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Glossary

Particles: zero/full transmission below/above barrier,
no interference, phase does not matter

Waves: partial transmission below/above batrrier,
interference, phase matters

Quantum / classical waves:
Identical description for single gm particle / linear case

Quantum many body waves: linear equations in
VERY high-dimensional Hilbert (vector) space

Classical nonlinear waves: nonlinear equations, e.g.
from mean field approximation for MANY quantum particles

Nonlinearity: wave-wave (mode-mode) interactions

Localization: waves start to travel, but never get away



Anderson localization




Nobel Lecture

1_" F: hi | iI:I W. An derSD n Mobel| Lecture, December 8, 1977

The Nobel Prize in Physics 1977 .
Local Moments and Localized States

| was cited for work both in the field of magnetism and in that of
disordered systems, and | would like to describe here one development
in each held which was specifically mentioned in that citation. The two
theories | will discuss differed sharply in some ways. The theory of local
moments in metals was, in a sense, easy: it was the condensation into a
simple mathematical model of ideas which were very much in the air at
the time, and it had rapid and permanent acceptance because of its
timeliness and its relative simplicity. What mathematical difficulty it
contained has been almost fully cleared up within the past few years.

Localization was a different matter: very few believed it at the time, and
even fewer saw its importance; among those who failed to fully
understand it at first was certainly its author. It has yet to receive
adequate mathematical treatment, and one has to resort to the indignity
of numerical simulations to settle even the simplest questions about it .



Experimental Evidence for Anderson Localization

waves in disordered media — Anderson localization for: /
electrons, phonons, photons, BEC, ... :
Electrons: in: Akkermans et al 2006 : af
§ 1-00; 04 0?0 0.4 06
Ultrasound: Weaver 1990 §m i —
Microwaves: Dalichaoush et al 1991, Chabanov/Pradhan/ et al 2000 A
Light: Wiersma et al 1997, Scheffold et al 1999, Stoerzer et al 2006, o

Schwartz et al 2007, Lahini et al 2008 s

Figure 1| Observation of exponential localization. a, A small BEC

BEC: Billy et al 2008, Roati et al 2008
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Figure 2 | Experimental results for propagation in disordered lattices.
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Direct observation of Anderson localization of matter
waves in a controlled disorder

dintte Bily', Vincent Josse’, Dundun Zeo', Albin Bernard’, Ben Hambrecint', Parre Lupmn', Cavd Climent



Observation of the signature of AL

BEC parameters : N=1.7 104 atoms, (p;,=220Hz)
Weak disorder : Vg/p,,=0.12 << 1
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An optical one-dimensional waveguide lattice (Silberberg et al ’08)

/

» Evanescent coupling between waveguides
* Light coherently tunnels between neighboring waveguides
* Dynamics is described by the Tight-Binding model

8U

IB n n, £l [Un+1 + Un—l ]

B ,—waveguide’s refraction index /width
C,.;— Separation between waveguides
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Variable Upper view in visible light
Filter ~ EEERT PP 4 )

CCD

Cylindrical Camera

Telescope —
Detector

40X

N2 Rotating Sample Polarizer

Waveplate glass
window

e Injecting a narrow beam (~3 sites) at different locations
across the lattice
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(a) Periodic array — expansion
(b) Disordered array - expansion
(c) Disordered array - /ocalization




Anderson : : : : Laltice - tight binding mode/
V-l ® ® ® ® ®: Onsite energies €; - random
0000, Hopping matrix elements [,
®/® ®® @ /]

/&

[/ and | are nearest
-W/2 < e <W/21| ;= neighbors
uniformly distributed 0 otherwise

Anderson Transition

[<1 [>1
Insulator Metal
All eigenstates There appear states extended

are localized all over the whole system



Localization of single-particle wave-functions.

Continuous limit:

| z/{f} — €F ¢a("") — €a¢a(7°)

Ao(xz) extended
~1

Jul L AMMAMAA

V \/VV kAl L VVMVV\; =2 All states are localized

d=17: All states are localized

~S Cloc
/\M Ny i35 > d >Z. Anderson transition
\/V\/\] VV\/\/V\MV\/VV \}V

localized




The one-dimensional tight-binding model

e The periodic Lattice (Bloch, 1928)

8%

EWn + T[W/Hl _H//n 1]

UUIJHUULH

Eigenfunctions extend over entire lattice (Bloch functions)

e The disordered lattice (Anderson, 1958)

8
B Wn = £, Wt /7 n+l [l//n+1 + l//n—l]

YUY
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Anderson localization Anderson (1958)

0
%% = € — Ui — Y1 {er}in [-W/2,W)2

Eigenvalues: )\ , € [_2 — %’ 2 + %}
Width of EV spectrum: A =44+ W

Eigenvectors: A,jjg ~ e_l/f()‘v)

Localization length: £(),) < £(0) ~ 100/W?2

Localization volume of NM: L A




Anderson localization Anderson (1958)

)\Al — EZAZ _Al—l _Al+1 {el} in [—W/2,W/2]

Eigenvalues: )\ , € [_2 — %’ 2 + %}
Width of EV spectrum: A =44+ W

Eigenvectors: A,jjg ~ e_l/f()‘v)

Localization length: £(),) < £(0) ~ 100/W?2

Localization volume of NM: L ,./@\




adding nonlinearity




Defining the problem

- a disordered medium
- linear equations of motion: all eigenstates are Anderson localized
- add short range nonlinearity (interactions)

- follow the spreading of an initially localized wave packet

i = ey — Y141 — Y11



Defining the problem

- a disordered medium
- linear equations of motion: all eigenstates are Anderson localized
- add short range nonlinearity (interactions)

- follow the spreading of an initially localized wave packet

WZ = €+ ﬁwl ‘Q@bz — Y141 — Y11



Defining the problem

- a disordered medium
- linear equations of motion: all eigenstates are Anderson localized
- add short range nonlinearity (interactions)

- follow the spreading of an initially localized wave packet

Will it delocalize?  Yes because of nonintegrability and ergodicity

No because of energy conservation —
spreading leads to small energy density,
nonlinearity can be neglected,
dynamics becomes integrable, and
Anderson localization is restored



Kolmogorov — Arnold — Moser (KAM) theory

A.N. Kolmogorov, Integrable classical Hamiltonian #,, d>7:

Dokl. Akad. Nauk SSSR, . . .
1954, Separation of variables: 0 sets of action-angle

Proc. 1954 Int. Congress yqriables _ .
of Mathematics, North- /1’ 6, = 2maf,.., / 210y = 2700, 1,..

Holland, 1957 Quasiperiodic motion: set of the frequencies,
, @y, @y, .., D, which are in general incommensurate

Actions //ar'e integrals of motion %, //. / of=0
o,

De@e..

. Will an arbitrary weak perturbation . ?
_ Vof the integrable Hamiltonian dJ?%‘oy
the tori and make the motion ergodic (when =

each point at the energy shell will be
reached sooner or later

Most of the tori survive EENY
weak and smooth enough theorem
perturbations

. ‘ ’l.\‘ A .
Viadimir. , u

Arnold




KAM Most of the tori survive weak and

it 1l smooth enough perturbations

/SN I
. X V' #0

Each point in the space of the
integrals of motion corresponds to a
torus and vice versa

Finite motion.
Localization in the space of
the integrals of motion

« KAM applies to finite systems
* Does it apply to waves in infinite systems?

* Will nonlinear waves observe KAM regime?
- If they do — then localization remains
- If they do not — waves can delocalize

* How are KAM thresholds scaling with number of degrees of freedom?

.,



Equations in normal mode space:

i .f‘ § pE L
LD, — )\Lf Py + ‘3 Irzﬁul /9,3 @Ul Do Py

/1 ,1/9,1/3

Iy,ul,ug,yg — E AI/,IAul,IAuQ,IAUQ,,I
[

NM ordering in real space: XV — Zl ZAE, I

Characterization of wavepackets in normal mode space:
2= 6/ Y, leul? 7= 2, v

Second moment: 7112 = ZU(I/ — D)QZV > location of tails

Participation number: P — ]_/ ZV Zg =P number of strongly excited modes

P2 _|-> K adjacent sites equally excited: ( = 12

mo _I—> K adjacent sites, every second empty
or equipartition: =3

Compactness index: ( =



Y = 01,

M. Molina PRB 1998, A. Pikovsky et al PRL 2008,
G. Kopidakis et al PRL 2008, SF et al PRL 2009

Single site excitations: subdiffusion! €, = 0

W=4,3=0,0.1,1,4.5

105 E_I‘I'mﬂn | TTTTIm [T E
0 _Cj | H@M [ N Wavepacket spreads way beyond
= TR EET localization volume.
30 ' 7
= 10F t =10°
102k b7
B E T T T
- 0.04
101 EI_LL:I.IJI] | 01 [ i E N_>O'O3
102 :_IIIIITIH | T TTTIm | T TTTIm E & 002
: e
i 1/6 y - ] 0
= P ,u/ - 107
o 10—12
9? -18
— 10 M
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ELLLLL“" 4| LI 6| [T N
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Integrable approximation keeps Anderson Localization:

Hz'm: 2 }\V]v-l' B 2 ]vl,vz,v3,v4\/Jvljvljvljv[-

VI,V2,V3,IJ4

wavepackets stay localized due to overlap integral characteristics

Then observed spreading must be due to
* deterministic chaos

» decoherence of normal mode phases



Test: additional manual dephasing in normal mode space

W=4,7,10 = 3,4,6

i

%, ~ <

IO ST

T T TR

ao="?7??

6 8

10° 107 10
t

SF et al PRL 2009

.
-



Frequency scales W=

- Eigenvalue (frequency) spectrum width: A = W +4 8

2 :
- Localization volume of eigenstate: V = 360/W ~18 (sites)

* Average frequency spacing inside
localization volume: d=A/N 0.43

- Nonlinearity induced frequency shift: J; = 5 |¢l ‘2

Three expected evolution regimes: o Self-Trapping 3

Weak chaos :0<d 0
Strong chaos :d<d<2
(partial) self trapping : 2< "

Weak Chaos
SF Chem Phys 2010, TV Laptyeva et al EPL 2010

2 L ]
10 2 4 6 g



T : | : | — T3
Self-Trapping -

W=4

Wave packet with 20 sites 10

Norm density = 1 ©

Random initial phases o 4

Averaging over 1000 realizations o  WeakChaos
o

J Bodyfelt et al PRE 2011

1, lattice site index
v &
=) =)

150

1 2 3 4 5
log, t log,, t log, t



Explaining subdiffusion? [

- at some time t packet contains 1/n modes: 1/n > P,

’V
—

2
- each mode on average has norm |be| ~n <1

- the second moment amountsto  1mo ~ 1 / n? v

Simplest assumption: - some modes in packet interact resonantly
and therefore evolve chaotic
 Probability of resonance: P(Bn)
- all phases decohere on some time scale

exterior mode: Z@u ~ )\uqﬁu—kﬁnzmp(ﬁn)f(t)
(FOF()) = 0(t —#/)  Elonmyora

momentary diffusion rate: [) = 1/T ~ 627’32 (P(ﬁn))z



D Krimer et al PRE 2010

Po1—0cCm Zxd 1/n?~f(1— e /d)p1/2

SF ChemPhys 2010

B2, Bn/d > 1 (strong chaos)
THo ~
d—2/334/3t1/3 Bn/d < 1 (weak chaos)

Generalizations: higher dimensions, nonlinearity exponent o:

iy = ey — Bl "Wy — Z Vi D~ ano—(g(ﬁno—/z))z

meD(l)

m, ~ (B2t)=, strong chaos,

—1_
m, ~ (B*t)=?, weak chaos.




Asymptotic regime of weak chaos SF et al PRL 2009, Ch. Skokos et al PRE 2009

We averaged the measured exponent |O = 0.33 £ 0.02 (DN LS)
over 20 realizations: o =0.33 £0.05 (KG)

Strong chaos and crossover to weak chaos TV Laptyeva et al EPL 2010

Averaging over 1000 realizations, measuring

KG
DNLS. W=4 KG. W=4
IS I 't | c T [], T
- 0.5 == === R
0.4F
0.3 Self-Trapping
3
0.2 |
0.1 _ l chkii.'huuu | i
0 2 i 6
W
0 . 1 " 1 . i
? 4 log t O 8

10



Generalizations: higher dimensions, nonlinearity exponent o:

iy = ey — BVl Vi — > m

D=1,0<0<4.:

T T T T I T T
L Illll:*.\llll

t

1OF | © Do | 6 AT
E 4 __‘f‘*‘&‘ ‘...-:';./.\_.- _—
0.8 BN 1
L 2 - |
S0.61 : T '1|.0' | '2.|0' | '3|.0' | T]cr
| et G
0.4 “‘~£ % E
0.2— E ‘%%EH_&E‘HE““E——E
00 10 S0 30 40
o

Ch Skokos et al PRE 2010

Related results by M Mulansky

meD(l)

D=2,0=2:

TV Laptyeva et al, EPL 2012



(0

P.

Restoring Anderson localization? A matter of probability and KAM!

MV Ivanchenko et al PRL 2011
E : total energy

L : size of initial wave packet

1

14

o : 3kE\2L
N | P 2(1__K )
. | L

0.4

Generalizing:

d: dimension

V: volume of wave packet
Y:=20

Related results by Aubry,Johansson



T T T T T3
Self-Trapping 3

The emerging picture

10

2]

1

10 Weak Chaos

Anderson Localization

07 4 6 8

1404040404 | | >

rlll’l A I A I A
0
d=A/V A 0
KAM
Weak Chaos Strong Chaos Selftrapping, part of

packet IS spreading

SF,Krimer,Skokos (2009) SF (2010) Kopidakis, Komineas
Shepelyansky and Pikovsky (2008)  Bodyfelt,Lapteva,Krimer, SF, Aubry ,(2008) ’
Molina (1998) Skokos,SF (2010) :

_/

V

In all cases subdiffusive spreading



other localizing media




Quasiperiodic potentials (Aubry-Andre): M Larcher et al, arXiv1206.0833
) New J Phys, in print
9% _

(% (¢J+1 + ;- i o Vit ‘|—ﬁ|¢3|27/)3
Vi = Acos(2raj + ¢)

Pecularities:

» spectrum with gaps

» subgaps etc

- fractal properties

* gap selftrapping

* hierarchy of level spacings
ca=1/3




Nonlinear Quantum Kicked Rotor

G Gligoric et al EPL 2011

An(t+1) =Y (=) " Tnem (k) A (t)e~ 5™ AR OF

m

Spreading first observed by D Shepelyansky PRL 1993

{log, E)
d

=
T T

L]

Pecularities:

- spectrum in compact space

* no selftrapping
ca=1/3



Nonlinear Wannier-Stark ladder D Krimer et al PRE 2009

iq}n — = (q]n+1 T \Ifn—l) £3 n’E\Pn + /B‘KIIHPTIIH

Pecularities:

» spectrum is equidistant
- exact resonances

- absence of universality
« exponents depend on E




1st experimental confirmation from Firenze

wed

PRL 106, 230403 (2011) PHYSICAL REVIEW LETTERS 103

Observation of Subdiffusion in a Disordered Interacting System

E. Lucioni,"* B. Deissler,' L. Tanzi,' G. Roati,' M. Zaccanti,”’ M. I‘*’_It)dugn().z‘3 M. Larcher,”
F. Dalfovo,* M. Inguscio,' and G. Modugno'*

Bose-Einstein condensate of 22K atoms
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SF, MV Ivanchenko, N Li
Pramana J Phys 77 (2011) 1007

heat conductivity



Consequencies for thermal conductivity
Norm density n ~ energy density € ~ temperature T

Diffusion rate inside wave packet: ) ~ 52732 (5)

Ple) m 1 — —aeld

2
Thermal conductivity: K ~ T2 (1 — e_bT/d)

k~T*, T < d(weak chaos)
k~T?, T > d (strong chaos)



Model 1: The Klein-Gordon chain

2~
I T 1

Hik = - —=—Uu; + —Uu; w1 — )
Ezzlwzw(* )
U] = —aHK/aul €] uniformly from [%, %]
. N 3 1
Uy = —€u; — Uy —+ —(uz+1 —+ Uj—1 — Q’U,Z)
|44
Inducing a heat flowand _
measuring conductivity: U1 N = —8H/8u1,N + &,N — )\ul,N
(&1,n (8)&1,n(0)) = 2AT nO(7)
. 1 . .
JKG = ~ 3w > (i1 + ) (w1 — wr)
[

k= JN/(Tn —T1) (7 Dres




Model 2: The Frohlich-Spencer-Wayne chain

pgg R 4
Hrsw = Z 5 T u; + Z(uzﬂ — )
z

J. Frohlich, T. Spencer and C. E. Wayne, J. Stat. Phys. 42, 247 (1986)

» limit of KG model for strong disorder

* renormalized frequencies

- artificial total mechanical momentum conservation in anharmonic FPU part
* only doublet interactions, but completely uncorrelated frequencies

» only weak chaos and crossover to pseudo-FPU regime since d~1



) SF, MV Ivanchenko, N Li
KG: size effects Pramana J Phys 77 (2011) 1007

Linear chain: Klinear ™~ e_N/g

Assume for nonlinear chain: K ~ ¢

Needed system size: N ~ —Ozf InT

0.1 4

—a— 1=0.005|-
—e— T1=0.01 |
—&— T=0.02
—v— 1=0.05 1
<« T=0.1 |]
—»—T1=0.2

0.01 1

100 1000



SF, MV Ivanchenko, N Li

KG: results Pramana J Phys 77 (2011) 1007
]00 | | I T TTTI | | I TTTTI | | I/-I TTT | | | I T TTTI
// K ~ Tz
N 0
- s Ordered chain 1 10 | D
1 4 — Self-Trapping
= = 1
- ] 10
0.01—
y Weak Chaos :
% 7 W= % ]0-2 : 1
4 ] 2 4 6
0.0001 - — W
1 1 | I | | 1 1 1 L1111 | | 1 1 L1111 | 1 | | L 1111
0.001 0.01 0.1 1 10
T

- evidence for dropping of k with dropping T

* no contradiction to predictions

* no real confirmation either

* much better computations needed, other comp. architechture required
- or another splendid idea wanted



SF, MV Ivanchenko, N Li

FSW: results Pramana J Phys 77 (2011) 1007
]-DO | | I T TTTTI , | | I T TTTTT
, I
: <~T' / ¢
/ g v PP
B / ’ &
1 /  § _
/ g ’ N=16,64,256
i / |
/"
001 f‘ |
/
v
=/ =
-/ §
o.oom:i -
| | | [ | | | | [
0.01 1 100

T

- evidence for dropping of k with dropping T

* no contradiction to predictions

* no real confirmation either

* much better computations needed, other comp. architechture required
- or another splendid idea wanted



going quantum




Two interacting particles in a quasiperiodic potential

H = Z { b, 10 +b7bjy1 +e;05b; + Ub+b +bb;

basis: N b [0) M.V. Ivanchenko
0 R. Khomeriki
= > * (Q) NUNIO% 1,m) = ——== S. Flach
m.l<m V1+0m  EpL o 66002 (2012)

pdf of particle density:

P+ . N N
(q) _ (qlbbilq) 1 (q)2 (q)2
Py 5 D) Z Ly + Z Lo
kI<k m,l>=m

Participation number of density pdf: Pq = ]_/ va (pl(Q) )2



Results: eigenfunctions

=9

A OO © O

o O o O
~—
Q
~—

N
o

Participation Number P

o

-5 0 < 10
Eigenvalues xq

U=79and \=2.5

200

100

100 200 0

(d)

NP 7 VO

0 100 200

Sites n

M.V. Ivanchenko

R. Khomeriki

S. Flach

EPL 98 66002 (2012)



Results: PDF of spreading of wave packet with A=2.5 and N=2500
and two particles initially at adjacent sites

Uu=2 U=4.5

4

Time

1000 1500 500 1000 1500 2000 2500
Sites Sites



Results: the complete picture from spreading wave packets:
square rooted 2"9 moment for 60 different realizations

Insulator

5
(o4

S
»

B2
(V)

Depth of potential, A
N
n

N
!
i

1.8’

Interaction constant, U



Summary of Lecture lli

Fishman,Pikovsky,Basko,Aubry: slowing down of spreading?
we searched and did not find ANY signature of slowing down

Shepelyansky: different predictions for exponents?
our numerics exclude them. Some arguments appear to be incorrect

Heat conductivity measurements (SF et al Pramana J Phys 2011):
energy density dependence follows predictions

Two interacting quantum particles:

disorder: weak enhancement of localization length
D. Krimer et al JETP Letters 2011

quasiperiodic potentials: complete delocalization
MV Ivanchenko et al EPL 2012

Nonlinear diffusion equations and scaling (arXiv:1206.6085):
very good agreement with spreading of wave packets

Speeding up subdiffusion for easier experimental studies (arXiv:1210:3148):
is possible and agrees with main underlying assumptions



Take Home Messages

* nonlinear dynamical systems — nonintegrability, chaos

 quasiperiodic motion destroyed, BUT:

« periodic orbits are generic low-d invariant manifolds

* breathers are essential periodic orbits which describe
the evolution of relevant mode-mode interactions,

correlations in and relaxations of complex systems

- Iin the long run chaos destroys coherence and therefore
wave localization is lost in any of its forms



