internals Steam generator Reactor coolant pump

APWR Technical Specification

	ITEM	APWR	Current 4 Loop
	Electric Output	1,538 MWe	1,180 MWe
	Core Thermal Output	4,451 MWt	3,411 MWt
	Fuel Assembly Type, Number	17 × 17, 257	17×17, 193
	Radial Core Support Neutron Reflector		Baffle/Former
Main Specifications	SG heat transfer area 6,500 m ²		4,879 m²
	Coolant Flow	25,800 m³ /h/loop	20,100 m ³ /h/loop
	Engineered Safety Features	4 Divisions	2 Divisions
	Steam Turbine	TC6F54	TC6F44
	I & C	Full-Digital	Digital (Partially)
Reliability / Safety	Design Life Time	60 years	40 years
	Core Damage Frequency	approx.1/10	Base
Operation / Maintenance	Occupational Dose	0.2 man SV/y	0.4 – 5 man SV/y
	Radioactive Waste	60 Drums/y	140 Drums/y
	Min. Operators in MCR	1	2
Uranium Saving	MOX Loading	1/3-1/1 Core	1 / 4 – 1 / 3 Core
Economy	Primary build.volume /KWe	20 %less	Base

Evolution from 4-loop PWR to APWRs

APWR's ECCS Configuration

APWR's Safety Design Items

Item	US-APWR	EU-APWR
Design Extension Conditions	 Not required in the US Alternate AC (non-safety) 	 ATWS, multiple SGTR, MSLB+SGTR and SBO) and complex sequences Additional Diverse systems EBS, ACCWS, AAC(two trains)
Grace Period	10minutes	 30 minutes
Fire protection System and layout design	 assuming fire coincident with OLM 	 assuming fire coincident with a single failure and OLM
Air plane crash	Base	 Assuming Larger Plane

APWR Plant Parameters

		Current 4 Loop	APWR	EU-APWR/US-APWR
Electric Output		1,180 MWe	1,538 MWe	1,700 MWe Class
Core Thermal Output		3,411MWt	4,451 MWt	4,451 MWt
Steam Generator	Model	54 F	70 F- 1	91TT-1
	Tube size	7/8"	3/4"	3/4"
Reactor Coolant Pump	Model	93A-1	MA25(60 Hz)	MA25(50Hz)/MA25(60Hz)
Turbine	LP last-stage blade	44 inch	54 inch	74 inch

> APWR

✓ 1,538MWe output is achieved by large capacity core and large capacity main components such as SG, RCP, turbine, etc.

> EU-APWR/US-APWR

- ✓ 1, 700MWe output is achieved from a higher efficiency than APWR.
 - Same core thermal output with APWR
 - High-performance, large capacity steam generator
 - High-performance turbine

APWRs Safety System and I&C

			Current 4 Loop	APWR	EU-APWR US-APWR
Safety Systems	Trains	Electrical	2 trains	2 trains	4 trains
		Mechanical	2 trains	4 trains	4 trains
	Systems	HHSI pump	100% × 2	50% × 4(DVI)	50% × 4(DVI)
		LHSI pump	100% × 2	-	-
		ACC	4	4 (Advanced)	4 (Advanced)
	RWSP		Outside CV	Inside CV	Inside CV
Containment Vessel		PCCV	PCCV	PCCV	
1&C	Cont	rol Room	Conventional		
	Safety I&C		Conventional	Full Digital	Full Digital
	Non-	Safety I&C	Digital		

ATMEA1 ATMEA An AREVA and MHI Company

ATMEA1

- 1100 MWe, 3 loop plant
- Combines AREVA & Mitsubishi PWR technologies
- Relies on active safety systems & includes core catcher
- Design targets:
 - 60 yr life
 - 92% availability
 - 12 to 24 month cycle;
 0-100% MOX

ATMEA1 Technical Description

Reactor Type	3-Loop PWR	Safety System	3-Tra with	in reliable active system bassive features		
Electrical output	1100 – 1150 MWe (Net)	Severe Accident Management	Core	catcher ogen re-combiners		
Core	157 Fuel Assemblies	Resists airplane c	rash Pre-s	tressed Concrete ainment Vessel		
Steam Pressure	More than 7 MPa	I&C	Full C	Full Digital		
2			1. 2. 3. 4. 5. 6.	Reactor Building Fuel Building Safeguard Building Emergency Power Building Nuclear Auxiliary Building Turbine Building		
AREVA and MHI Com	Dany CC	ONFIDENTIAL	IAEA Worksho	a - 5 July 2011 3		

Operating Performance Operating Parameters

	ATMEA1	Notes
Electrical output	1,100 – 1,150 MWe	Obtain 10% more electric output
Thermal output	3,150 MWth	in less cost and waste
Height / Number of FAs	17x17- 4.2m / 157 FAs	Standard configuration
Fuel enrichment	< 5.0 wt%	Same as operating PWRs
Max. fuel assembly burn-up	62GWd/t	Max. achievable BU with UO2 enrichment less than 5%
Linear heat rate	17.5 kW/m	Low LHR contributes lowering fuel cost
T hot (best estimate)	326deg-C	High temperature within the range of our experiences
Cooling flow rate (BE)	24,800 m3/h/loop	Maximized flow rate within the range of our experiences
Thermal margin	>15 %	Satisfy URD requirement
Steam Generators	Around 8,000 m2 with axial economizer	Efficient and experienced design
Steam pressure (BE)	7.3 (MPa)	One of the world highest
Net efficiency	35 – 37 %	Site dependent

An AREVA and MHI Company

CONFIDENTIAL

EC6 & ACR1000 CANDU Energy

Flexibility of CANDU Design

- Natural uranium fuel \rightarrow D₂O / heavy water cooled, necessary
- Slightly enriched 0.9~1.2%
- Can use recovered uranium
- Can use DUPIC (Direct Use of spent PWR fuel In CANDU)
- Can MOX (Mixed uranium and plutonium Oxide)
- Can use Pu/LWR waste-fuel
- Can use Thorium
- Can use CANFLEX bundle and LWR fuel bundles

Reactor Assembly

- Fuel channels and moderator inside the CALANDRIA
- CALANDRIA located inside concrete VAULT filled with water, also acts as SHIELDING.
- END-SHIELDS filled with water and steel pebbles.
 CALANDRIA has low temperature and pressure

Moderator System

CALANDRIA & Fuel Channel Concept

On-power Refueling

Shutdown Systems

Emergency Core Cooling System

Identified issues from the Fukushima Daiichi Nuclear Accident

- Review extensive scenario of Design Basis Accident (DBA) → Multiple external initiating events and common cause failures
- Station blackout mitigation
- Ultimate heat sink for core and containment cooling in post severe accident
- Reliability of emergency power supply
- Optimization of the grace period (i.e. operator coping time)
- Enhanced containment hydrodynamic strength
- Hybrid passive and active engineered safety features
- Safety viability of multiple-modules first of a kind engineering
- Accident management, emergency response capability and costs
- Seismic and cooling provisions for spent fuel pool
- Hydrogen generation from steam-zirconium reaction; recombiner system
- Environmental impact assessment and expectation
- Control room habitability in post accident transient

Safety Improvement of Operating Reactors

1

http://www.jaif.or.jp/ja/annual/45th/45-s2_makoto-yagi_e.pdf

http://www.jaif.or.jp/ja/annual/45th/45-s2_makoto-yagi_e.pdf

What's New in Global SMR Development?

	SMART	On 4 July, the Korean Nuclear Safety and Security Commission issued the Standard Design Approval for the 100 MWe SMART – the first iPWR received certification.
	NuScale mPower W-SMR Hi-SMUR	US-DOE funding of 452M\$/5 years for two (2) out of the four (4) US competing iPWR based SMRs. Some have utilities to adopt in specific sites
	KLT-40s SVBR-100 SHELF	2 modules marine propulsion-based barge-mounted KLT-40s are in construction, 90%; The lead-bismuth eutectic cooled SVBR-100 deployed by 2018, SHELF seabed-based started conceptual PWR-SMR design
	Flexblue	DCNS originated Flexblue capsule, 50-250 MWe, 60-100m seabed-moored, 5-15 km from the coast, off-shore and local control rooms
0	CAREM-25	Site excavation for CAREM-25 was started in September 2011, construction of a demo plan starts soon in 2012
	4S	Toshiba had promoted the 4S for a design certification with the US NRC for application in Alaska and newcomer countries.
★** **	HTR-PM ACP-100	2 modules of HTR-PM are under construction; CNNC developing ACP-100 conceptual design 88

Concept of Integral PWR based SMRs

Integral Primary System Configuration

Courtesy: Westinghouse Electric Company LLC, All Rights Reserved

Benefits of integral vessel configuration:

 eliminates loop piping and external components, thus enabling compact containment and plant size → reduced cost

Eliminates large break loss of coolant accident (improved safety)

<image>

CAREM-25 Argentina

IMR Japan

SMART Korea, Republic of

VBER-300 Russia

WWER-300 Russia

KLT-40s Russia

USA

N

NuScale USA

CNP-300 China, Peoples Republic of

ABV-6 Russia

SMR for Near-term Deployment SMART

© 2011 KAERI – Republic of Korea

- Designer: Korea Atomic Energy Research Institute (KAERI), Republic of Korea
- **Reactor type**: Integral PWR
- Coolant/Moderator: Light Water
- Neutron Spectrum: Thermal Neutrons
- Thermal/Electrical Capacity: 330 MW(t) / 100 MW(e)
- Fuel Cycle: 36 months
- Salient Features: Passive decay heat removal system in the secondary side; horizontally mounted RCPs; intended for sea water desalination and electricity supply in newcomer countries with small grid
- Design status: Standard Design Approval just granted on 4 July 2012

SMART – Safety Systems

Inherent Safety

- No Large Break : vessel penetration < 2 inch
- Large Primary Coolant Inventory per MW
- Low Power Density (~2/3)
- Large PZR Volume for Transient Mitigation
- Low Vessel Fluence
- Large Internal Cooling Source (Sump-integrated IRWST)

Engineered Safety Features

- Passive Residual Heat Removal System (50 % x 4 train)
 - Natural Circulation
 - Replenish-able Heat Sink (Emergency Cooling Tank)
- Safety Injection System (100 % x 4 train)
 - Direct Vessel Injection from IRWST
- Shutdown Cooling System (100 % x 2 Train)
- Containment Spray System (2 Train)

Severe Accident Management

- In-Vessel Retention and ERVC
- Passive Hydrogen Control (PARs)

SMR for Near-term Deployment NuScale

- Full name: NuScale
- **Designer**: NuScale Power Inc., USA
- Reactor type: Integral Pressurized Water Reactor
- Coolant/Moderator: Light Water
- Neutron Spectrum: Thermal Neutrons
- Thermal/Electrical Capacity: 165 MW(t)/45 MW(e)
- Fuel Cycle: 24 months
- Salient Features: Natural circulation cooled; Decay heat removal using containment; built below ground
- **Design status**: Design Certification application expected in 4th Quarter of 2013

NuScale - Decay Heat Removal System

© 2011 NuScale Power, Inc.

- Two independent single-failureproof trains
- Closed loop system
- Two-phase natural circulation operation
- DHRS heat exchangers
 nominally full of water
- Supplies the coolant inventory
- Primary coolant natural circulation is maintained
- Pool provides a 3 day cooling supply for decay heat removal

NuScale - Decay heat removal using Containment

© 2011 NuScale Power, Inc.

- Provides a means of removing core decay heat and limits containment pressure by:
 - Steam Condensation
 - Convective Heat Transfer
 - Heat Conduction
 - Sump Recirculation
- Reactor Vessel steam is vented through the reactor vent valves (flow limiter)
- Steam condenses on containment
- Condensate collects in lower containment region
- Reactor Recirculation Valves open to provide recirculation path through the core
- Provides 30+ day cooling followed by indefinite period of air cooling.

Main Engineering Characteristics of KLT-40s FNPP

© 2011 OKBM Afrikantov

TYPE - SMOOTH-DECK NON-SELF-PROPELLED SHIP

	LENGTH, m	140,0	
	WIDTH, m	30,0	
	BOARD HEIGHT, m	10,0	
	DRAUGHT, m	5,6	
	DISPLACEMENT, t	21 000	
	FPU SERVICE LIFE, YEARS	40	
0.00			

IAEA Response to the Global Trend

- **Project 1.1.5.5:** Common Technologies and Issues for SMRs
- **Objective:** To facilitate the development of key enabling technologies and the resolution of enabling infrastructure issues common to future SMRs
- Activities (2012 2013):
 - Formulate roadmap for technology development incorporating safety lessons-learned from the Fukushima accident
 - Review newcomer countries requirements, regulatory infrastructure and business issues
 - Define operability-performance, maintainability and constructability indicators
 - Develop guidance to facilitate countries with planning for SMRs

technology implementation

Summary and Conclusion (1)

- Many options are realistic choice for countries
 - Heavy water, boiling water and pressurized water reactors
 - SMR, high temperature or fast reactors have niche applications
- Many of them have been:
 - Endorsed by User Requirements (EUR, URD, etc)
 - Certified by licensing authorities in several countries
 - Built and operated for many years in various countries... or
 - ... in the process of being built
- Size and "provenness" requirements may limit choices for newcomer countries
- All options have multiple sources for lifetime spare parts
- Some options are better than others for fuel supply

Summary and Conclusion (2)

- Capacity building in newcomer countries is crucial, in which IAEA plays important and neutral roles
- Main issues:
 - Economic competitiveness
 - Proven technology or commercial availability
 - Some suppliers design for home country (SMR)
 - Capability of newcomer countries to assess supplier claims
- Needs to address lessons-learned from the Fukushima accident into the design development and plant deployment
- Needs to enhance the important roles of research reactor utilization for capacity building in newcomer countries embarking on nuclear power programs, through interregional training and expanding nuclear engineering
 Corriculum through IAEA assistance and facilitation.

... Thank you for your attention.

For inquiries, please contact: Dr. M. Hadid Subki <<u>M.Subki@iaea.org</u>>