

2372-11

Joint ICTP-IAEA Workshop on Sustainable Energy Development: Pathways and Strategies after Rio+20

1 - 5 October 2012

SUSTAINABILITY COMPOSITE INDICATORS: THE FEEM SUSTAINABLE INDEX

Fabio Eboli

Fondazione Eni Enrico Mattei, Venice Italy

LECTURE II

SUSTAINABILITY COMPOSITE INDICATORS: THE FEEM SUSTAINABLE INDEX

Fabio Eboli *FEEM, CMCC*

ICTP
Trieste, 2nd October 2012

OUTLINE

Motivation and purpose

Methodology

Current and Future sustainability (Scenarios Analysis)

Conclusions

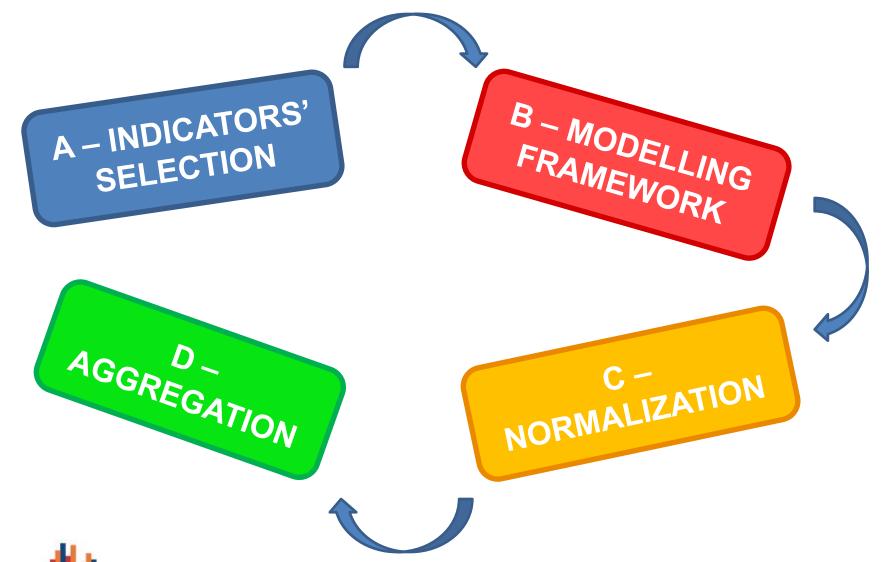
MOTIVATION

- Qualitative approaches still predominant => SD concept still vague (many definitions, many conferences, many books, lack of effective measurement)
- Policy messages may be subjective or speculative
- Request for measurement through index/indicators
- Many list of indicators but only a few all-comprehensive indexes
- Reconciling many indicators to assess overall sustainability performance through one index

FRAMEWORK

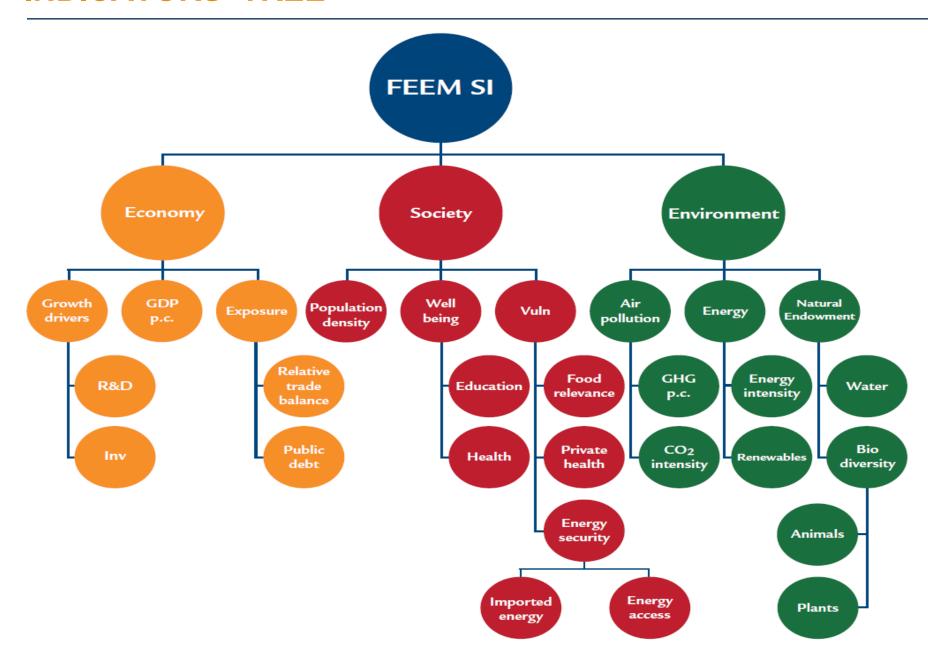
- New approach to consider:
 - ✓ All dimensions simultaneously involved
 - ✓ Common framework for comparison
 - ✓ Future projections and scenario analysis

MAIN PURPOSE


 Quantitative assessment of sustainability at country/macroregion scale (worldwide coverage) over time

- New (and quite complex) methodology:
 - ✓ Indicators computation => macroeconomic model (recursive-dynamic computable/applied general equilibrium model)
 - √ Aggregate Index => normalisation + aggregation

OVERALL STRUCTURE AND MAIN STEPS


INDICATORS' SELECTION

INDICATOR SET	ORGANIZATION	TYPE
EU Sustainable Development Strategy (EU SDS)	European Commission	Theme-based indicator set
UN Commission on Sustainable Development (UN CDS)	United Nations	Three-pillar indicator set (2001) Theme-based indicator set (2006)
World Development Indicators (WDI)	World Bank	Theme-based indicator set
EEA core set of indicators	Eurostat, European Environmental Agency	Environmental indicators
International Energy Outlook (IEO)	International Energy Agency	Environmental indicators
World Economic Outlook Databases (WEO)	International Monetary Fund	Economic Indicators

INDICATORS' TREE

INDICATORS' DESCRIPTION

SD Dimension	INDICATOR	LONG DESCRIPTION
	R&D	R&D expenditure / GDP (%)
	Investment	Net Investment / Capital Stock (%)
Economic	GDP p.c.	GDP (PPP) / Population
	Relative Trade Balance	Trade Balance / Market Openness (exp + imp)
	Public Debt	Government Debt / GDP (%)
	GHG per capita	Kyoto GHGs Emissions / Population
	CO₂ Intensity	CO ₂ Emissions / Total Primary Energy Cons.
	Energy Intensity	Total Primary Energy Supply / GDP PPP
Environmental	Renewables	Renewable Cons. / Total Primary Energy Cons. (%)
	Water	Water Use / Total Available Water (%)
	Plants	Endangered Species / Total Species (%)
	Animals	Endangered Species / Total Species (%)
	Population Density	Population / Country Inhabitable Surface
	Education	Education Exp. / GDP (%)
	Health	Health Exp. / GDP (%)
Social	Food Relevance	Food Cons. / Households' Exp. (%)
	Private Health	Private Health Exp. / Total Health Exp. (%)
	Energy Imported	Energy Imported / Energy Cons. (%)
	Energy Access	Population with Access to Electricity / Total Population (%)

MODELLING FRAMEWORK

ICES-SI framework

- ✓ Recursive-Dynamic Computable General Equilibrium model (ICES)
- ✓ GTAP 7 database
- => Both extended for FEEM SI purpose

MODELLING FRAMEWORK: DATABASE

- GTAP7 database (Narayanan and Walmsley, 2008)
 - ✓ Content: all economic (and energy) flows in Input-Output (SAM) matrix format
 - ✓ Baseyear: 2004
 - ✓ Geographic coverage: world (113 countries/regions)
 - ✓ Sector coverage: the whole economic system (split in 57 sectors)

MODELLING FRAMEWORK: DATABASE EXTENSIONS

Split of several sectors

Original GTAP7 sector	New involved sector	
"Other Business Services"	R&D	
"Other Generative Services"	Private Health/Public Health Education	
"Electricity"	Renewables	

MODELLING FRAMEWORK: DATABASE EXTENSIONS

- Enriched with following data for 2004:
 - ✓ GDP (PPP)
 - ✓ Public Debt
 - ✓ CO₂ and other GHGs
 - ✓ Water consumption and available water stock
 - ✓ Animals and Plants species
 - ✓ Inhabitable surface
 - ✓ Energy Access population

MODELLING FRAMEWORK: CGE Models

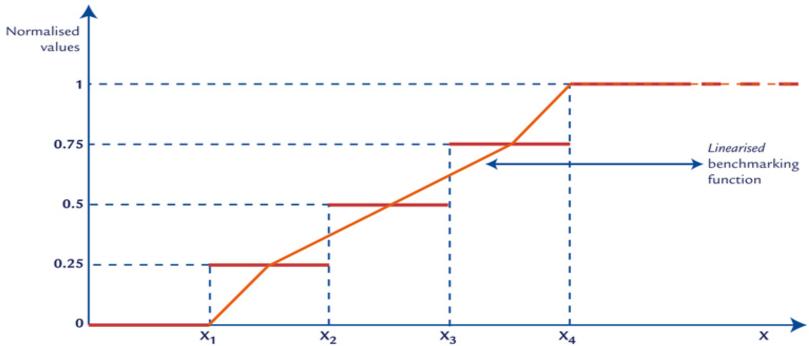
- Main scope: assessing higher-order (general) effects on the whole economic system assuming localized shocks within it
- Initial application: International trade, taxation, agricultural policy => recent development on environmental economics (mainly climate change and other transboundary issues)
- Main results: impacts on GDP, sectoral output and prices, international trade when considering market-driven (autonomous) adaptation of economic agents (vs bottom-up approaches) => scenario analysis

MODELLING FRAMEWORK: MODEL IMPROVEMENT

GTAP (Hertel, 1997)

GTAP-E (Burniaux and Troung, 2002)

ICES (Eboli et al., 2010)


ICES-SI (Carraro *et al.*, 2011)

NORMALIZATION: RESCALING

 Indicators are normally expressed in different measure units. Make them comparable and allow aggregation, requires a normalization procedure such that all of them will be defined in the [0,1] interval.

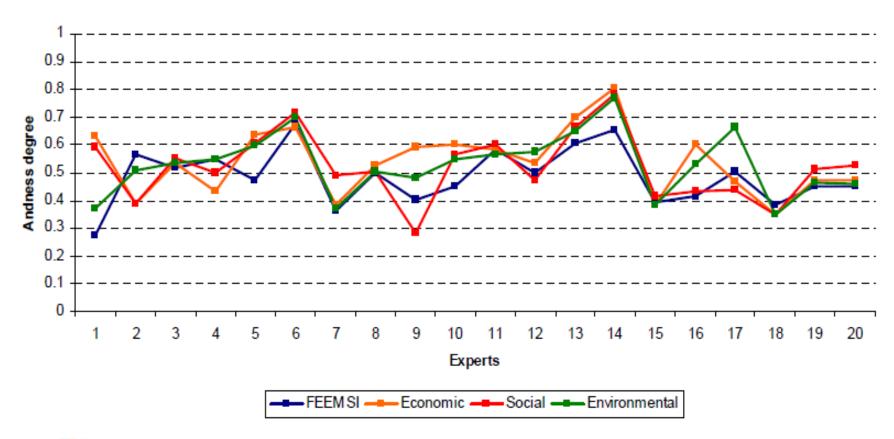
NORMALIZATION: BENCHMARKING

Normalised Value	Sustainability Level	
0	Extremely unsustainable	
0.25	Still not sustainable but not as severely as in the previous case	
0.50	Discrete level of sustainability, but still far from target	
0.75	Satisfactory level of sustainability, yet not on target	
1	Fully sustainable	

AGGREGATION: preferences' elicitation

The preference among sustainability indicators is obtained with an "ad hoc" questionnaire that elicits individual preferences on the specific performance of each sustainability indicator and their coalitions. This allows capturing a broader view on sustainability throughout the world.

Economic	Social	Environmental	Weights
Worst	Worst	Worst	0
Best	Worst	Worst	20
Worst	Best	Worst	50
Worst	Worst	Best	30
Best	Best	Worst	X ≥ 50
Best	Worst	Best	X ≥ 30
Worst	Best	Best	X ≥ 50
Best	Best	Best	100



M

AGGREGATION: andness/orness

Compensative or not?

AGGREGATION: representativeness and consensus

- A consensus measure among experts' valuations is considered in order to derive a 'representative' weight assigned to each sustainability indicator. For this purpose, the metric distance measure is used to assign weights to valuations of each respondent at each node in the decision tree.
- The FEEM SI 2011 optimises the trade off between simplicity and
 effectiveness in representing preferences by focusing specifically on
 the interrelations across indicators (non additive measure, since
 allows considering redundancy and synergy). Therefore, a suitable
 algorithm based on the Choquet integral aggregates all criteria into
 a single outcome, taking into account all the coalition weights.

AGGREGATION: Shapley index

Indicator's contribution to overall index

Indicator	Contribution to overall index	
GDP per capita	0.1128	
Population Density	0.0790	
Education	0.0644	
Health	0.0639	
GHG per capita	0.0637	
R&D	0.0635	
Water	0.0635	
Renewables	0.0618	
CO ₂ Intensity	0.0616	
Investment	0.0600	
Energy Intensity	0.0564	
Relative Trade Balance	0.0487	
Food relevance	0.0416	
National Debt	0.0410	
Private Health	0.0362	
Animals	0.0258	
Plants	0.0253	
Energy Imported	0.0154	
Energy Access	0.0154	

Relative importance of each indicator at a given node

Node	Criterion	Shapley value
	Economic	0.326
FEEMSI	Social	0.316
	Environmental	0.358
	Growth drivers	0.379
Economic	GDP per capita	0.346
	Exposure	0.275
	Population Density	0.250
Social	Well Being	0.406
	Vulnerability	0.344
	Air pollution	0.350
Environment	Energy	0.330
	Natural Endowment	0.320
Growth Drivers	R&D	0.514
Growth Drivers	Investment	0.486
Europeuro	Relative Trade Balance	0.543
Exposure	National Debt	0.457
Well Daine	Education	0.502
Well Being	Health	0.498
	Food relevance	0.383
Vulnerability	Energy Security	0.283
	Private Health	0.333
	Energy Imported	0.500
Energy Security	Energy Access	0.500
	GHG per capita	0.508
Air pollution	CO ₂ Intensity	0.492
_	Energy Intensity	0.477
Energy	Renewables	0.523
	Biodiversity	0.446
Natural Endowment	Water	0.554
B1 11 11	Animals	0.504
Biodiversity	Plants	0.496

APPLICATION: REGIONAL DETAIL

No.	Country/Region	
1	Australia	
2	NewZealand	
3	Japan	
4	Korea	
5	China	
6	India	
7	Indonesia	
8	SEastAsia	
9	RoAsia	
10	USA	
11	Canada	
12	Mexico	
13	Brazil	
14	RoLA	
15	Austria	
16	Benelux	
17	Denmark	
18	Finland	
19	France	
20	Germany	

No.	Country/Region	
21	Greece	
22	Ireland	
23	Italy	
24	Poland	
25	Portugal	
26	Spain	
27	Sweden	
28	UK	
29	RoEU	
30	Switzerland	
31	Norway	
32	RoEurope	
33	Russia	
34	RoFSU	
35	Turkey	
36	MiddleEast	
37	NorthAfrica	
38	RoAfrica	
39	SouthAfrica	
40	RoWorld	

APPLICATION: SECTOR DETAIL

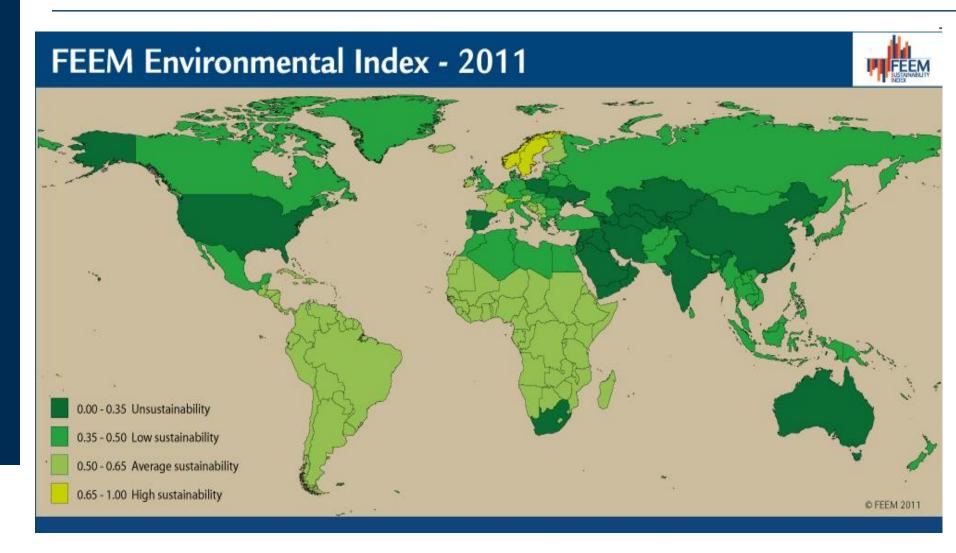
No.	Sector
1	Food
2	Forestry
3	Fishing
4	Coal
5	Oil
6	Gas
7	Petroleum Products
8	Other Electricity
9	Renewables
10	Nuclear
11	Biofuels
12	Energy Intensive Industries
13	Other Industries
14	Water
15	Market Services
16	Public Services
17	R&D
18	Education
19	Private Health
20	Public Health

WORLD SUSTAINABILITY RANKING IN 2011

Rank 2011	Country	FEEM SI 2011
1	Norway	0.82
2	Sweden	0.77
3	Switzerland	0.70
4	Austria	0.69
5	Finland	0.66
6	Denmark	0.65
7	Canada	0.64
8	France	0.63
9	Ireland	0.62
10	NewZealand	0.61
11	USA	0.55
12	Australia	0.55
13	Brazil	0.55
14	UK	0.53
15	RoEurope	0.53
16	Germany	0.52
17	Portugal	0.52
18	RoLA	0.51
19	Spain	0.50
20	Benelux	0.50

Rank 2011	Country	FEEMSI 2011
21	Russia	0.49
22	RoEU	0.49
23	Mexico	0.49
24	Korea	0.48
25	Italy	0.47
26	Japan	0.46
27	Turkey	0.45
28	MiddleEast	0.45
29	Poland	0.43
30	SouthAfrica	0.43
31	Greece	0.40
32	RoAfrica	0.40
33	RoWorld	0.39
34	SEastAsia	0.37
35	RoFSU	0.37
36	NorthAfrica	0.34
37	RoAsia	0.33
38	Indonesia	0.30
39	China	0.29
40	India	0.24

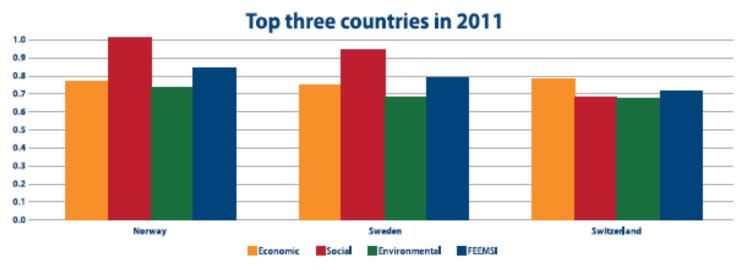
FEEM SI vs ... GDP!!!

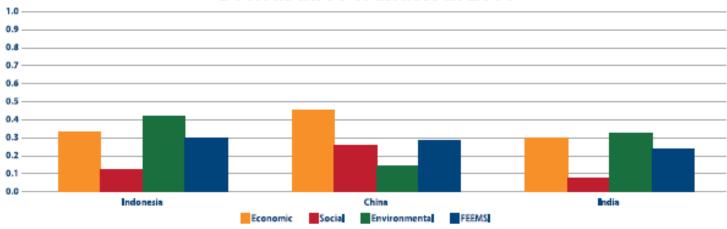

Correlation coefficients between GDP p.c. & FEEM SI, economic, social and environmental pillars

	FEEM SI	ECONOMIC	SOCIAL	ENVIRONMENTAL
GDP p.c.	0.804***	0.881***	0.739***	0.253
(Pearson)	(0.000)	(0.000)	(0.000)	(0.115)
GDP p.c.	0.841***	0.884***	0.760***	0.227
(Spearman)	(0.000)	(0.000)	(0.000)	(0.159)
GDP p.c.	0.650***	0.731***	0.579***	0.187*
(Kendall)	(0.000)	(0.000)	(0.000)	(0.091)

Data are significant at different levels: * p<0.1, ** p<0.05, *** p<0.01

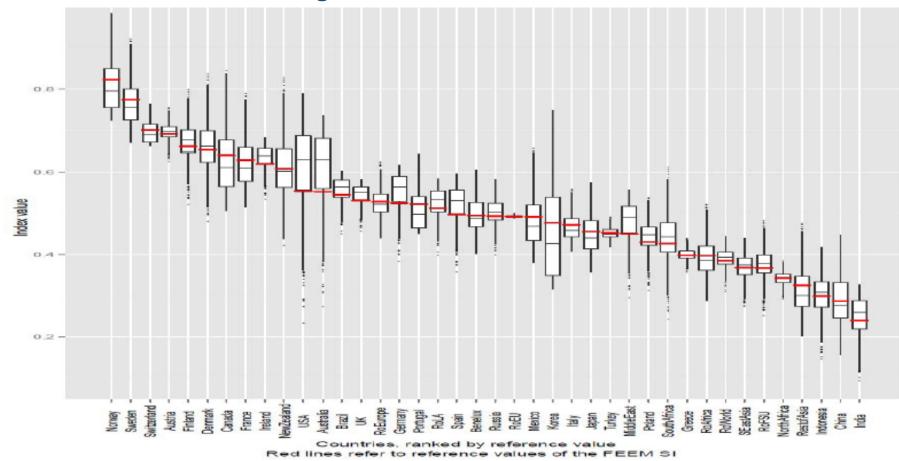
P-values are reported in brackets


WORLD SUSTAINABILITY MAPS IN 2011



CURRENT SUSTAINABILITY DRIVERS

Bottom three countries in 2011



SENSITIVITY/ROBUSTNESS

Distribution of FEEM SI value by country according to 500 artificial decision makers

THE BASELINE SCENARIO

Socio-economic challenges for mitigation

SSP 5:

(Mit. Challenges Dominate)

Conventional

Development

SSP 3:

(High Challenges)

Fragmentation

SSP 2:

(Intermediate Challenges)

Middle of the Road

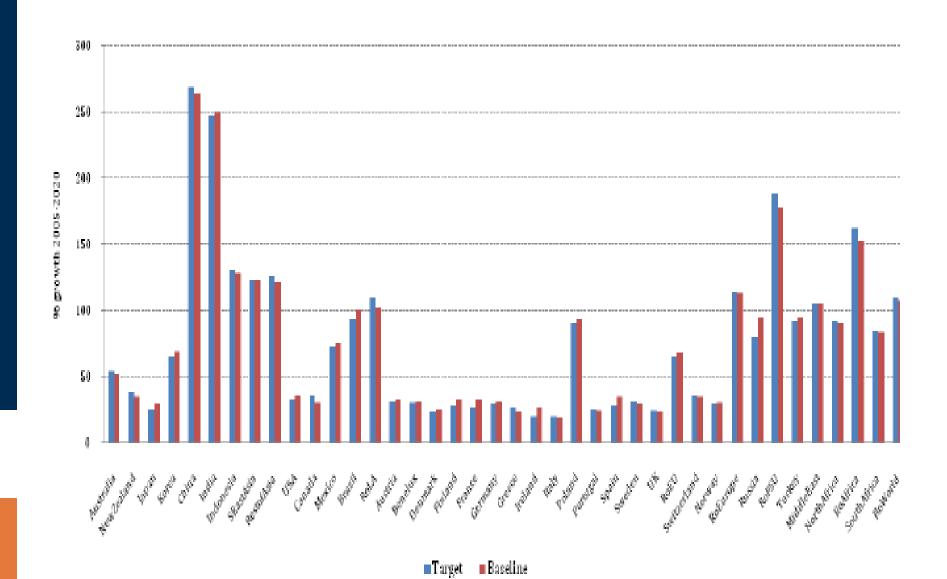
SSP 1:

(Low Challenges) Sustainability **SSP 4**:

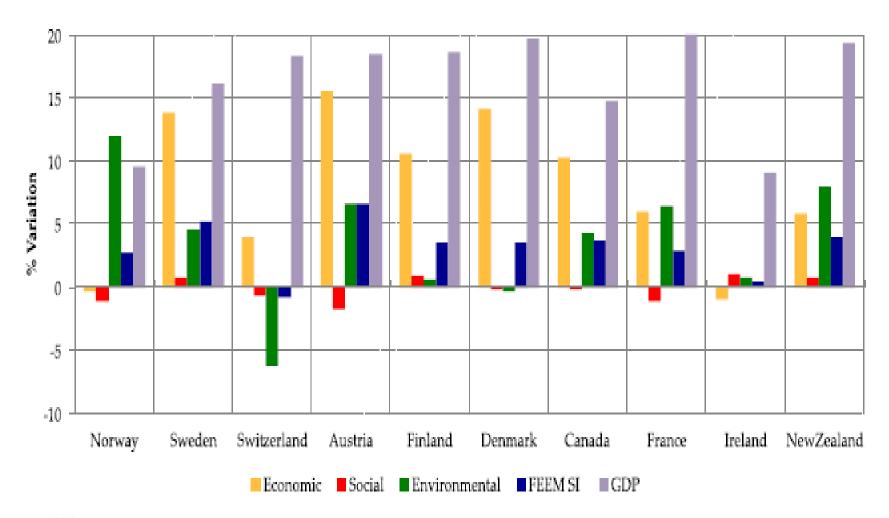
(Adapt. Challenges Dominate)

Inequality

THE BASELINE SCENARIO

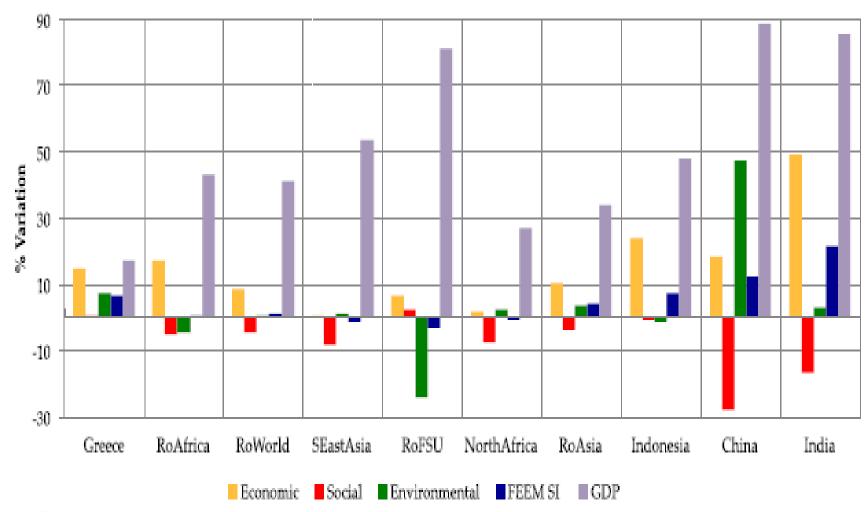

Main variables and reference sources in the baseline scenario

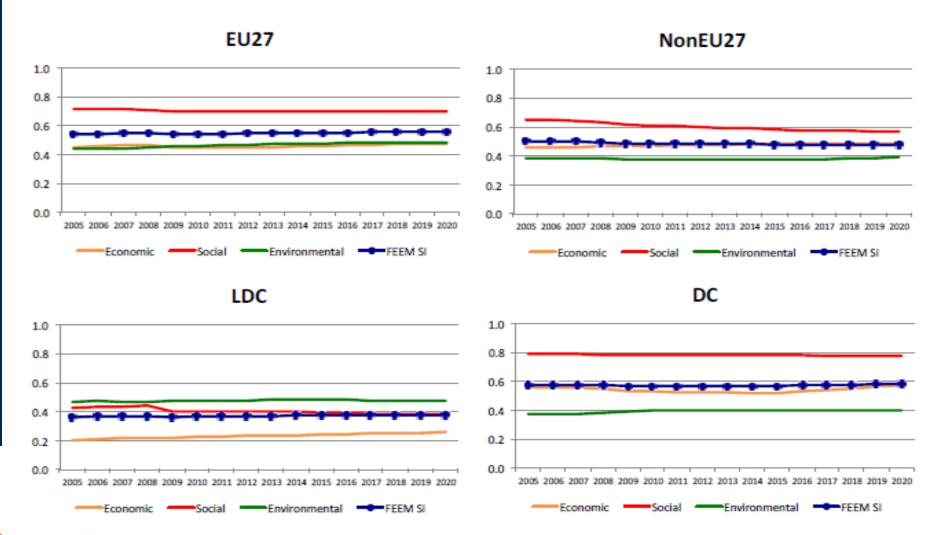
Variable	Reference source			
Population	UN World Population Prospect (2010 revision) – medium fertility variant			
Fossil fuel prices	Eurelectric (2010)			
GDP	2005-2009 = World Bank (WDI 2010) 2010-2020 = MMC_G10 scenario Med Pop - Medium Growth - Fast Convergence (Conv) developed within the RoSE project + World Economic Outlook 2010 (IMF, 2010) for downscaling at country level			
Energy intensity	2005-2009 = IEA (2010) 2010-2020 = endogenous			
CO ₂ emissions	2005-2009 = IEA (2010) 2010-2020 = endogenous			
Public debt	IMF (2010)			


GDP growth 2005-2020

SUSTAINABILITY PICTURE: 2020 vs 2011

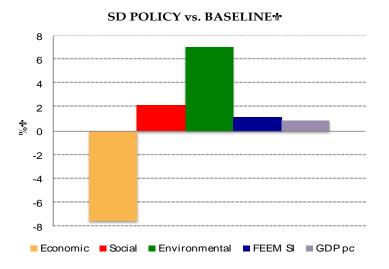
		FEEM SI	Δ	FEEM SI		
Rank 2011	Country	2011	RANK	2020	Country	Rank 2020
1	Norway	0.82	=	0.85	Norway	1
2	Sweden	0.77	=	0.81	Sweden	2
3	Switzerland	0.70	-1	0.74	Austria	3
4	Austria	0.69	1	0.70	Switzerland	4
5	Finland	0.66	=	0.68	Finland	5
6	Denmark	0.65	=	0.68	Denmark	6
7	Canada	0.64	=	0.67	Canada	7
8	France	0.63	=	0.65	France	8
9	Ireland	0.62	-1	0.63	NewZealand	9
10	NewZealand	0.61	1	0.62	Ireland	10
11	USA	0.55	-6	0.58	Germany	11
12	Australia	0.55	=	0.58	Australia	12
13	Brazil	0.55	-2	0.56	Benelux	13
14	UK	0.53	=	0.55	UK	14
15	RoEurope	0.53	-1	0.54	Brazil	15
16	Germany	0.53	5	0.54	RoEurope	16
17	Portugal	0.52	-2	0.53	USA	17
18	RoLA	0.51	=	0.53	RoLA	18
19	Spain	0.50	-2	0.53	Portugal	19
20	Benelux	0.50	7	0.51	RoEU	20
21	Russia	0.49	-5	0.50	Spain	21
22	RoEU	0.49	2	0.50	Italy	22
23	Mexico	0.49	-2	0.49	Korea	23
24	Korea	0.48	1	0.49	Japan	24
25	Italy	0.47	3	0.48	Mexico	25
26	Japan	0.46	2	0.48	Russia	26
27	Turkey	0.45	=	0.48	Turkey	27
28	MiddleEast	0.45	=	0.47	MiddleEast	28
29	Poland	0.43	=	0.44	Poland	29
30	SouthAfrica	0.43	=	0.43	SouthAfrica	30
31	Greece	0.40	=	0.43	Greece	31
32	RoAfrica	0.40	=	0.40	RoAfrica	32
33	RoWorld	0.39	=	0.39	RoWorld	33
34	SEastAsia	0.37	=	0.36	SEastAsia	34
35	RoFSU	0.37	=	0.36	RoFSU	35
36	NorthAfrica	0.34	=	0.34	NorthAfrica	36
37	RoAsia	0.33	=	0.34	RoAsia	37
38	Indonesia	0.30	-1	0.32	China	38
39	China	0.29	1	0.32	Indonesia	39
40	India	0.24	=	0.29	India	40


SUSTAINABILITY TRENDS: TOP TEN

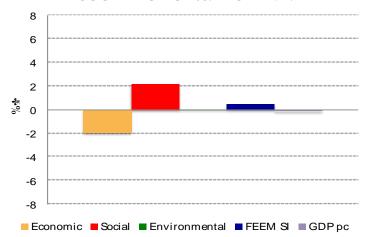

SUSTAINABILITY TRENDS: BOTTOM TEN

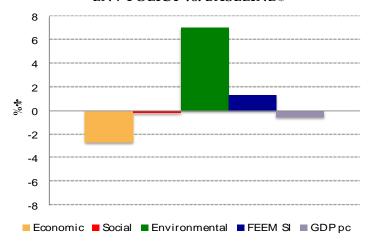
SUSTAINABILITY TRENDS: AGGREGATES

COUNTERFACTUALS => SUSTAINABLE POLICIES

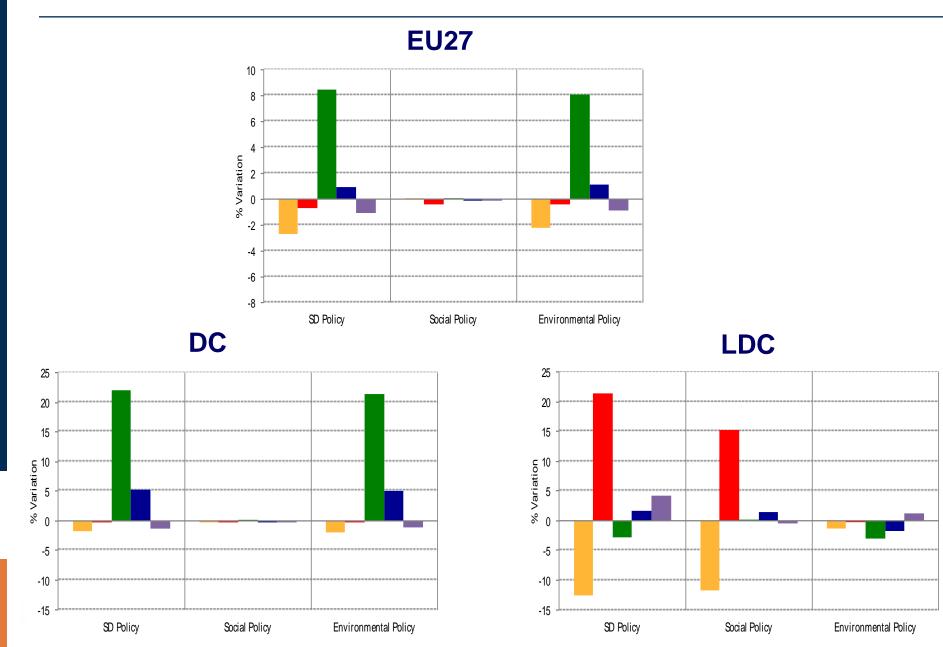

Climate Policy: Cancun Agreements - High-pledges

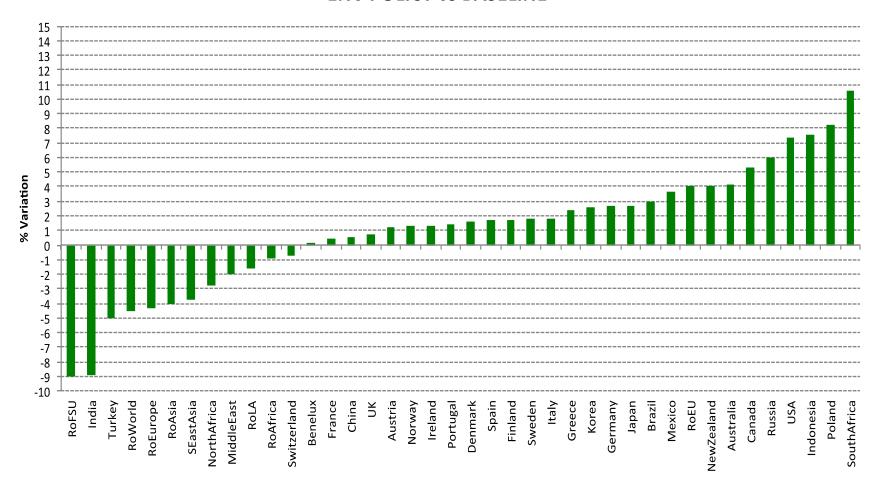
Countries	Emissions reduction in 2020	Base Year
Australia	-11%	1990
Brazil	-38.9%	BaU
Canada	2.52%	1990
China	Carbon intensity of output -45%	2005
EU27	-30%	1990
India	Carbon intensity of output -25%	2005
Indonesia	-26%	BaU
Japan	-25%	1990
Korea	-30%	BaU
Mexico	-30%	BaU
New Zealand	-20%	1990
Norway	-40%	1990
Russia	-25%	1990
South Africa	-34%	BaU
USA	-3%	1990
Global target	-8%	1990




POLICY EFFECTS: WORLD

SOCIAL POLICY vs. BASELINE★


ENV POLICY vs. BASELINE★



POLICY EFFECTS: REGIONAL AGGREGATES

POLICY EFFECTS: REGIONAL AGGREGATES

ENV POLICY vs BASELINE

CONCLUSIONS

- A nex composite index to assess future sustainability worldwide is proposed
- The approach allows considering higher order effects deriving from changes in economic system (also due to policies for sustainability)
- In the next decade, sustainability at world level is expected to decrease, mainly due to the social component deterioration (decoupling between GDP and sustainability)
- Ad hoc sectoral policies are expected to increase sustainability at world level (higher benefits than costs in terms of sustainability)
- An integrated policy for SD implies best outcomes worldwide

TEAM

Project Coordinator

Carlo Carraro

Team Leader

Fabio Eboli

Research Team

Francesco Bosello

Lorenza Campagnolo

Silvio Giove

Ramiro Parrado

Roberta Pierfederici

Mehmet Pinar

Web Master

Paolo Gittoi

Irene Bellin

Graphic Project

Renato Dalla Venezia

Management

Monica Eberle

Communication

Jacopo Crimi

Thank you for your attention!

fabio.eboli@feem.it www.feemsi.org

