

2372-2

Joint ICTP-IAEA Workshop on Sustainable Energy Development: Pathways and Strategies after Rio+20

1 - 5 October 2012

IAEA Support and the role of nuclear energy

Ferenc L. Toth IAEA, Vienna Austria Sustainable energy development after **Rio+20**: IAEA Support and the role of nuclear energy Ferenc L. Toth **Planning & Economic Studies Section (PESS) Department of Nuclear Energy IAEA-ICTP** Workshop on "Sustainable Energy Development: Pathways and Strategies after Rio+20" ICTP, Trieste, Ital tober 1-5, 2012 International Atomic Energy

1. Context: Rio+20 and energy concerns

SD history: notoriously missing – Energy [Stockholm 1972 – Brundtland 1987]

Rio 1992: Agenda 21: 40 areas, no energy → UNCSD

- → Millennium Summit 2000
- → WSSD Jo'burg 2002
- → UNCSD (esp. #9): Parties agreed to disagree
 - \rightarrow run up to negotiations for:
- → Rio+20: Green growth constraint for development?

1. Context: Rio+20 and energy concerns

Rio+20 – Outcome document General statements Rio+20 – Follow-up: UN system Little attention to energy

1. Context: Rio+20 and energy concerns

Recent years: many concerns related to SED *worldwide*: \succ fast growing energy and electricity demand (dev) Imited domestic fossil sources or export opportunities fossil fuel price level and volatility \succ development, food, water security (mainly developing) \succ energy supply security and diversification (all) economic efficiency and competitiveness (mainly dev'd) \succ climate change mitigation (Durban Platform – all) Iocal/regional air pollution (East + Southeast Asia) sustainable development > non-fossil alternatives yet to improve (cost, performance) ... many others

Energy security: growing concern worldwide

- long term: availability and price trends
- short term: disruptions and price volatility

Robust energy strategies have to

- *balance* supply security, economic efficiency, environmental protection:

complex linkages: trade-offs and synergies

- *be valid* under a broad range of future conditions: technology options, energy prices, political situations, environmental targets

Energy supply security: many definitions and targets; depending on national/regional conditions:

- Adequate supply to meet basic needs and development aspirations
- Self-sufficiency: share of imported primary energy
- Protection against supply disruptions
- Protection against price volatility
- Physical plant and infrastructure reliability
- Diversity of technologies and sources

- Threats to and/or from neighbouring states
- Well functioning energy markets
- Economic sustainability of supply (profitability)
- Environmentally benign resources and technologies
- → Elements of sustainable (energy) development

Nuclear energy can enhance energy security

. . .

Most aspects of supply security: "public good" (non-rivaled, non-excludable) Underprovided by markets → need for public (government) *policies* to provide it; various *instruments*: tax, quota, minimum standards

Need for solid analyses to underpin these policies: models, indicators, technoeconomic and policy analysis

Environmental impacts of energy production and use: Multitude – from local to global pollutants; *direct* emissions (from energy facilities) vs *life-cycle* emissions (all related activities) Land: use, soil pollution, landscape ... Water: use, physical/chemical pollution ... Air: local/regional air pollution (SOx, NOx) and GHG emissions \rightarrow climate change \rightarrow Elements of sustainable (energy) development Nuclear energy can reduce harmful emissions and contribute to GHG mitigation 10 IAEA

Most aspects of *environmental* impacts: "externalities" (non-compensated, unpriced transactions) energy-related externalities: negative Overprovided by markets \rightarrow need for public (government) *policies* to reduce them; various *instruments*: tax, quota, environmental standards Need for solid analyses to underpin these policies: models, indicators, technoeconomic and policy analysis

Combining supply security and climate change: - coal: SS+ (if domestic); CC– (even with CCS)

- gas: SS +/- (dom/imp); CC +/- (replace coal/oil)
- nuclear: SS+ ; CC +

 Complex linkages: trade-offs & synergies across supply security, economic, environmental, social, ...
 Subprogrammes 3.1 and 3.2 (PESS) address:
 Need for tools to assess options in a consistent framework – Area 1

- Need for in-depth analyses of techno-economic characteristics and contribution to UN and other international activities – Area 2

3. Energy modelling and capacity building

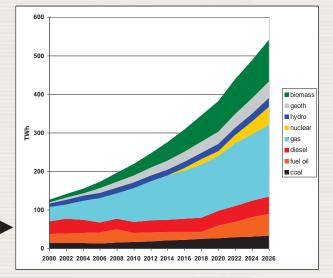
- PESS Area 1:
 - Energy modeling & capacity building
- develop energy planning tools
- build capacity for applications
- training and technical support
- For:
- Energy system modeling
- Economic, financial and environmental assessments

Analysis of options for energy strategies

3. Energy modelling and capacity building

- Model for the Analysis of Energy Demand
- Model for Energy Supply System Alternatives and their General Environmental impacts
- Financial Analysis of Electric Sector Expansion Plans
- Simplified Approach for Estimating Impacts of Electricity Generation

MAED


MESSAGE: Model for Energy Supply System Alternatives and their General Environmental Impacts

INPUT

- Energy system structure (including vintage of plant and equipment)
- Base year energy flows and prices
- Energy demand projections (MAED)
- Technology and resource options & techno-economic performance profiles
- Technical & policy constraints

- Primary and final energy mix
- Emissions and waste streams
- Health and environmental impacts (externalities)
- Resource use
- Land use
- Import dependence
- Investment requirements

4. Energy-economy-environment analysis

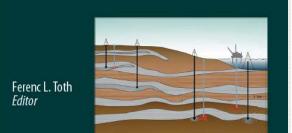
- PESS Area 2: Economics and
 - Energy-economy-environment (3E) analysis
 - Techno-economic analysis
- Analysis of NE-development-environment linkages: role of NE, energy security, CC mitigation, SED
- Contribution to related international efforts: UNCSD, UNFCCC, IPCC, many others
 - Developing tools:

Energy Indicators for Sustainable Development; Indicators for Nuclear Power Development; Sustainability Indicators for the Power Sector

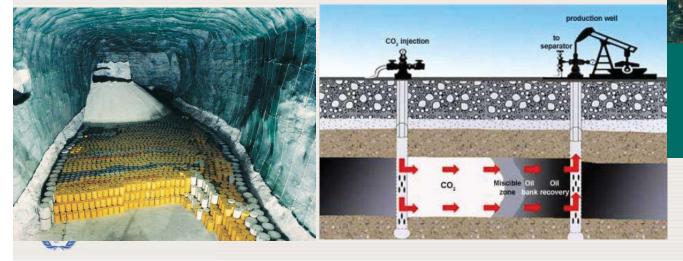
4. 3E Analyses and services to MSs

World in the early 2010s – diverse 3E problems: Socecon development; *Energy*: poverty, economics, technologies, costs, financing; CC, SED, ... Dynamic fields: New developments in science & policy *Mandate 1*: provide balanced, objective, up-to-date information to MSs; methods and training to adopt them Mandate 2: cooperate with and contribute to the work of UN and other international organizations (IEA, NEA) Action: traditional and innovative products and services: external and Agency publications, lectures, CRPs

4a. Technoeconomic analysis


Example 1: Technoeconomic comparison of the geological disposal of CO2 and RW

Example 2: Energy for development


4a. Example 1: Geological disposal

Reason: MSs' dilemma: Nuclear (RW disposal) or coal (CO₂ disposal) Our response: Comparative assessment of geological disposal of CO2 and radioactive waste:

ADVANCES IN GLOBAL CHANGE RESEARCH 44

Geological Disposal of Carbon Dioxide and Radioactive Waste: A Comparative Assessment

4a. Example 1: Geological disposal

4a. Example 1: Geological disposal

Book: well received: positive reviews in journals Increasing interest: follow-up workshop in 2010 Immediate use: IAEA CRP teams build on insights extend and deepen comparative assmts focus on national/regional contexts, features CRP: 3+years, ~10 teams, publications underway **Ultimate objective:** provide input for PMs: pros and cons of fossil-CCD and NP-RWD

4a. Example 2: Energy for development

IAEA Scientific forum – PESS Senior lecturers – diverse insights - International institutions - Energy demand - Energy supply Extended lectures – Book in 2012 **Broad technology-neutral overview** Great interest at Rio+20

4b. Sustainable energy development (SED)

Mandate 2: SED – work + cooperation Diverse range of activities and products Sustainable Energy Development: Key issue access, afford, clean, sustainable (resource+environ) Climate change: top international env issue Again: serve MSs: info, lectures, publications AND:

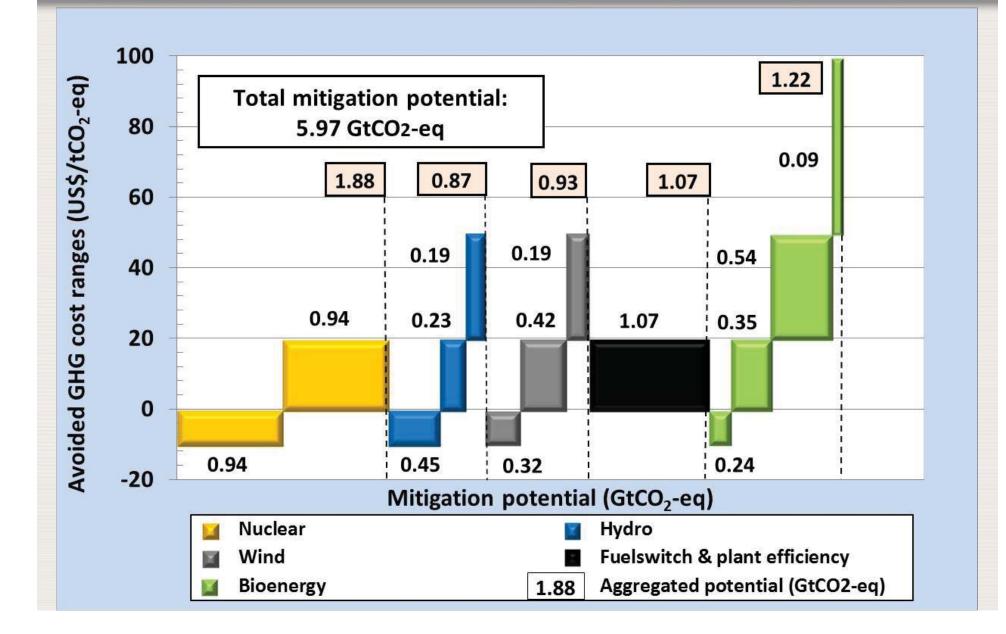
Agency's link to UN and other SD and CC activities: UNDESA, UNCSD, UNFCCC, IPCC, UN-Energy ... Prerequisite: recognized as unbiased experts

(Evidence: publications

4b. Example 1: Booklet 'CC and NP'

Climate Change and Nuclear Power: Bonn-Marrakesh

Our response:


- Booklet for UNFCCC COPs updated annually
- Side events at COPs

- Presentations, papers, book chapter, etc.

CLIMATE CHANGE AND NUCLEAR POWER 2011

4b Example 1: Booklet 'CC and NP'

4b. Example 2: Impacts of CC on Energy Systems

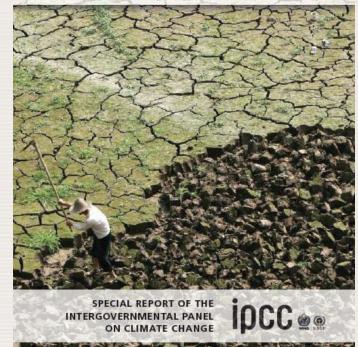
MS concern – especially developing:

Energy installations & infrastructure, including NPPs: vulnerable to CC and EWEs

Our response: series of activities with objectives to:

- inform about relevant CC and EWE patterns
- review vulnerability and adaptation options
- assess potential damage, adaptation costs,
- adopt suitable methods: RA, CBA, CEA, portfolio
 IAEA/ICTP workshop; work in progress on journal SI; to start: CRP

4b. Selected energy sources/technologies



4b. Example 3: IPCC

Contribution: AR-5 (-2014): WGII (Impacts) LA, WGIII (Mitigation) LA SREX (2008-2012): LA New Socecon-CC scenarios; AR-5: **Scoping Meetings** Reasons: Contribution to UN activity is 1.3.2 mandate Forefront of CC science & policy: better service to MSs IAEA

MANAGING THE RISKS OF EXTREME EVENTS AND DISASTERS TO ADVANCE CLIMATE CHANGE ADAPTATION

5. Main messages

Supply security & environmental impacts: many aspects and targets \rightarrow important issues in SED

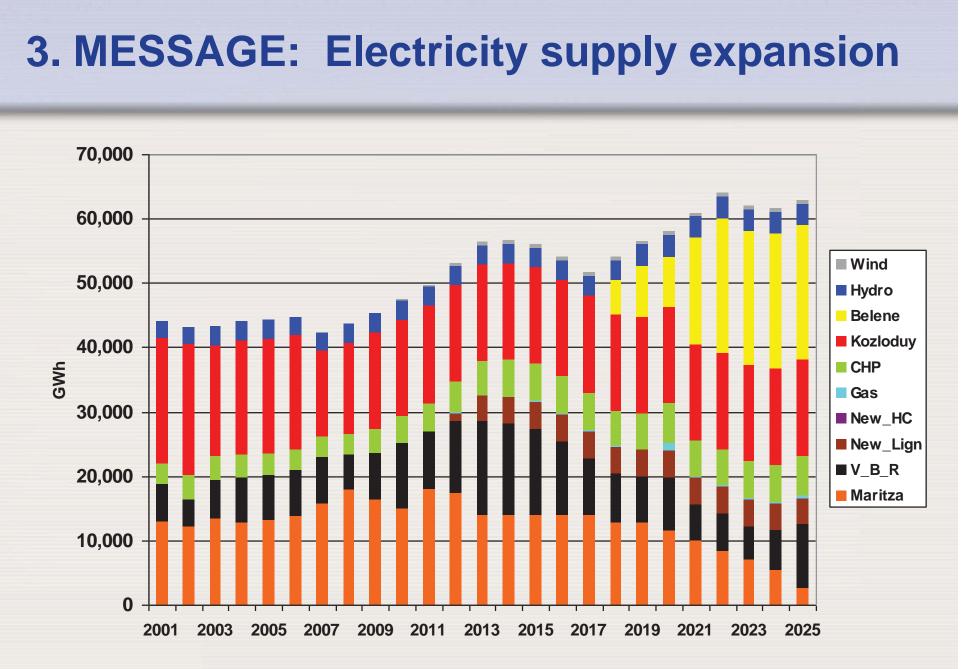
Many other concers require attention for SED : fast growing demand, domestic resources, import prices and current account balance, competitiveness, climate change, sustainability...

→ Need for energy planning tools and 3E analyses to explore the role and prospects for various technologies (including NE) in national energy strategies

4. Main messages

Supply security & environmental problems:

No resource or technology is a magic cure but: Many could be *part of the remedy* Which one, where, when, how much, what arrangements, NE part of it?: depends on national circumstances and priorities \rightarrow decision of sovereign states IAEA mandate: support, tools, capacity building, expertise, analysis, publications



IAEA http://www.iaea.org/OurWork/ST/NE/index.html

...atoms for peace.

3. MESSAGE results: scenario comparison

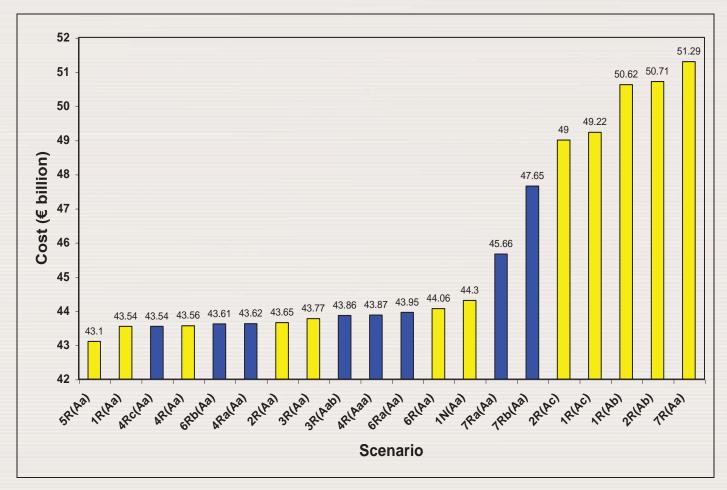


Figure 8.1. Cost comparison of the main scenarios and the sensitivity cases.

