

2374-6

Joint ICTP-IAEA School of Nuclear Energy Management

5 - 23 November 2012

Nuclear Fuel Cycle Policies, Fuel Cycle Technologies

ALLDRED Kevin

International Atomic Energy Agency, IAEA IAEA LEU Bank, DGOP, Wagrammerstrasse 5,P.O.Box 100 A-1400 Vienna AUSTRIA

Nuclear Fuel Cycle Policies, Fuel Cycle Technologies

Kevin Alldred

November 2012 Trieste

Presentation Outline

- An introduction to the nuclear fuel cycle
- Nuclear fuel cycle policies
- Major process steps and options
- Materials involved

The Reactor: Core of the Nuclear Fuel Cycle

Picture courtesy of Areva

Mine types

- Open pit
- Underground
- In-situ leach ISL
- **By-product recovery**

Ranger Uranium Mine, Australia

Mine types

- Open pit
- Underground
- In-situ leach ISL
- **By-product recovery**

Underground Uranium Mine Schematic

Mine types

- Open pit
- Underground
- In-situ leach ISL
- **By-product recovery**

Mine types

- Open pit
- Underground
- In-situ leach ISL
- **By-product recovery**

By product recovery, USA

Uranium Recovery Process

- Crushing
- Grinding
- Leaching
- Liquid-solid separation
- Purification and concentration
- Precipitation and drying
- Packing & dispatch

Uranium mill, Ranger mine, Australia

Uranium Milling

Uranium concentrates or Yellowcake

- Uranium oxides UO₄, U₃O₈, ADU, MgDU
- Orange to yellow naturally;
- Green to black when calcined
- Packed in drums & shipped to conversion plant

Uranium Conversion

- Yellowcake from the mine is converted to UF₆
- UF₆ is the only gaseous form of uranium
- All current industrial uranium enrichment processes work with gas

A "48Y" Cylinder containing natural UF₆

Why to we enrich uranium?

- Uranium from the mine contains 0.71% ²³⁵U
 - 1 atom of ²³⁵U for every 140 atoms of ²³⁸U
- Most reactors need 4% 5%
 ²³⁵U
 - We need to "enrich" the uranium by increasing the concentration of ²³⁵U

Why to we enrich uranium?

- Uranium from the mine contains 0.71% ²³⁵U
 - 1 atom of ²³⁵U for every 140 atoms of ²³⁸U
- Most reactors need 4% 5%
 ²³⁵U
 - We need to "enrich" the uranium by increasing the concentration of ²³⁵U

Enrichment

- Several enrichment processes demonstrated
- Only two, gaseous diffusion and gas centrifuge, are currently operating on a commercial scale
- Both exploit the mass difference between ²³⁵U atoms and ²³⁸U atoms
- A laser enrichment facility is proposed in the USA that selectively ionises ²³⁵U so that it can be separated electromagnetically
- Large commercial enrichment facilities operate in France, Germany, Netherlands, UK, USA, and Russia, with smaller facilities elsewhere

Enrichment: Gaseous Diffusion

- UF₆ forced through porous membranes
- Lighter, faster moving ²³⁵U molecules more likely to pass through the membrane
- UF₆ diffused through the membrane is slightly enriched
- Process is repeated some 1400 times to obtain 4% ²³⁵U
- 2,400 kWh/SWU

Enrichment: Gaseous Diffusion

- UF₆ forced through porous membranes
- Lighter ²³⁵U molecules more likely to pass through the membrane
- UF₆ diffused through the membrane is slightly enriched
- Process is repeated some 1400 times to obtain 4% ²³⁵U
- 2,400 kWh/SWU

Georges Besse 1, France

Enrichment: Centrifuge Process

- Vacuum tubes, each containing a rotor
- Spun at very high speeds:
 - 50,000 to 70,000 rpm
 - Outer wall moves at >400 m/s
 - 10⁶ G
- ²³⁸U concentration greater near outer cylinder wall,
- ²³⁵U concentration greater near the centre.
- < 50 kWh/SWU

Uranium enrichment centrifuges

The Separative Work Unit

- Separative Work Units are used to quantify uranium enrichment $\delta U = P V(n_p) + T V(n_T) - F V(n_F)$ where $V(n) = (1-2n) \ln(\frac{1-n}{n})$
- Referred to as kilogram SWU (or simply SWU)
- 1 kg of 4% ²³⁵U requires around 6 SWU using a tails fraction of 0.25% ²³⁵U and natural uranium feed.
- Separative Capacity is the rate of separative work (i.e. SWU/year)
- Separative capacity is a good measure of the effort (e.g. energy consumption) required by the enrichment facility

Fuel Fabrication

Spent Fuel

Spent Fuel Storage

• Wet and dry storage provide flexibility for spent fuel management

Wet Storage (CLAB-Sweden)

Dry Storage (Surry – USA)

Status of Spent Nuclear Fuel

- The total amount of spent fuel that has been discharged globally is approximately 360 800 tonnes of heavy metal (MTHM).
- The annual discharges of spent fuel from the world's power reactors total about 10 300 MTHM per year.

Spent Fuel Reprocessing

- Spent fuel is:
 - Chopped
 - Dissolved
 - Processed by solvent extraction
- Recovers:
 - Uranium
 - Plutonium
- Wastes (FP, TRU)
 - Separated and vitrified

THORP, UK

- MOX fuel assembly externally identical to UO₂ equivalent
- Plutonium is radiologically hazardous:
 - Inhalation hazard
 - Must be handled in shielded glove boxes

Plutonium Isotope Composition

Reactor	Mean fuel	Percentage of Pu isotopes at discharge					Fissile
type	burn-up (GWd/t)	Pu-238	Pu-239	Pu-240	Pu-241	Pu-242	content %
PWR	33	1.3	56.6	23.2	13.9	4.7	70.5
	43	2.0	52.5	24.1	14.7	6.2	67.2
	53	2.7	50.4	24.1	15.2	7.1	65.6
BWR	27.5	2.6	59.8	23.7	10.6	3.3	70.4
	30.4	N/A	56.8	23.8	14.3	5.1	71.1
CANDU	7.5	N/A	66.6	26.6	5.3	1.5	71.9
AGR	18	0.6	53.7	30.8	9.9	5.0	63.6
Magnox	3	0.1	80	16.9	2.7	0.3	82.7
	5	N/A	68.5	25.0	5.3	1.2	73.8

Courtesy Plutonium Options, NDA 2008

Reprocessed Uranium

- Reprocessed Uranium (RepU, or RU) can be re-enriched and used for new fuel manufacture
- RepU is segregated during processing because of minor isotopes
- Additional shielding and ventillation required for fuel fabrication

Isotope	Concentration	Comment
²³² U	~ 1 ppb	>2 MeV γ ray.
²³⁴ U	160 ppm	α radiation hazard
²³⁵ U	0.6 – 1.2 %	
236U	~ 0.3 %	neutron absorber that reduces fuel effectiveness
²³⁸ U	98 - 99%	

Fast Neutron Reactors

- Fast neutron reactors compact core with no moderator
- More neutrons from fast fission, so FNR can be configured to:
 - Produce more fissile material (Pu) than they consume (breeding)
 - Or transmute long lived actinides:

Comparison of Recycling Options

- Gen III LWR recycling (thermal reactors):
 - 25% uranium savings through LWR MOX and RepU fuel
 - Radiotoxicity reduction by 10 compared to direct disposal
 - Proven technologies and commercial models
- Gen IV recycling (fast neutron reactors)
 - Significant extension of the uranium resource
 - From several hundred to several thousands of years of availability of the total uranium resource
 - Accesses depleted uranium as a directly available resource
 - Much reduced radiotoxicity of the final waste

National Policy on Spent Fuel

Country	NPP	Policy	Remark
USA	104	Disposal	AR/AFR interim storage Work on Yucca Mt. repository stopped
Finland	4	Disposal	Olkiuoto repository AR wet storage
Canada	18	Disposal	AR dry storage Repository site investigation
Sweden	10	Disposal	CLAB AFR wet storage Osthammar repository site
Germany	17	Disposal	2005 reprocessing moratorium AFR dry storage (Ahaus, Gorleben) Gorleben repository site under investigation
Switzerland	5	Disposal	Zwilag AFR dry storage 3 repository candidate sites

National Policy on Spent Fuel

Country	NPP	Policy	Remark
France	59	Reprocess	AFR wet storage Bure repository site under investigation
Japan	54	Reprocess	Rokkasho reprocessing plant (2012) Mutsu AFR dry storage (2015)
China	11	Reprocess	Reprocessing plant planned
Russia	31	Reprocess	AFR wet/dry storage
UK	19	Reprocess & Disposal	Magnox and AGR reprocess – AFR wet storage LWR spent fuel disposal
India	18	Reprocess	

France

- Most used fuel is reprocessed
 - 58 NPP in operation 1250 tons of used fuel every year.
 - La Hague: operated since 1966; capacity 1700 tHM/yr
 - HLW repository 2025 \rightarrow Bure underground laboratory

Sweden

- 10 NPP in operation
- CLAB Centralized wet storage (Oskarshamn) 8000 tHM
- Repository construction: 2015-2025 (Forsmark)

USA

- 104 operating NPPs
- Wet storage: ~ 50 000 MTHM, mainly at reactor sites
- Dry storage: ~ 18 000 MTHM
- Final repository not yet defined: Yucca Mt. project stopped
- Confidence in 60 years of interim storage, considering extended storage ~120 years

Switzerland

- 5 NPPs in operation
- ZWILAG: Interim storage for vitrified HLW and spent fuel
- 200 cask capacity
- 1 139 MTHM of used fuel sent to France and the UK for reprocessing
- 10 years reprocessing moratorium from July 2006 during which period, spent fuel must be managed as radioactive waste.

Thank you for your attention

...atoms for peace.

