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Particles: zero/full  transmission below/above barrier, 
no interference, phase does not matter 
 
Waves: partial transmission below/above barrier, 
interference, phase matters 
 
Quantum / classical waves: 
Identical description for single qm particle / linear case 
 
Quantum many body waves: linear equations in  
VERY high-dimensional Hilbert (vector) space 
 
Classical nonlinear waves: nonlinear equations, e.g. 
from mean field approximation for MANY quantum particles 
 
Nonlinearity: wave-wave (mode-mode) interactions  
 
Localization: waves start to travel, but never get away 
 

Glossary 



 
 
Anderson localization 





Experimental Evidence for Anderson Localization 

waves in disordered media  Anderson localization for: 
    

Electrons: in: Akkermans et al 2006
 
Ultrasound: Weaver 1990 
 
Microwaves: Dalichaoush et al 1991, Chabanov/Pradhan/ et al 2000 
 
Light: Wiersma et al 1997,  Scheffold et al 1999, Stoerzer et al 2006, 
            Schwartz et al 2007, Lahini et al 2008 
 
BEC: Billy et al 2008, Roati et al 2008 







 Evanescent coupling between waveguides  
 Light coherently tunnels between neighboring waveguides 
 Dynamics is described by the Tight-Binding model 
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Anderson  
Model 

 Lattice - tight binding model 

 Onsite energies  i - random 

 Hopping matrix elements tij  j i 

I ij 

tij = { -W/2 < i <W/2   
uniformly distributed 

t < tc  t > tc 

Anderson  Transition 

t   i and j are nearest  
        neighbors 
 

0   otherwise 



Localization of single-particle wave-functions. 
Continuous limit: 

d=1: All states are localized 

d=2: All states are localized 

d >2: Anderson transition 
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Eigenfunctions extend over entire lattice (Bloch functions) 

The one-dimensional tight-binding model 







Eigenvalues: 

Width of EV spectrum: 

Eigenvectors: 

Localization volume of NM: L 

l 

Localization length: 

Anderson localization 
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Anderson (1958) 
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adding nonlinearity 



Defining the problem 

 a disordered medium 
 
 linear equations of motion: all eigenstates are Anderson localized 

 
 add short range nonlinearity (interactions) 

 
 follow the spreading of an initially localized wave packet  
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Defining the problem 

 a disordered medium 
 
 linear equations of motion: all eigenstates are Anderson localized 

 
 add short range nonlinearity (interactions) 

 
 follow the spreading of an initially localized wave packet  

Will it delocalize? Yes because of nonintegrability and ergodicity 
 
No because of energy conservation   
      spreading leads to small energy density,  

nonlinearity can be neglected, 
      dynamics becomes integrable, and  
      Anderson localization is restored 



Andrey 
Kolmogorov  

Vladimir 
Arnold 

 Jurgen 
Moser 

Kolmogorov  Arnold  Moser (KAM) theory 
  Integrable classical Hamiltonian    , d>1:  
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A.N. Kolmogorov,  
Dokl. Akad. Nauk SSSR, 
1954.  
Proc. 1954 Int. Congress 
of Mathematics, North-
Holland, 1957 
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K A M 

theorem: 

 KAM applies to finite systems 
 Does it apply to waves in infinite systems? 
 How are KAM thresholds scaling with number of degrees of freedom? 
 Will nonlinear waves observe KAM regime? 
 If they do  then localization remains 
 If they do not  waves can delocalize 



Equations in normal mode space: 

NM ordering in real space: 

Characterization of wavepackets in normal mode space: 

Second moment: 

Participation number: 

Compactness index: 

K adjacent sites equally excited: 

K adjacent sites, every second empty 
or equipartition: 

location of tails 

number of strongly excited modes 



W=4, = 0, 0.1, 1, 4.5 

Single site excitations: subdiffusion!  

Wavepacket spreads way beyond  
localization volume.     

1/6 

1/3 

M. Molina PRB 1998,  A. Pikovsky et al PRL 2008, 
G. Kopidakis et al PRL 2008, SF et al PRL 2009 



Integrable approximation keeps Anderson Localization: 

wavepackets stay localized due to overlap integral characteristics 
 
 
 
Then observed  spreading must be due to  
 
 deterministic chaos 
 
 decoherence of normal mode phases 



Test: additional manual dephasing in normal mode space   

W=4,7,10 = 3,4,6 

1/3 

1/2 

SF et al PRL 2009 

 = ??? 



Frequency scales

 Eigenvalue (frequency) spectrum width:  

 Localization volume of eigenstate:   V  

 Average frequency spacing inside  
                           localization volume:    d = /V  

W=4 : 

8 

~18 (sites) 

0.43 

 Nonlinearity induced frequency shift: 

Three expected evolution regimes: 
Weak chaos                :  < d 
Strong chaos              : d <  < 2 
(partial) self trapping : 2 <  

2 

SF Chem Phys 2010, TV Laptyeva et al EPL 2010 



W=4 
Wave packet with 20 sites 
Norm density = 1 
Random initial phases 
Averaging over 1000 realizations  

J Bodyfelt et al PRE 2011 



Explaining subdiffusion? 

at some time t packet contains 1/n modes:
 
 each mode on average has norm 
 
 the second moment amounts to   

 

 

< P 

Simplest assumption:  some modes in packet interact resonantly 
   and therefore evolve chaotic 
 Probability of resonance: P( n) 
 all phases decohere on some time scale 

exterior mode: 

momentary diffusion rate: 

E Michaely et al  
 PRE 2012 



Generalizations:  higher dimensions, nonlinearity exponent : 

D Krimer et al PRE 2010 

SF ChemPhys 2010 



We averaged the measured exponent 
over 20 realizations: 

 = 0.33  0.02 (DNLS) 
 = 0.33 ± 0.05 (KG) 

Asymptotic regime of weak chaos  SF et al PRL 2009, Ch. Skokos et al PRE 2009 

Strong chaos and crossover to weak chaos  TV Laptyeva et al EPL 2010 

Averaging over 1000 realizations,  measuring 

DNLS, W=4 KG, W=4 
KG 



D=1, 0 <  < 4 :  

Ch Skokos et al PRE 2010 

D=2,  = 2 :  

TV Laptyeva et al, EPL 2012 

Generalizations:  higher dimensions, nonlinearity exponent : 

Related results by M Mulansky 



Restoring Anderson localization?   A matter of probability and KAM! 
MV Ivanchenko et al PRL 2011 

E : total energy  
L : size of initial wave packet 

Generalizing: 
d: dimension 
V: volume of wave packet 
 : = 2  

Related results by Aubry,Johansson  



The emerging picture 

0 

I II III 

SF,Krimer,Skokos (2009) 
Shepelyansky and Pikovsky (2008) 
Molina (1998) 

SF (2010) 
Bodyfelt,Lapteva,Krimer, 
Skokos,SF (2010) 

Kopidakis, Komineas, 
SF, Aubry (2008) 

Weak Chaos Strong Chaos Selftrapping, part of 
packet IS spreading 

In all cases subdiffusive spreading 

d= /V   

Anderson Localization 

////// 

KAM 



 
 
other localizing media 



Quasiperiodic potentials (Aubry-Andre): M Larcher et al, arXiv1206.0833 
`          New J Phys, in print 

Pecularities: 
 
 spectrum with gaps 
 subgaps etc 
 fractal properties 
 gap selftrapping 
 hierarchy of level spacings 
  = 1/3 



Nonlinear Quantum Kicked Rotor 

Spreading first observed by D Shepelyansky PRL 1993 

Pecularities: 
 
 spectrum in compact space 
 no selftrapping 
  = 1/3 

G Gligoric et al EPL 2011 



Nonlinear Wannier-Stark ladder 

E=2, =8, ...,9 

=0.38 

D Krimer et al PRE 2009 

Pecularities: 
 
 spectrum is equidistant 
 exact resonances 
 absence of universality 
 exponents depend on E 



1st experimental confirmation from Firenze 



 
 
heat conductivity 

SF, MV Ivanchenko, N Li 
Pramana J Phys 77 (2011) 1007



Consequencies for thermal conductivity 

Diffusion rate inside wave packet: 

Norm density n ~ energy density  ~ temperature T 

Thermal conductivity: 



Model 1: The Klein-Gordon chain 

Inducing a heat flow and 
measuring conductivity:  

uniformly from  



Model 2: The Fröhlich-Spencer-Wayne chain 

 limit of KG model for strong disorder 
 renormalized frequencies 
 artificial total mechanical momentum conservation in anharmonic FPU part 
 only doublet interactions, but completely uncorrelated frequencies 
 
 only weak chaos and crossover to pseudo-FPU regime since d~1 



KG: size effects 

Linear chain: 

Assume for nonlinear chain: 

Needed system size: 

W=2 

SF, MV Ivanchenko, N Li 
Pramana J Phys 77 (2011) 1007



KG: results 

W=6 

W=2 

Ordered chain 

 evidence for dropping of k with dropping T 
 no contradiction to predictions 
 no real confirmation either 
 much better computations needed, other comp. architechture required 
 or another splendid idea wanted 

SF, MV Ivanchenko, N Li 
Pramana J Phys 77 (2011) 1007



FSW: results 

N=16,64,256 

 evidence for dropping of k with dropping T 
 no contradiction to predictions 
 no real confirmation either 
 much better computations needed, other comp. architechture required 
 or another splendid idea wanted 

SF, MV Ivanchenko, N Li 
Pramana J Phys 77 (2011) 1007



 
 
going quantum 



basis: 

pdf of particle density: 

Participation number of density pdf: 

Two interacting particles in a quasiperiodic potential 

M.V. Ivanchenko 
R. Khomeriki 
S. Flach 
EPL 98 66002 (2012) 



Results: eigenfunctions 

M.V. Ivanchenko 
R. Khomeriki 
S. Flach 
EPL 98 66002 (2012) 



Results: PDF of spreading of wave packet with =2.5 and N=2500 
               and two particles initially at adjacent sites 

U=2 U=4.5 



Results: the complete picture from spreading wave packets: 
               square rooted 2nd moment for 60 different realizations 



Summary of Lecture III 

Fishman,Pikovsky,Basko,Aubry: slowing down of spreading? 
we searched and did not find ANY signature of slowing down 
 
Shepelyansky: different predictions for exponents? 
our numerics exclude them. Some arguments appear to be incorrect 
 
Heat conductivity measurements (SF et al Pramana J Phys 2011): 
energy density dependence follows predictions 
 
Two interacting quantum particles: 
disorder: weak enhancement of localization length  
D. Krimer et al JETP Letters 2011 
quasiperiodic potentials: complete delocalization 
MV Ivanchenko et al EPL 2012 
 
Nonlinear diffusion equations and scaling (arXiv:1206.6085): 
very good agreement with spreading of wave packets 
 
Speeding up subdiffusion for easier experimental studies (arXiv:1210:3148): 
is possible and agrees with main underlying assumptions 



Take Home Messages 
 
 nonlinear dynamical systems  nonintegrability, chaos 
 
 quasiperiodic motion destroyed, BUT: 
 
 periodic orbits are generic low-d invariant manifolds  
 
 breathers are essential periodic orbits which describe 

  the evolution of relevant mode-mode interactions, 
  correlations in and relaxations of complex systems  
 
 in the long run chaos destroys coherence and therefore 

  wave localization is lost in any of its forms 


