

2374-24

Joint ICTP-IAEA School of Nuclear Energy Management

5 - 23 November 2012

Nuclear Labour Markets: the Challenges of Workforce Planning

MURPHY Brian

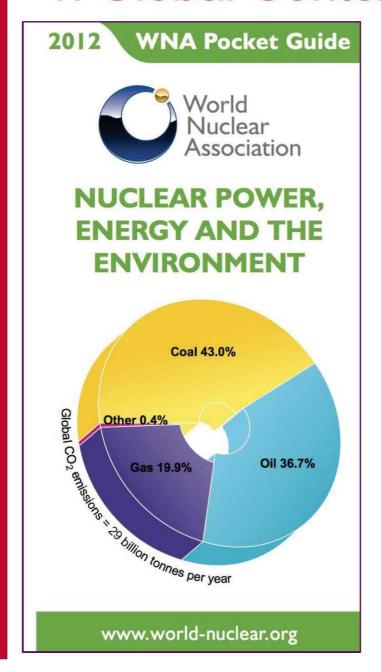
University of Salford Department of Nuclear Energy, NE Joule House Acton Square, The Crescent Greater Manchester Manchester M5 4WT UNITED KINGDOM

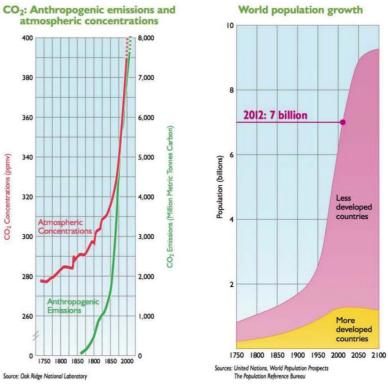
Nuclear Labour Markets: the Challenges of Workforce Planning

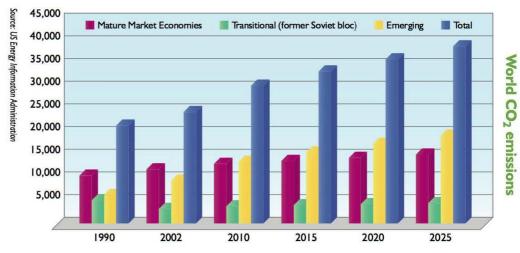
Dr Brian P Murphy

Head, Academic Development, HR Development

EC - EHRO-N OECD - NEA UK – Nuclear Skills Council




IAEA-ICTP
Joint School of Nuclear Energy Management
Trieste
12th November, 2012


Structure

- The Global Context
- 2. A Nuclear Test!
- 3. Challenges of Nuclear Labour Markets
- 4. Solutions to Nuclear Labour Markets
 - Core, Boundaries, Anatomy
- Quantifying and Qualifying HR
- 6. Projecting Future HR Demand
- Strength in Numbers International Cooperation & Development
- 8. Stepping Up HR Planning and Competence
- 9. Final Steps HR Planning and Knowledge Management
- 10. Conclusions- Characteristics of a Healthy Labour Market

1. Global Context

2. A Nuclear Test — Match the Stats!

- 371,422
- 30
- 13
- 436
 - > 272
 - > 84
 - **>** 47
 - **>** 16
 - **>** 15
 - > 2
- 14,870
- 1956
- ???????

- % Electricity production in 2011
- Reactor years of experience
- Nations with > 400 MWe
- MWe Global Capacity
- Reactors in operation
- First commercial generation
 - > LWGRs
 - > BWRs
 - > PHWRs
 - > PWRs
 - > FBRs
 - > AGRs

2. A Nuclear Test – the Answers

- 371,422 MWe
- 30 Nations with > 400 MWe
- 13% Electricity 2011
- 433 Reactors in operation
 - > 272 PWRs
 - > 84 BWRs
 - > 47 PHWRs
 - ➤ 16 AGRs
 - ➤ 15 LWGRs
 - > 2 FBRs
- 14,870 Reactor years of experience
- 1956 First commercial generation (Calder Hall)
- ?????? The size of the global nuclear force

3. Challenges for Nuclear Labour Markets

- Recruitment
- Defining the Labour Market Supply and Demand
- Establishing Workforce Development Frameworks
- Mobilising Education and Training Provision
- Internationalisation
- Knowledge Management & Mobility of Human Capital

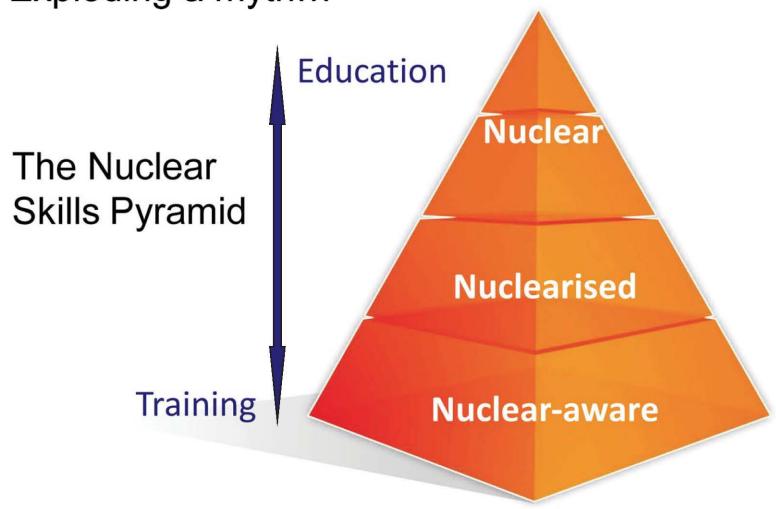
4. Solutions – the Core of a Nuclear Labour Market is...

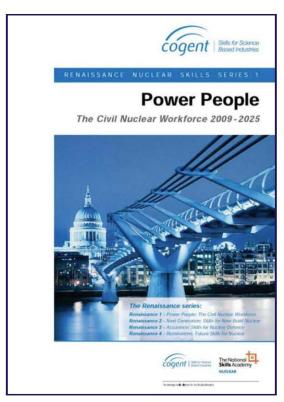
Beehive Parliament Wellington, NZ

4. Solutions – the Boundaries of a Nuclear Labour Market

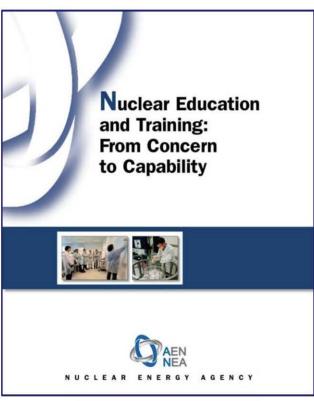
- 1. Policy & Regulation
 - licence to operate

- 2. Safety Health, Environment
 - legal and statutory

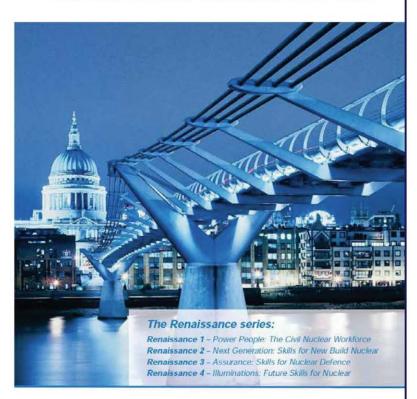

- 3. Scientific & Technical Competence
 - professionalisation



4. Solutions – the Anatomy of a Nuclear Labour Market


Exploding a myth...

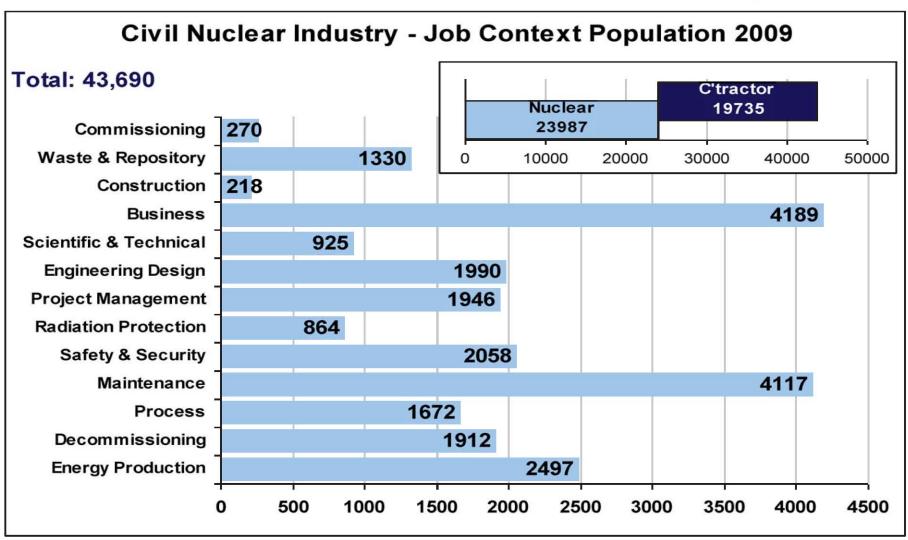
5. Quantifying and Qualifying HR



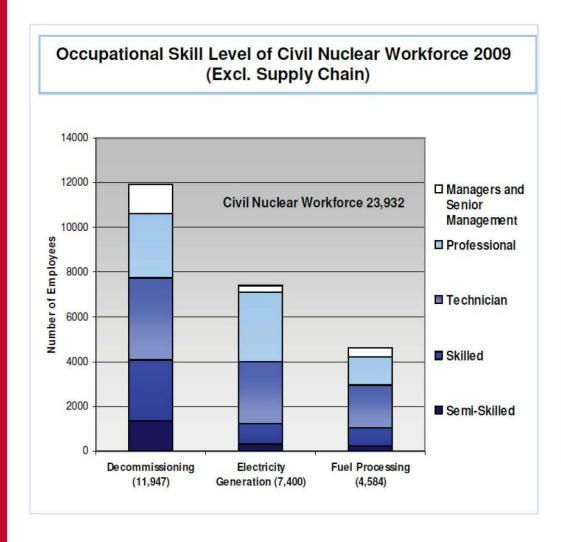
RENAISSANCE NUCLEAR SKILLS SERIES: 1

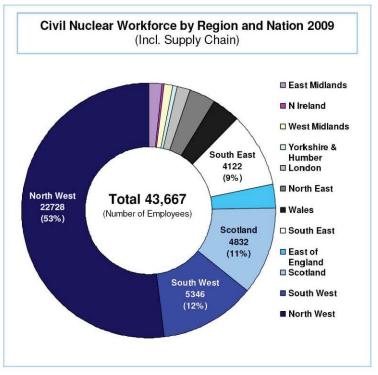
Power People

The Civil Nuclear Workforce 2009-2025



The strategic skills alliance for the Nuclear Industry


5. Quantifying and Qualifying HR



5. Quantifying and Qualifying HR

5. Workforce Development

Employer Demand

Industry Standard Qualifications

Quality Assured Provision

Employee CPD Learning Record

Research

- Labour Market Intelligence
- Skills Supply and Demand
- Monitoring Data

Individual learner record

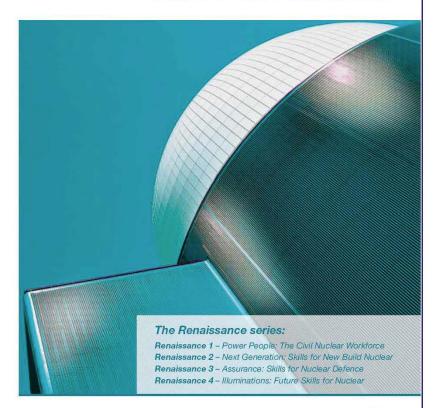
Nuclear Skills Passport

Transfer of skills

Education & Qualifications

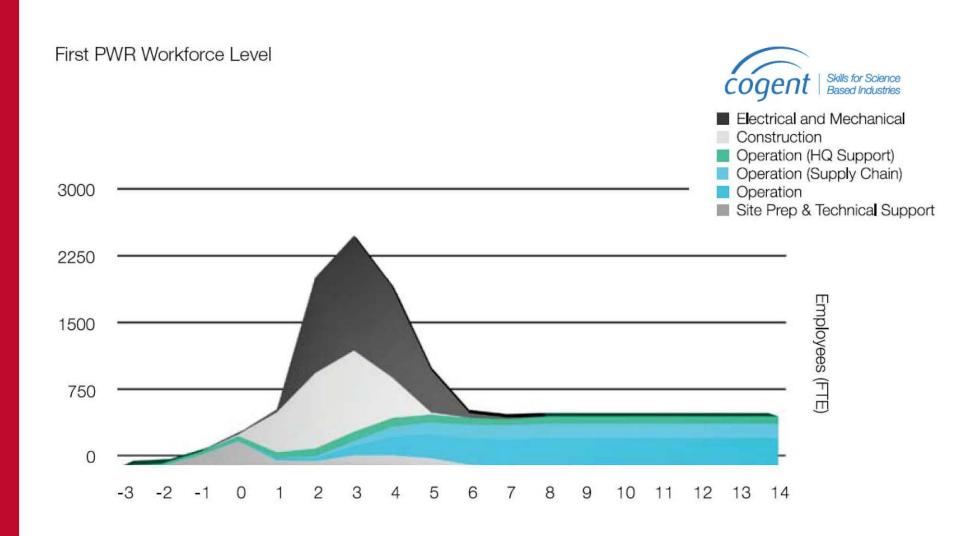
- Industry Standards (NOS)
- Qualification Reform
- Frameworks

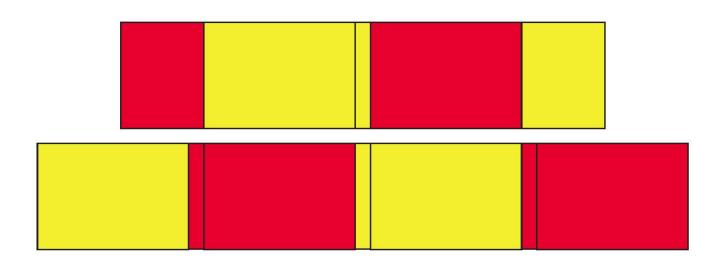
Provider Network

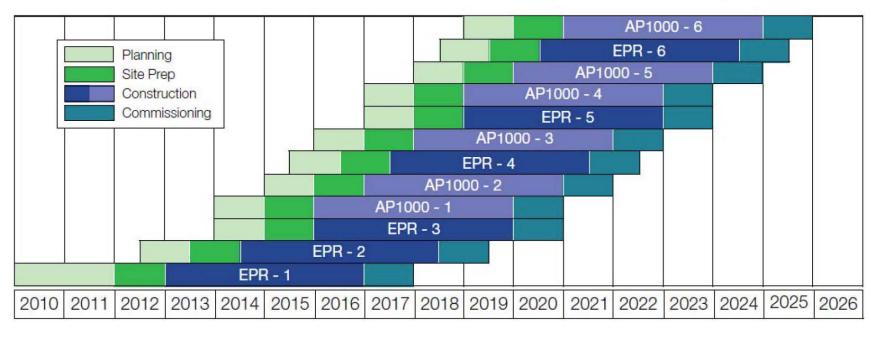

- Quality assured programmes
- · Through quality assured providers

RENAISSANCE NUCLEAR SKILLS SERIES: 2

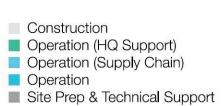
Next Generation

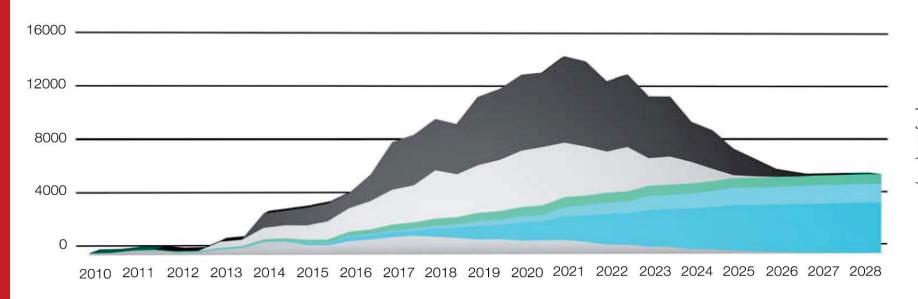

Skills for New Build Nuclear

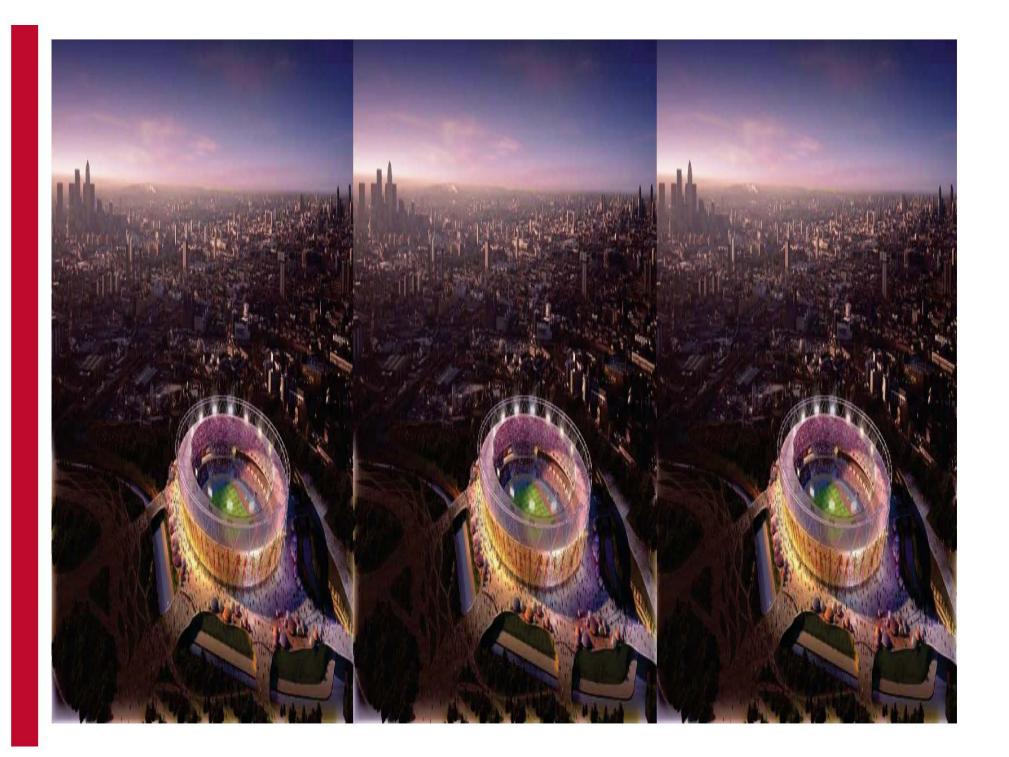



The strategic skills alliance for the Nuclear Inclustry.

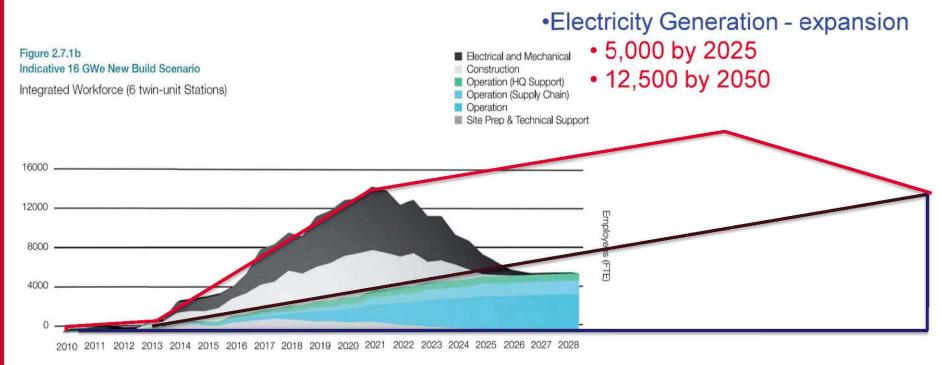
Timeline for 12 Units




16 GWe	6 Twin-Unit	Station	Construction ^a	Manufacture	Operation
(new)	Stations	(twin unit)	(twin unit)	(twin unit)	(twin unit)
Person years	110,000 - 140,000	21,200	13,000 60%	3,200 15%	5,000 ^b 25%


Indicative 16 GWe New Build Scenario

Integrated Workforce (6 twin-unit Stations)



Employees (FTE)

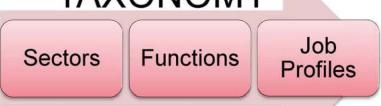
cogent | Skills for Science Based Industries

- Supply Chain regeneration
 - 300,000 person years to 2050 (40 GW)
 - 10,000 person years peak in SC

- Fuel Processing changeable
 - 4,000 at 2010
 - sensitive to technology and policy
- Decommissioning stable
 - 12,000 peak by 2020

7. Strength in Numbers – International Co-operation & Development

Nuclear Education and Training: From Concern to Capability



7. International Cooperation

- NPP New Build Design, Supply, Construct, Commission
- NPP Operation Operation, Maintenance, Waste Mgnt, Safety & Environment
- NPP Decommissioning
 Decommissioning, Maint., Waste Mgnt., Safety & Environment,
- Nuclear Regulation
 Authorisation, Inspection & Enforcement, Regulation & Guidance
- Nuclear Research Reactors
 Design & Engineering, Utilisation, Operation & Control,
 Assessment & Review

7. International Cooperation – JOB ROLES

```
ector (P) | Plant Manager (P) | Operations Manager (P) | Shift Charge Engineer
Chemistry Manager (P) | Chemistry Technician (T) | Nuclear Power Plant Oper
Instrumentation Maintenance Engineer (P) | Mechanical Maintenance Technicia
wer Plant Operations – WASTE MANAGEMENT | Plant Waste Engineer (P) |
Environmental Support (P) | Radiation Protection Supervisor (T) | Radiation Mo
System Designer (P) | Reactor Core Engineer (P) | Design Engineer (P)/ Civil/ (
 (P) | Site Layout Designer (P) | Project Manager (P) | Planner (T) | Nuclear
rocurement (T) | Progress Control Technician (T) | Nuclear Power Plant Build
   Engineering Construction Supervisor (T) | Engineering Construction Technici
 Nuclear Power Plant – COMMISSION | Commissioning Engineer (P) | Nucle
  ) | Plant Maintenance Fitter Electrical (T)
■OPERATIONS | Site Manager (P) | Site Engineer (P) | Supervisor/Team Le
ENANCE | Senior Engineer (P) | Project Engineer (P) | Team Leader (T) | Tec
ader | Support Service Engineer | Operative (C) | Nuclear Power Plant Deco
     Radiation Protection Monitor/Surveyor (C) | Safety Case Lead Author (P)/ Officer (
```

7. International Cooperation

Standard Job Profiles

Job Title, Description, Context Occupational level: Professional, Technical, Craft

> Competences: Technical, Regulatory Personal, Business

Entry Level Qualification, Experience CPD and Training

7. International Cooperation

Standard Job Specifications

Level- Professional

Sector NPP - Operation (lead: Spain)

Control Room Supervisor

Function - Safety

Entry level Qualification- Three-year Degree in Engineering or related Science with suitable experience as Reactor Operator.

Job Descriptor

Direct operating personnel in all situations that occur to ensure health and safety of the public, as well as protection of plant personnel and equipment. Responsible on a shift basis for safe and efficient plant operation including start-up, shutdown, power changes, emergency and accident conditions, and special configurations as may be required for maintenance or surveillance, etc.

Training/ CPD

It is assumed that the Control Room Supervisor holds Unit Desk Operator License and has passed the associated Training Programmes before taking up his role, as follows:

Technical Competence

- Plant procedures and bases.
- · Operating Experience.
- Advanced fundamentals in technical areas; System description and Reactor operator theory.
- · Reactor Thermal-hydraulics.
- Technical Specifications.

Business Improvement

· Error Prevention Techniques and Human Performance Tools.

Compliance

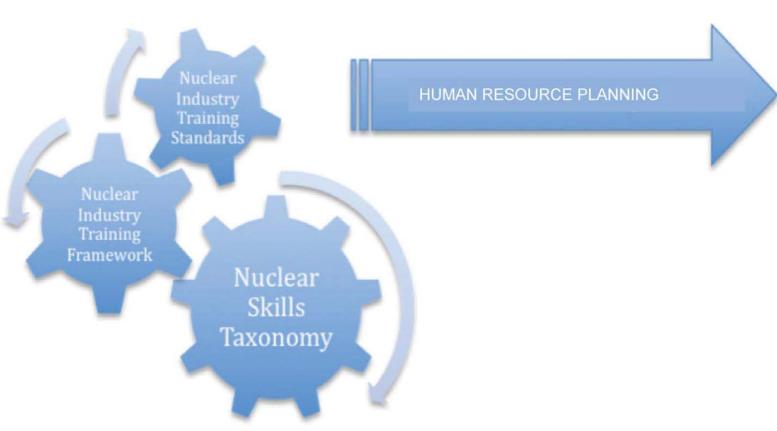
- Advanced Transient and Accident Analysis.
- Probabilistic Safety Assessment.
- Simulator Training: Normal Integrated Plant Operations; Emergency procedures; Plant Transient and Emergency Response.
- · Emergency Plan.
- Radiological Protection.
- Safety Analysis Report.
- Accident Management.

Functional and Behavioural Skills

Supervisory Skills.

Specific Competences - Technical, Compliance, Business Improvement, Functional and Behavioural Skills

The Control Room Supervisor will be able to:

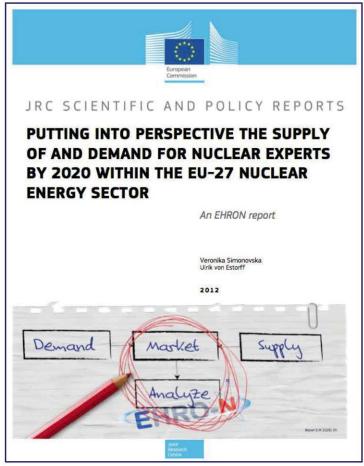

- Direct personnel who perform activities on safety related and non-safety related equipment.
- Ensure that all shift operation activities associated with power generation are performed in accordance with plant procedures, technical specifications and in accordance with the requirements of the regulator.
- Monitor plant conditions and indications closely.
- Control precisely plant evolutions.
- Use procedures effectively in the control of work activities and equipment status and to recognize and mitigate transients and accidents.
- Show conservative approach to plant operations every time.

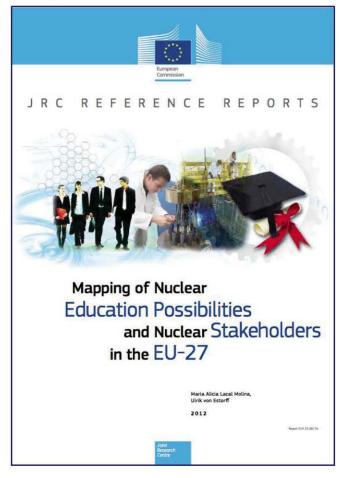
The Control Room Supervisor will understand:

- The concepts, philosophy, and Control Room Supervisor responsibilities with respect to reactivity management and reactor core safety.
- Probabilistic safety assessment concepts and the importance of key equipment to accident mitigation.
- Fundamental and technical areas, plant design, theory and system interrelationships.
- Transient and accident analyses to determine that procedural actions are effective in maintaining the plant within nuclear safety boundaries during transient and accident conditions.
- The use of Error Prevention Techniques and Human Performance Tools.
- Supervisory skills to provide effective leadership to a control room shift team to promote teamwork, motivation and positive attitude.
- How to make conservative decisions, with protection of the health and safety of plant personnel and the public being of highest priority.

8. Stepping Up – A Qualified and Competent Workforce

8. Stepping Up – A Qualified and Competent Workforce




A Taxonomy that captures the extent of nuclearisation of an occupation can be a powerful tool in:

- development and harmonisation of vocational training standards and qualifications
- workforce mobility
- international labour market research, scenario planning and HR observatories
- international 'passports' for training and experience
- voluntary licences to practice and supply chain competence assurance
- the safe and secure adoption of nuclear technology by developing countries.

8. A Qualified and Competent Workforce

8. A Qualified and Competent Workforce

EHRO-

- Job Description
- Entry Level
- Job Roles
- Job Requirements
- Competences
 - Knowledge
 - Skills
 - Attributes

Area	Job Title	Category	
NPP – D	Safety Case Expert	Professional	
	Alternate job title(s), when required		
Job descriptor		Entry level qualification	
analyses and purpose safe requirements	ase Expert provides expert, researched, peer-reviewed safety strategy supported by evidenced documentation to form a fit-forty case, in compliance with statutory, regulatory and technical of the system being decommissioned, including health, safety, al, ethical and social considerations.	ISCED 6-7	

Roles / Functions

- compliance assurance
- legal/technical information management
- safety case preparation, consultation, authoring, peer review and verification
- · safety case project management
- standard setting for safety case processes and methodologies
- · quality assurance of safety case implementation
- expert advice, guidance and recommendations
- reports to.....

JOB REQUIREMENTS				
KNOWLEDGE (Cognitive competence)				
safety case standards and methodologies, including probabilistic evaluation	6			
advanced procedures for risk assessment and management	7			
engineering design and operation (of the plant/equipment being assessed)	7			
ALARA principles, as appropriate to the role	7-8			
requirements for 'due process' in nuclear safety case production	6			
principles of radiological science and radiological protection	5			
statutory, regulatory and ethical requirements for nuclear safety	6			
 safety management systems such as Permit to Work, Standard Operating & Maintenance Procedures and Risk Assessment. 	6			
 standard procedures for dealing with radioactive sources, discharges, waste, environmental control and emergencies 	3			
safety, security and behavioural expectations of those working on a nuclear site	3			
SKILLS (Technical competence, abilities)				
review legislative, regulatory and technical literature	7			
identify, quantify and critically assess safety hazards				
author technical, evidence-based and compliant cases to minimise risks on safety, health and environmental matters				
 project manage production approval implementation review and evaluation of safety case 	e L			

9. Final Steps - HR Planning, Mobility and Knowledge Management

- Job Description
- Competences
 - Knowledge
 - Skills
 - Attributes
- Learning Outcomes
- Certification
- Accreditation
- Qualification
- CPD & VET Frameworks
- Labour Market Mobility

9. Conclusions – Characteristics of a Healthy Nuclear Labour Market

- Policy stability beyond economic cycle HR and support for the supply of technical skills
- Labour market research robust evidence base and methodology
- Consultation stakeholders in labour market research, education, training and research
- 4. Facilities research, education and training
- Vocational education & training frameworks, accreditation of employer and provider provision
- 6. Universities appropriate range and flexibility of courses
- 7. Training establish basic nuclear awareness training
- 8. Employers community, careers, HR development
- 9. Internationalisation education, training, mobility.

Bibliography

Power People, Cogent 2009
 http://www.cogent-ssc.com/research/nuclearresearch.php

2. Next Generation, Cogent 2010 http://www.cogent-ssc.com/research/nuclearresearch.php

3. Nuclear Education and Training: From Concern to Capability, Nuclear Energy Agency, 2012

http://www.oecd-nea.org/ndd/reports/2012/nuclear-edu-training-ex.pdf

- 4. Putting into Perspective the Supply of and Demand for Nuclear Experts in the EU 27, European Human Resource Observatory Nuclear, 2012 http://ehron.jrc.ec.europa.eu
- 5. Mapping Nuclear Education Possibilities and Nuclear Stakeholders in the EU 27, European Human Resource Observatory Nuclear, 2012 http://ehron.jrc.ec.europa.eu

Thank You

Contact Brian P Murphy

b.p.murphy@salford.ac.uk