

2374-45

Joint ICTP-IAEA School of Nuclear Energy Management

5 - 23 November 2012

Financing Structures for a Nuclear Power Plant Project

BARKATULLAH Nadira

International Atomic Energy Agency IAEA Planning and Economic Studies Section, PESS Dept. of Nuclear Energy NE, Wagramerstrasse 5, P.O.Box 100 A-1400 Vienna AUSTRIA

Financing Structures for a Nuclear Power Plant Project

The IAEA Nuclear Energy Policy Management School Trieste, Italy November 15, 2012

Nadira Barkatullah

Department of Nuclear Energy, Planning and Economic Studies Section

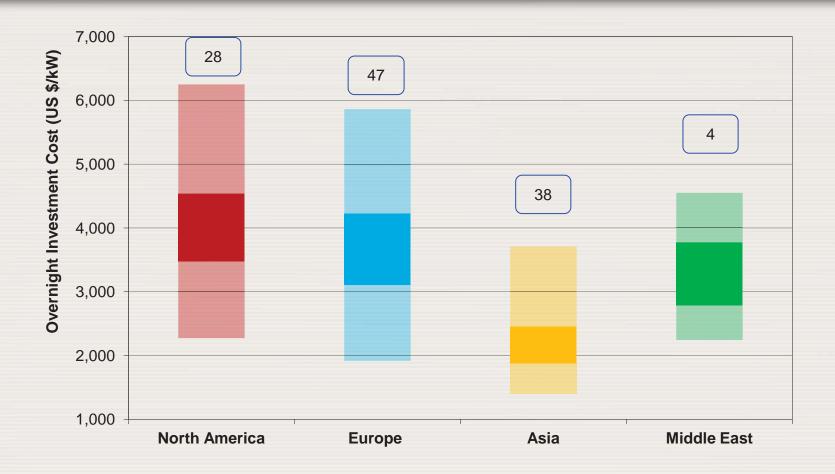
Overview

- The Economics of Nuclear
- Nuclear Power Plants (NPPs) Financing: Major Challenges
- Define Financing
- Sources and Types of Financing
- Existing and Emerging Financing Models and Trends
- Contractual and Ownership Arrangements
- Financial Risk Management
- Concluding Comments

The Economics of Nuclear

Key Advantages of the Nuclear Power

- Relatively low fuel cost:
- Price stability
- Performance of nuclear reactors
- Long life time
- Guarantee for energy supply
- Security of Supply
- Clean source of energy
- Economic development: job creation, industrial development, etc


Key Challenges to the Nuclear Power

- Complex and highly capital intensive: high upfront capital costs, which are difficult to finance
- Sensitive to interest rates
- Long lead times (planning, construction, etc)
- Long payback periods
- Construction cost uncertainty
- Regulatory/policy risks (revised safety measures)
- New financing structures required to attract private investors

Challenge: NPPs overnight capital cost uncertainty -

Overnight capital cost range by region

IAEA: Data collected from various publications and studies to keep track of nuclear power plants investment costs, since 2008 (updated August 2012)

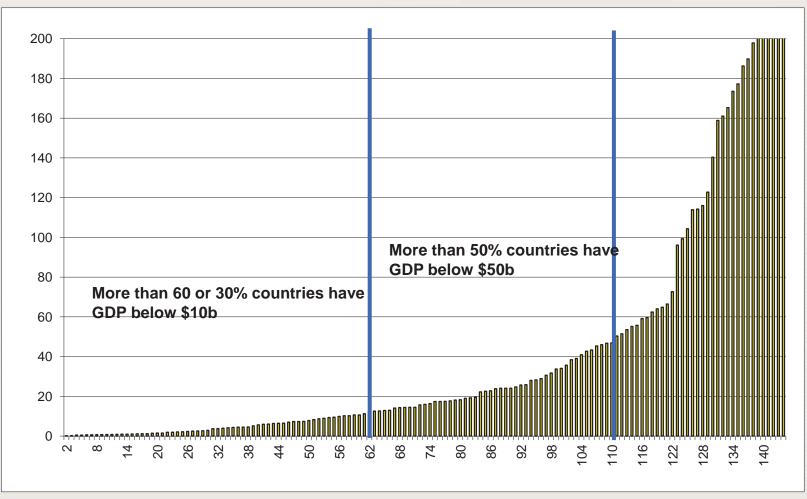
All data in 2008

USD

Challenge: NPPs overnight capital cost

Overnight capital cost quoted for a typical 1000MW NPP ranges from:

\$2 - \$6 billion!

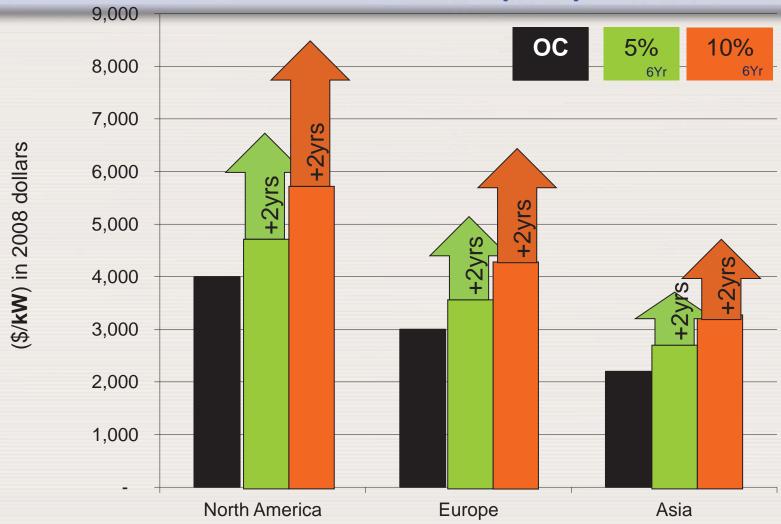

Macro or economy level: GDP

Micro or Corporate level: Market capitalisation

Challenge: Highly capital intensive

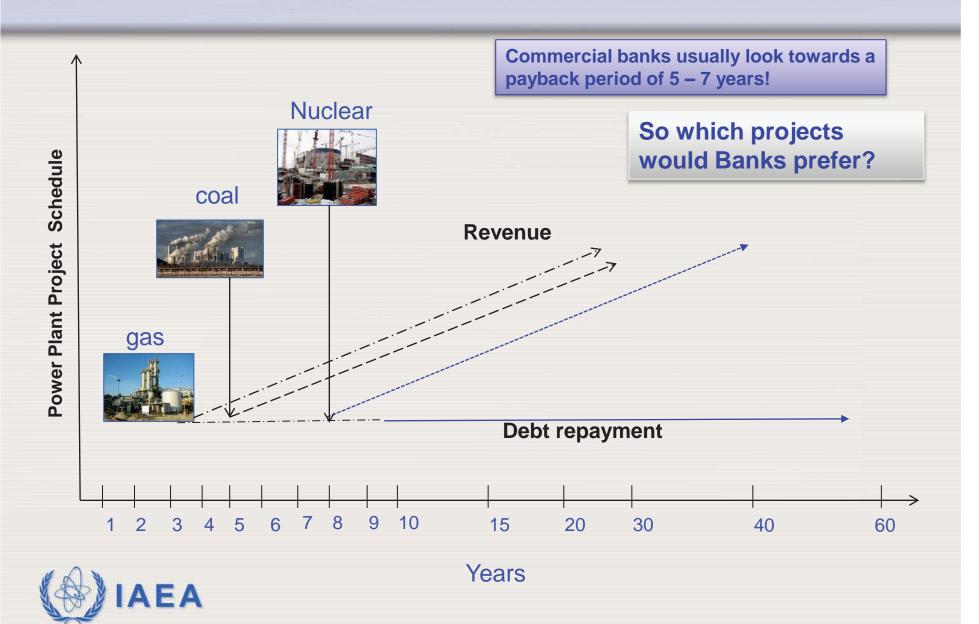
Gross Domestic Product (GDP) in \$2011 billions

Challenge: Highly capital intensive

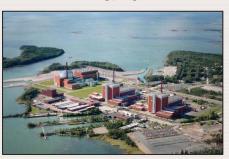

> Approximate market capitalisation of the leading EU, US and Asian utility

companies

Country	Utility	Market capitalisation (USD billions)
EU	GDF SUEZ	53
EU	EDF	40
EU	Enel	35
EU	RWE	28
US	Duke Energy*	50
US	Southern Company	41
US	Exelon Corporation	30
US	Dominion Resources	30
Asia	Korea Electric Power Corporation	16
Asia	Saudi Electricity Company	16
LA	Centrais Eletricas Brasileiras	8



Challenge: Investment cost and Interest During Construction (IDC)



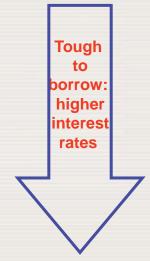
Challenge: Longer NPP Payback Period

Challenge: Long lead times

Finland

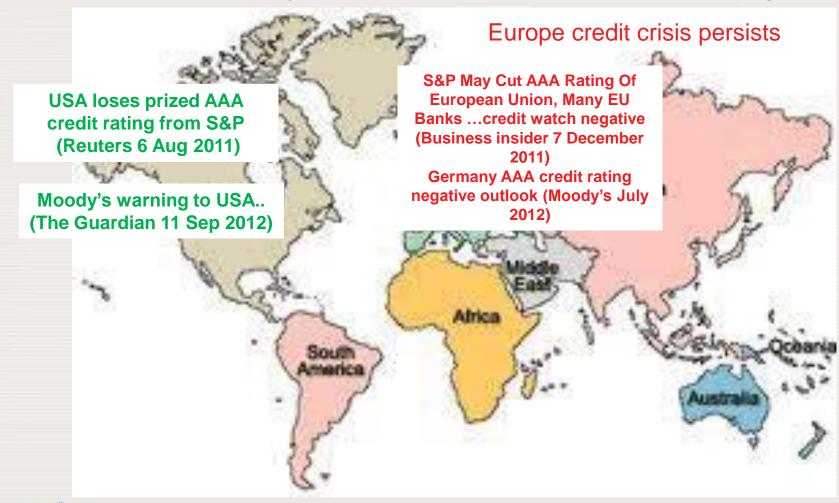
- Olkiluoto-3 project in Finland, an EPR 1600MW
- Original cost Dec 2003
 Fixed Price Turnkey
 Contract (Areva-Siemens)
 € 3.2 billion
- Six year delay
- Operational: 2015?
- Consiberable cost overruns? \$2 billion or more

Asia


- Some projects in Asia are constructed in 5 or less years
- Example: the success story Qinshan III CANDU Unit 1 reactor built in China in 51.5 months, 117 days ahread of schedule, total project cost of \$2.5b
- ➤ Taishan EPR units, in China to built in approximately 52 months
- "Areva sees future EPR being built in 3-5 years"

FUTURE? Financiers want to see more success stories

	Fitch	Standard & Poors	Moody's
4)	AAA	AAA	Aaa
	AA+	AA+	Aa1
ade	AA	AA	Aa2
Investment Grade	AA-	AA-	Aa3
nt	A+	A+	A1
пе	Α	Α	A2
stı	A-	A-	A3
λ	BBB+	BBB+	Baa1
_	BBB	BBB	Baa2
	BBB-	BBB-	Baa3
	BB+	BB+	Ba1
4)	BB	BB	Ba2
ade	BB-	BB-	Ba3
ະນິ	B+	B+	B1
Je	В	В	B2
ativ	B-	B-	B3
in (CCC+	Caa1
Speculative Grade	CCC	CCC	Caa2
		CCC-	Caa3
	CC	CC	Ca
	С	С	C
Default	D	D	С

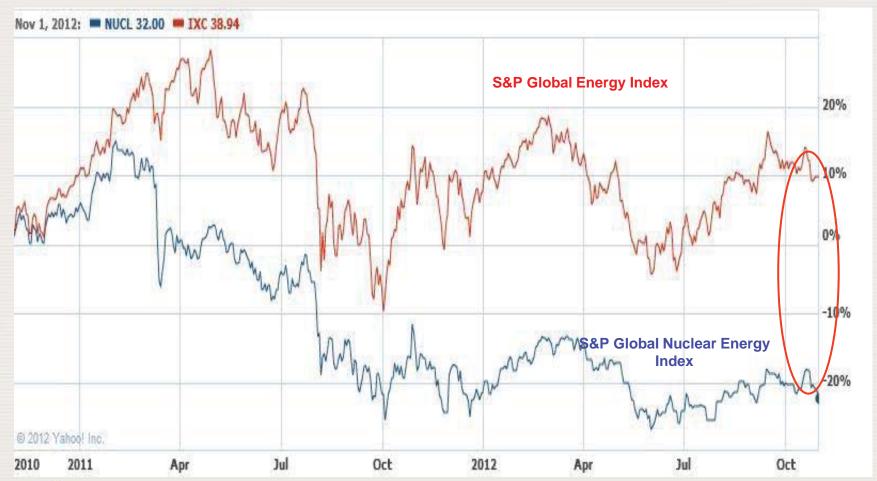

"Moody's Says Substantial Nuclear Plant Cost Overruns Increase TVA's Rate Pressure and Debt Ceiling Risks..." (9 April 2012, Moody's Investors Service)

- "....ratings agencies could downgrade French energy giant EDF and British Gas owner Centrica if they decide to build four reactors.." (7 April 2012 This is Money)
 - "S&P set to downgrade Italy's Enel rating" (Reuters 12 March 2012)

➤ If countries cannot manage their debt it has an impact on their sovereign credit rating

Challenge: Foreign exchange risk

Risk mitigation: Hedging with derivative instruments


EUR/USD: daily closing rate

Challenge: Commodity prices risk – impact on input cost

Challenges: Yield Seeking Investors

> Nuclear vs non nuclear market index

Major Challenges to Financing NPP

➤ Other Challenges

- Operational performance risk
- Uncertainty in the Regulatory process
- Construction Supply Chain risks
- Deregulated electricity market rules and regulation
- Multinational Institutions policy on credit availability
- Negative Public Perception of nuclear
- Nuclear liability and insurance on how to cap and allocate the "extraordinary nuclear occurrences"
- Management of spent fuel and waste, and decommissioning

Financing

So what is Financing? Providing necessary capital through issuance of debt and/or equity

Debt Financing

Local banks International financial institutions

Export credit agencies Suppliers

International development organizations

Capital markets: like bonds

Cost of debt: Interest paid

Equity Financing

ocal and foreign investors Shareholder

Capital markets: like IPO

Cost of capital: return on capital

Financing: Cost of finance

In simple case weighted average cost of capital (WACC) is:*

WACC =
$$\frac{\text{Debt}}{\text{Debt}} R_d$$
 + $\frac{\text{Equity}}{\text{Debt}} R_e$

Where:

- > Rd is the cost of debt
- > Re is the cost of equity

* Without any tax adjustment

Financing: Cost of finance

Generally, for nuclear the cost of finance is higher – with risk premium of x% above other power generation assets added to the interest rate

WACC Other +

Risk premium for nuclear

= WACC Nuclear

How to attain finance?

- What are the different financing models employed in the nuclear industry?
 - **Government**
 - **≻Industry**

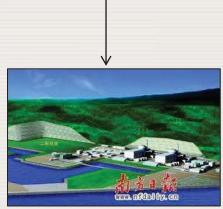
Types of Financing

Government

- ➤ State Budget (like, tax revenue)
- > Equity ownership
- ➤ Government incentives (like, loan guarantee, construction delay insurance, guaranteed long term power purchases agreements)
- > Export credit
- Long-term Infrastructure bonds issuance

Government Financing: An example

China

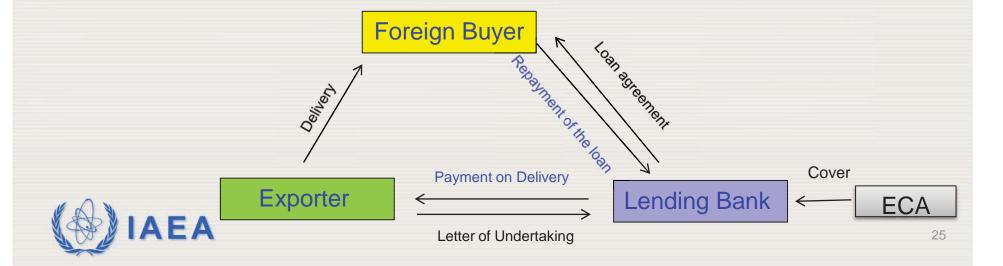

JV between CGNPC* (70%) and EDF (30%) to co-own and operate two nuclear reactors at Taishan

Nuclear power program cost about \$10 billion to construct 2 EPR

International banks

Equity

Nuclear Power Plant



Government Financing: Export Credit Agency

Export Credit Agency (trade finance): Provides financing services such as guarantees, loans and insurance to domestic companies for their activities in order to promote exports in the domestic country:

How does it works?

Types of Financing

Governments seeks private sector participation

- >Industry financing
 - > Corporate finance or balance sheet finance
 - ➤ Project Finance
 - Co-operative finance or hybrid financing
 - New financing trends

Industry Financing

Corporate finance or balance sheet finance: borrowing or raising equity against the assets of the company as a whole. A bank or bond holder which provides funds to the company has a claim against the company's whole cashflows, unless the loan is secured against a particular asset, as is common for mortgages. Risk of that investment is borne by all providers of capital to that company – Example EDF

France

- Flamanville 3 project in France, by EDF (Areva PWR 1650MW)
- Construction cost €6b (Jul 2010)
- Operational: 2016?
- 4 yrs behind schedule
- More than € 2 billion over budget (2005 estimate € 3.3 billion)

Others: Enel, RWE, E.On GDF SUEZ...

Industry Financing

➤ Project Finance (non or limited recourse)
Long term finance based on the projected
cash flow of the project - In nuclear pure
project finance is still not applied but some
combination of corporate finance and project
finance...hybrid finance

▶Co-operative finance or hybrid financing

Example Olkiluoto 3 or Finnish Model - expanding equity partners to diversity risk

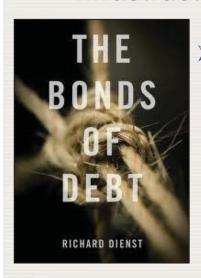
- > Characteristics of hybrid financing (corporate/project finance):
- > The project financed on the balance sheet of TVO
- > Part of equity and loan is provided by the large customers
- ➤ A long-term PPA with large customers ensuring future stable revenue stream from the project
- ➤ Leverage characteristics similar to project finance 75% debt and 25% Equity

Industry Financing: New trends emerging

Expanding equity partners to diversity risk..others like Romania (state-controlled nuclear power generator Nuclearelectrica) seeks partners for 2 units at Cernavoda nuclear power plant (NPP).

Equity Investment by vendors (The strategic partner/s) - the new market trend? The extend of investment will depend on the structure of project

Regional Alliance: Small countries are forming regional alliance with regional partners to attract strategic investors with competence and financial capability to build the new nuclear power project

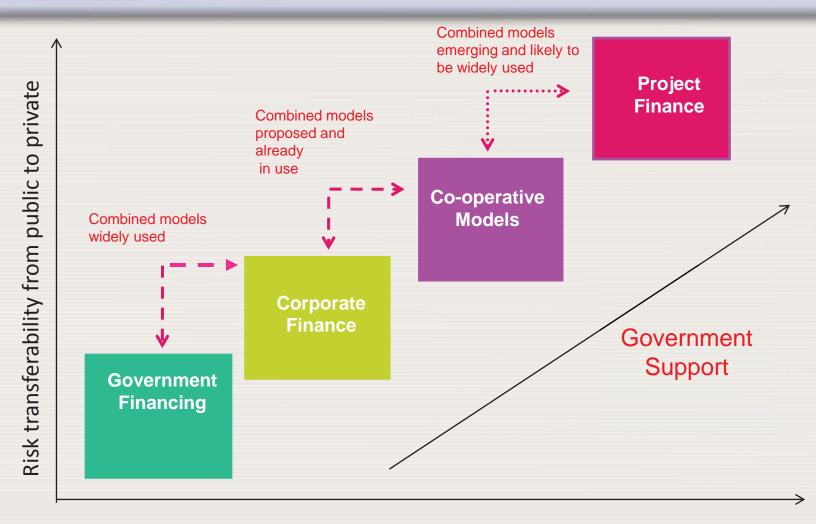


Industry Financing: New trends emerging

Owners and investors looking towards the capital markets

Infrastructure Bonds

- State-owned China Guangdong Nuclear Power Holding (CGNPH) completed the sale of its first offshore yuan bond, raising CNY1.5bn (\$240m) via a threeyear bond at 3.75%..rated A+/A3 -Fitch & Moody's (Nuclear Business, Nov 2012)
- Korea Hydro and Nuclear power, which has issued \$750 million in bonds (Reuters, 11 Sep, 2012)



Initial Public Offering

▶ IPO is issued by the China National Nuclear, formed late last year -state-owned parent is China National Nuclear Corporation (CNNC), which is a large state owned enterprise, backed by government with a strong credible AA- Stable (Moody's) credit rating (The Wall Street Journal, 20 Aug, 2012)

Financing Models Trend

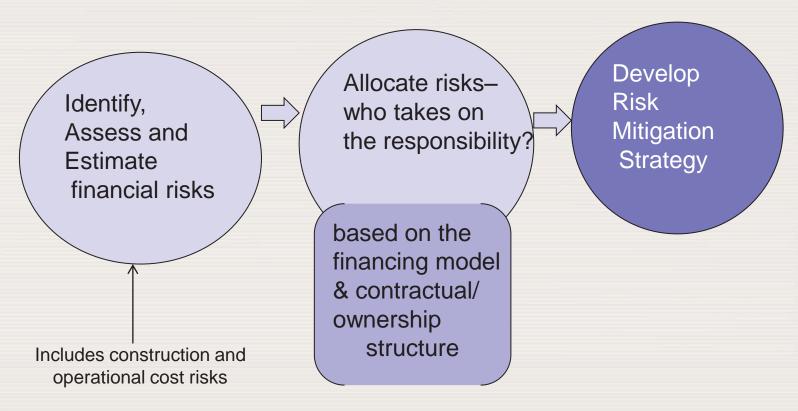
Ownership transferability from public to private

Existing Contractual Arrangements

- Basically there are the following main types of contractual approach that have been <u>applied</u> for NPP projects:
 - Turnkey contract: a single contractor or a consortium of contractors takes the technical responsibility for the whole NPP project.
 - > Split-package: the overall responsibility is divided between a relatively small number of contractors, each building a large section of the work.
 - ➤ Multi-contract: the owner or its architectengineer assumes overall responsibility for engineering and managing the NPP project, issuing a large number of contracts.

New Contractual Arrangements

- Built Own Operate scheme: A contractual arrangement whereby a project company is authorized to <u>finance</u>, <u>construct</u>, <u>own</u>, <u>operate and maintain an infrastructure</u>.
- The project company is allowed to recover its total investment, operating and maintenance costs plus a reasonable return thereon by collecting tolls, fees, rentals or other charges from facility users.


Example:

- Akkuyu NPP Project in Turkey
- Russian design: VVER 1200MW 4 units
- Main stakeholders: Russian Federation and the Republic of Turkey
- Project Company: Russian government companies affiliated with Rosatom to BOO the NPP
- Construction likely to starts in 2014

Financial Risk Management

➤ To attain finance requires development of "Financial Risk Management Strategy Framework"

Financial risk mitigation strategy framework An Example

Construction Phase

Name of risk	Risk assessment	Allocation	Mitigation
Construction delay	Medium	Owner/Contractor	Qualified third party contractors/PMC
Credit risk	High	Owner/Lender	Well defined loan agreement
Foreign Exchange/Currency	Medium	Owner/Lender	FX hedging strategy
Interest	Medium	Owner	Fixed rate/ECA

Concluding Comments

- Governments have a critical role with explicit long-term commitment
- Wide range of overnight capital cost challenging for newcomers
- Financing and construction duration key influencing factors to impact total investment cost
- The Fukushima accident foreseeable risk might lead to additional safety measures, which might increase the cost of NPPs
- Government financing still dominate the industry
- ECA support is vital and ensures bankability of the project
- Private financing JV among utilities with robust balance sheets and hybrid financing
- Risk diversification and meticulous Financial Risk Management Strategy imminent
- Strict financial industry regulation, like Basel III to impact liquidity and more vigilance of large scale risky projects
- Financing NPP is challenging but viable with new financing trends emerging to support nuclear new built

Thank very much you for your attention!

IAEA...atoms for peace.

