

2371-10

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries

15 - 24 October 2012

Ultrafast Characterization of Heat Transport and Thermoelectric Energy Exchange at Interfaces (Ballistic and Diffusive Transport of Heat/Energy

Ali SHAKOURI

Birck Nanotechnology Center, Purdue University West Lafayette U.S.A.

Ballistic and Diffusive Transport of Heat/Energy

Ali Shakouri Birck Nanotechnology Center; Purdue University shakouri@purdue.edu

Acknowledgement: DOE/EFRC (CEEM Center), DARPA, ONR, AFOSR, NSF, SRC-IFC, CEA, Intel, Wyle Lab

Advanced Workshop on Energy Transport in Low Dimensional Systems 17 October 2012

OUANTUM

Diffusive or Ballistic Propagation of Heat **Discovery** Park

 $J = \sigma E - e D \nabla n \quad ; \quad \sigma = en\mu$ $\mu: mobility; \quad D: diffusion coefficient$

Einstein Relation: $D/\mu = k_B T/e$

Luttinger's Gravitation Field Analogy Ψ(x,t): Fictitious mechanical field ↔ T(x,t): Temperature

> Luttinger J M 1964 Phys. Rev. 135 A1505 Luttinger J M 1964 Phys. Rev. 136 A1481 Shastry B S 2009 Rep, Prog, Phys 72, 016501

PURDUE UNIVERSITY

Discevery Park

Shastry: energy density propagation **Discovery** Park

 N_2 : The Green's function of the total <u>energy density</u> <u>propagation</u> K(t,x) in a solid material when there is delta-function excitation P(t)

 \mathbf{P}_{O} heat diffusion constant

<u>B. S. Shastry,</u> <u>Rep, Prog, Phys</u> **72**, 016501, (2009)

Top surface energy density response: Thermal and Non-thermal contributions

purdue university Discovery Park

Oscillations in the total energy density at the top free surface of the metal: ➢ due to the Bragg reflection of ballistic electrons from the Brillouin Zone boundaries.

Y. Ezzahri and A. Shakouri; Phys. Rev. B, 79, 184303, (2009), _

Thermal contribution to energy transport **Discovery** Park (Temperature distribution in space)

Shastry predicts <u>temperature wavefronts</u> similar to Cattaneo (ballistic heat equation) but the momentum-dependence of relaxation time can affect the shape.

Y. Ezzahri and A. Shakouri; Journal of Heat Transfer, 2011

Energy density propagation in TE materials

Total <u>energy density propagation</u> K(t,x) in a thermoelectric material when there is delta-function excitation P(t)

Heat Diffusion D_Q
Charge Diffusion D_C

ξ coupling factor between charge and energy density

Z* high frequency limit of figure of merit

B. S. Shastry, Rep, Prog, Phys 72, 016501, (2009)

Observation of second sound

in bismuth

V. Narayanamurti and R. C. Dynes, Phys. Rev. Lett, 28, 1461, (1972).

• Experiment principle

Younes Ezzahri

6.0

5.0

4.0

3.0∟ 1.0

ARRIVAL TIME (µsec)

BiI

3-FOLD AXIS

l = 3.86 mm

PEAK POSITION

2.0

<u>√31</u> √4

4.0

9

Younes Ezzahri

= 4.49 × 10⁴ T⁴sec⁻¹

 \succ Transition to second sound.

A. Shakouri; 10/15/2012

3.0

TEMPERATURE (°K)

FIG. 2. Arrival time of the peak position as a function of temperature from the data of Fig. 1. Solid line,

calculated from the dispersion relation for second

purdue university Discovery Park

1911 - 19

10

Second sound -heat pulse experiments

FIG. 1. Heat pulses in NaF in the (100) direction at temperatures in the vicinity of the thermal conductivity maximum. (a) Singly grown NaF, separation between heater and bolometer l=7.8 mm. (b) Triply grown NaF, l=12.7 mm. Crystal faces approximately 12 mm × 12 mm. The letters L and T mark the longitudinal

McNelly, et al, Phys. Rev. Lett. 24, 100 (1970).

FIG. 4. Heat pulses in a pure NaF sample (l = 7.9 mm)in the $\langle 100 \rangle$ direction for several different temperatures. L and T mark the peaks of the longitudinal and transverse ballistic pulses, respectively. Note the appearance of a third distinct pulse (second sound).

Jackson and Walker, Phys. Rev. B, 1428 (1971)

Discovery Park

11

Cattaneo-Vernotte type: Telegraph equation

$$\begin{cases} C_V \frac{\partial T}{\partial t} + div(Q) = 0 \\ \tau \frac{\partial Q}{\partial t} + Q = -\beta \nabla T \end{cases} \Rightarrow \frac{\partial^2 T}{\partial t^2} + \frac{1}{\tau} \frac{\partial T}{\partial t} = \frac{\beta}{\tau C_V} \nabla^2 T \end{cases}$$

Jeffreys type

$$\begin{cases} C_{V} \frac{\partial T}{\partial t} + div(Q) = 0 \\ \tau \frac{\partial Q}{\partial t} + Q = -\beta \nabla T - \tau \beta_{1} \frac{\partial}{\partial t} \nabla T \Longrightarrow \frac{\partial^{2} T}{\partial t^{2}} + \frac{1}{\tau} \frac{\partial T}{\partial t} = \frac{\beta}{\tau C_{V}} \nabla^{2} T + \frac{\beta_{1}}{C_{V}} \nabla^{2} \frac{\partial T}{\partial t} \\ \beta = \beta_{1} + \beta_{2} \\ \beta_{1}: \text{ Effective thermal conductivity.} \end{cases}$$

 β_2 : Elastic thermal conductivity.

A. Shakouri; 10/15/2012

Macroscopic equations of Guyer and Krumhansl

$$\begin{cases} C_V \frac{\partial T}{\partial t} + div(Q) = 0\\ \frac{\partial Q}{\partial t} + \frac{v^2}{3}\nabla T + \frac{1}{\tau_R}Q = \frac{\tau_N v^2}{5} \left[\nabla^2 Q + 2\nabla div(Q)\right] \Rightarrow \frac{\partial^2 T}{\partial t^2} + \frac{1}{\tau_R}\frac{\partial T}{\partial t} = \frac{v^2}{3C_V}\nabla^2 T + \frac{3}{5}\tau_N v^2 \nabla^2 \frac{\partial T}{\partial t} \end{cases}$$

PURDUE UNIVERSITY

Disc#very Park

Jeffrey's type equation with and effective thermal diffusivity:

Cummulative κ_{ph} vs. mfp at 300K **Discovery** Park

Thin film silicon thermal conductivity

PURDUE UNIVERSITY

Disc#very Park

Time Domain Thermoreflectance (TDTR)

Time Domain ThermoReflectance

• Modulated & delayed femtosecond laser pulse used as a Pump.

- A **Probe** beam measures **reflectivity variation on the surface**
- The lock-in amplifier gives the **In-phase** (V_{in}) and **Out-of-phase** (V_{out}) signals.

PURDUE UNIVERSITY

Disc#very Park

Thin Film Thermal Characterization **Discovery** Park

Metal film is heated by laser pulse and it acts both as a heat source and a transducer (creates acoustic waves). It can characterize thermal interface resistances as well as interface quality (acoustic mismatch).

Phonon echoes in SiGe superlattices

Phonon minibands in SiGe superlattices

superlattices **Discovery** Park

PURDUE UNIVERSITY

Femtosecond laser heat dissipation in thin film **Discovery** Park

Optical sampling by TDTR

purdue university Discovery Park

Gilles Pernot (UCSC/Bordeaux)

22

Optical sampling by TDTR

A. Shakouri; 10/15/2012

ELECTRONICS

PURDUE UNIVERSITY

Disc#very Park

Heat Decay at different modulation frequencies **Discovery** Park

FREQUENCY-DEPENDENT THERMAL CONDUCTIVITY

PURDUE UNIVERSITY

Thermal penetration length

PURDUE UNIVERSITY

Disc#very Park

PURDUE UNIVERSITY Roll of Ballistic Heat Transport (current theory) Discovery Park

28

A. Shakouri; 10/15/2012

Ballistic/Diffusive Heat Transport

Bjorn Vermeersch, Gilles Pernot, et al. (to be submitted)

29

PURDUE UNIVERSITY

Discovery Park

A. Shakouri; 10/15/2012

Thermal Boundary Conductance Discovery Park

Transmission Probabilities

Acoustic Mismatch Model (AMM) Khalatnikov (1952)

$$\alpha_{1 \to 2} = \frac{4Z_1 Z_2}{(Z_1 + Z_2)^2}$$

PURDUE UNIVERSITY

Disc#very Park

Diffuse Mismatch Model (DMM) Swartz and Pohl (1989)

$$\alpha_{1 \to 2}(\omega) = \frac{\left[\sum_{j} N_{2,j}(\omega) c_{2,j}(\omega)\right]}{\left[\sum_{i,j} N_{i,j}(\omega) c_{i,j}(\omega)\right]}$$

A. Shakouri; 10/15/2012

31

Interface thermal conductance

purdue university Discevery Park

Thermal Resistance of Metal-Nonmetal Interfaces

purdue university Discovery Park

Thermal Boundary Resistance of Metal-Nonmetal Interfaces

Discovery Park

Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces

Arun Majumdar^{a)}

Department of Mechanical Engineering and Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720

Pramod Reddy

Applied Science and Technology Program, University of California, Berkeley, California 94720

Extremely low thermal conductivity Discovery Park

Ion irradiation of WSe₂

MD simulation of 1 MeV Kr impact on Au

- Heavy ion irradiation (1 MeV Kr+) of 24 nm WSe₂ film.
- Novel behavior: ion damage causes the thermal conductivity to increase.

A. Shakouri 8/15/2012

Summary

- Ballistic-diffusive heat transport
 - Cattaneo's and Shastry's formalisms
 - Second sound
- Phonon mean free paths
- Time-domain thermoreflectance
 - Picosecond acoustics
 - Frequency-dependent thermal conductivity
- Interface thermal resistance (DMM, AMM, experimental results)

Cahill, Ford, Goodson, Mahan, Majumdar, Maris, Merlin, and Phillpot, "Nanoscale thermal transport," *J. Appl. Phys.* 93, 793 (2003)

David G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004)

Y. Ezzahri and A. Shakouri; Phys. Rev. B, 79, 184303, (2009)

Acknowledgement

Research Professors: Zhixi Bian, Kaz Yazawa

Postdocs/Graduate Students: Kerry Maize, Hiro Onishi, Tela Favaloro, Phil Jackson, Oxana Pantchenko, Amirkoushyar Ziabari, Bjorn Vermeersch, Je-Hyeong Bahk, Yee Rui Koh

Collaborators: John Bowers, Art Gossard (UCSB), Tim Sands, Yue Wu (Purdue), Rajeev Ram (MIT), Venky Narayanamurti (Harvard), Arun Majumdar (Berkeley/ARPA-E), Josh Zide (Delaware), Lon Bell (BSST), Yogi Joshi, Andrei Federov (Georgia Tech), Kevin Pipe (Michigan), Stefan Dilhaire (Bordeaux), Natalio Mingo (CEA), Mike Isaacson, Sriram Shastry, Joel Kubby, Ronnie Lipschutz, Melanie Dupuis, Ben Crow, Steve Kang (UCSC), Bryan Jenkins, Susan Kauzlarich (Davis)

Alumni: Younes Ezzahri (Prof. Univ. Poitier), Daryoosh Vashaee (Prof. Oklahoma State), Zhixi Bian (Adj. Prof. UCSC), Mona Zebarjadi (Prof. Rutgers), Yan Zhang (Tessera), Rajeev Singh (PV Evolutions), James Christofferson (Microsanj), Kazuhiko Fukutani (Canon), Je-Hyoung Park (Samsung), Javad Shabani (postdoc, Harvard), Xi Wang (InterSil), Helene Michel (CEA), Gilles Pernot (Bordeaux), Ramin Sadeghian (H2scan), Shila Alavi (UCSC ASL), Tammy Humphrey, David Hauser