

2371-11

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries

15 - 24 October 2012

Thermal Conductance of Uniform Quantum Wires

K. MATVEEV

Argonne National Laboratory Argonne U.S.A.

Thermal conductance of uniform quantum wires

Konstantin Matveev

Trieste, October 18, 2012

In collaboration with

A. Levchenko,

T. Micklitz,

J. Rech,

Z. Ristivojevic

Outline

Motivation: Experiments with quantum wires, quantized conductance

Theory: Thermal conductance of quantum wires

- Non-interacting wires, Wiedemann-Franz law;
- Classification of electron-electron scattering processes;
- Small corrections to thermal conductance in short wires;
- Strong suppression of thermal conductance in long wires.

Quantum wires

As a function of gate voltage conductance shows multiple steps of height $G_0 = \frac{2e^2}{h}$

From Berggren & Pepper, 2002

Why steps?

Top view

Electron motion across the channel

- Gate voltage changes the number of parallel channels in the wire
- Each channel has conductance $G_0 = 2e^2/h$

Conductance of a single channel

Current:

Conductance:

$$I = 2e \int_0^\infty \frac{dp}{h} v_p [n_F(\epsilon_p - \mu_l) - n_F(\epsilon_p - \mu_r)]$$

= $\frac{2e}{h} (\mu_l - \mu_r) \int_0^\infty d\epsilon \left(-\frac{\partial n_F}{\partial \epsilon}\right)$
= $\frac{2e^2}{h} V n_F(0)$

$$G = \frac{2e^2}{h} \frac{1}{1 + e^{-\mu/T}}$$
$$G = \frac{2e^2}{h} \text{ at } \mu \gg T$$

Thermal conductance

$$T_l - T_r = \Delta T$$

Heat current:
$$j = 2 \int_0^\infty \frac{dp}{h} v_p(\epsilon_p - \mu) \left[n_F \left(\frac{\epsilon_p - \mu}{T_l} \right) - n_F \left(\frac{\epsilon_p - \mu}{T_r} \right) \right]$$

$$= \frac{2\Delta T}{h} \int_{-\infty}^\infty d\xi \,\xi \left(-\frac{\partial n_F}{\partial T} \right) = \frac{2\pi^2 T}{3h} \Delta T$$

Thermal conductance: $K = \frac{2\pi^2 T}{3h}$ cf. $G = \frac{2e^2}{h}$
Wiedemann-Franz law: $K = \frac{\pi^2 T}{3e^2} G$

The problem

Uniform quantum wire:

- No disorder
- Interactions inside the wire
- No interactions in the leads

What is the thermal conductance?

Scattering of electrons in one dimension

Non-trivial two particle collisions are forbidden by the conservation laws

 $\Delta E = 0, \quad \Delta P > 0$

Three particle collisions conserve both energy and momentum

 $\Delta E = 0, \quad \Delta P = 0$

The Boltzmann equation

Collision integral

 $I[f_{1}] = -\sum_{\substack{p_{2}, p_{3} \\ p_{1'}, p_{2'}, p_{3'}}} W_{123}^{1'2'3'}[f_{1}f_{2}f_{3}(1-f_{1'})(1-f_{2'})(1-f_{3'}) - f_{1'}f_{2'}f_{3'}(1-f_{1})(1-f_{2})(1-f_{3})]$

can be linearized in $\delta f(x,p) = f(x,p) - f^{(0)}(p)$ at $\Delta T \ll T$

Three types of scattering processes

Scattering rates:

 $\tau_a^{-1} \propto T^\alpha \qquad \qquad \tau_b^{-1} \propto T^\beta \qquad \qquad \tau_c^{-1} \propto e^{-\mu/T}$

These scattering processes relax the electron gas toward different equilibrium states

Equilibrium distribution of electrons

Gibbs distribution:
$$w_i \propto \exp\left(-\frac{1}{T}E_i + \frac{\mu}{T}N_i\right) \implies f_p = \frac{1}{\exp\left(\frac{\epsilon_p - \mu}{T}\right) + 1}$$

In a uniform wire momentum is conserved, and

$$w_i \propto \exp\left(-\frac{1}{T}E_i + \frac{u}{T}P_i + \frac{\mu}{T}N_i\right) \longrightarrow f_p = \frac{1}{\exp\left(\frac{\epsilon_p - up - \mu}{T}\right) + 1}$$

In general, all conserved quantities enter the exponent of the Gibbs distribution

Conserved quantities and the Fermi distribution (a)

 $N^{R}, N^{L}, P^{R}, P^{L}, E^{R}, E^{L}$

Numbers, momenta, and energies of the left- and right-moving particles are conserved separately

Equilibrium distribution:

$$f_{p} = \frac{\theta(-p)}{e^{(\epsilon_{p} - u^{L}p - \mu^{L})/T^{L}} + 1} + \frac{\theta(p)}{e^{(\epsilon_{p} - u^{R}p - \mu^{R})/T^{R}} + 1}$$

The distribution supplied by the leads belongs to this class:

$$f_p = \frac{\theta(-p)}{e^{(\epsilon_p - \mu)/T} + 1} + \frac{\theta(p)}{e^{(\epsilon_p - \mu)/(T + \Delta T)} + 1}$$

No effect on thermal transport

Conserved quantities and the Fermi distribution (b)

$$N^{R}, N^{L}, P = P^{R} + P^{L}, E = E^{R} + E^{L}$$

Numbers of the left- and right-moving particles are conserved separately, in addition to the total momentum and energy

Equilibrium distribution:

$$f_p = \frac{\theta(-p)}{e^{(\epsilon_p - up - \mu^L)/T} + 1} + \frac{\theta(p)}{e^{(\epsilon_p - up - \mu^R)/T} + 1}$$

The distribution supplied by the leads does not belong to this class:

 $T + \Delta T$

$$f_p = \frac{\theta(-p)}{e^{(\epsilon_p - \mu)/T} + 1} + \frac{\theta(p)}{e^{(\epsilon_p - \mu)/(T + \Delta T)} + 1}$$

Type (b) processes affect the electron distribution and thermal transport

Conserved quantities and the Fermi distribution (c)

In wires longer than $l_c \propto e^{\mu/T}$ type (c) processes ensure complete equilibration of the electron distribution and dramatically affect thermal transport

Equilibration lengths

In a long wire electron distribution reaches the equilibrium form corresponding to the dominant scattering process

Equilibration due to type (a) processes is more efficient: $l_b \sim \frac{\mu}{T} l_a \gg l_a$

In wires shorter than l_b , type (b) processes can be accounted for perturbatively

At $L \sim l_b \gg l_a$ the distribution function has the form

$$f_p = \frac{\theta(-p)}{e^{(\epsilon_p - u^L p - \mu^L)/T^L} + 1} + \frac{\theta(p)}{e^{(\epsilon_p - u^R p - \mu^R)/T^R} + 1}$$

The 6 parameters $\, u^L, u^R, \mu^L, \mu^R, T^L, T^R$ depend on position $\, x$

Simplification of the Boltzmann equation

 $\frac{p}{m}\partial_x f(x,p) = I[f(p,x)] \quad \text{Integro-differential equation:} \quad I[f] = \iiint W \dots$

6 ordinary differential equations:

$$\partial_{x}\mu^{R(L)} = \mp p_{F} \left(1 - \frac{\pi^{2}T^{2}}{24\mu^{2}} - \frac{7\pi^{4}T^{4}}{384\mu^{4}} \right) \partial_{x}u^{R(L)}$$

$$4 \text{ conservation laws}$$

$$\partial_{x}(T^{R} \pm T^{L}) = -\frac{T}{v_{F}} \left(1 + (25 \pm 4)\frac{\pi^{2}T^{2}}{120\mu^{2}} \right) \partial_{x}(u^{R} \mp u^{L})$$

$$4 \text{ conservation laws}$$

$$N^{R}, N^{L}, P, E$$

$$\partial_x (T^R - T^L) = -\frac{1}{l_b} \frac{T}{v_F} (u^R - u^L)$$

$$\partial_x (u^R - u^L) = -\frac{1}{l_b} \frac{v_F}{T} (T^R - T^L)$$

Easily solvable!

Correction to the thermal conductance

$$K = K_0 \left[1 - \frac{\pi^2 T^2}{30\mu^2} \left(1 - e^{-L/l_b} \right) \right]$$

The correction is due to the curvature of electron spectrum near the Fermi level. Even in long wires it remains small as $(T/\mu)^2$

The equilibration length l_b is model-specific. For unscreened Coulomb interactions we found

without spins

with spins

$$l_b^{-1} \propto (T/\mu)^3$$

 $l_b^{-1} \propto (T/\mu) \ln^2(\mu/T)$

[Levchenko, Micklitz, Ristivojevic & KM, PRB 84, 115447 (2011)]

Thermal conductance of a long wire

$$l_{a,b} \ll L \sim l_c \propto e^{\mu/T}$$

Electron distribution:

$$f_p = \frac{\theta(-p)}{e^{(\epsilon_p - up - \mu^L)/T} + 1} + \frac{\theta(p)}{e^{(\epsilon_p - up - \mu^R)/T} + 1}$$

x

Heat current

$$j = 2 \int_0^\infty \frac{dp}{h} v_p(\epsilon_p - \mu) \left[n_F(\epsilon_p - up - \mu^R) - n_F(\epsilon_p + up - \mu^L) \right]$$

=
$$\frac{2}{h} \int d\xi \, \xi \, n'_F(\xi) \left[-2up - \mu^R + \mu^L \right]$$

depends only on the velocity \boldsymbol{u}

$$j = \frac{2\pi}{3\hbar} \frac{T^2}{v_F} u \quad \Longrightarrow \quad u = \text{const} =?$$

Energy conservation

• Consider the energy current of right-moving electrons

$$j^R(r) = j^R(l) + \dot{E}^R$$

- The total energy current
 - $j = j^R(r) + j^L(r)$
- Exclude the outgoing current $j^{R}(r)$

$$j = j^R(l) + j^L(r) + \dot{E}^R$$

Substitute the known expression for the incoming currents

$$j = K_0 \Delta T + \dot{E}^R$$

Momentum conservation

Momentum of the electron gas

$$f_p = \frac{\theta(-p)}{e^{(\epsilon_p - up - \mu^L)/T} + 1} + \frac{\theta(p)}{e^{(\epsilon_p - up - \mu^R)/T} + 1}$$

$$P = p_F(N^R - N^L) + \frac{2\pi}{3\hbar} \frac{T^2}{v_F^3} Lu$$

The total momentum is conserved, $\dot{P}=0$

$$\dot{N}^R = -\frac{\pi}{3\hbar} \frac{T^2}{v_F^3 p_F} L \dot{u}$$

Momentum change: Energy change: $\Delta p^{L} + \Delta p^{R} = 2p_{F}$ $-v_{F} \Delta p^{L} + v_{F} \Delta p^{R} = 0$ $\Delta p^{L} = \Delta p^{R} = p_{F}$

 $\Delta E^R = -v_F p_F \Delta N^R$

Rate of energy change due to backscattering:

$$\dot{E}^R = \frac{\pi}{3\hbar} \frac{T^2}{v_F^2} L \dot{u}$$

Relaxation towards complete equilibrium

$$f_p = \frac{\theta(-p)}{e^{(\epsilon_p - up - \mu^L)/T} + 1} + \frac{\theta(p)}{e^{(\epsilon_p - up - \mu^R)/T} + 1}$$

In a system without net electric current the electron distribution relaxes towards the usual Fermi function

$$u^L - \mu^R o 0, \quad u o 0$$

Standard relaxation law:

$$\dot{u} = -\frac{u}{\tau_c}, \quad \tau_c^{-1} \propto e^{-E_F/T}$$

$$\dot{E}^{R} = -\frac{\pi}{3\hbar} \frac{T^2}{v_F^2} L \frac{u}{\tau_c}$$

Combining with $j = K_0 \Delta T + \dot{E}^R$ and $j = \frac{2\pi}{3\hbar} \frac{T^2}{v_F} u$ we find

$$j = \frac{K_0 \Delta T}{1 + L/l_{\text{eq}}}, \quad l_{\text{eq}} = 2v_F \tau_c$$

Result for the thermal conductance

- Old result $K = K_0$ in a short wire, $L \ll l_{eq}$.
- Small thermal conductance, but finite thermal conductivity in a long wire, $L \gg l_{eq}$.

$$K = \frac{\kappa}{L}, \quad \kappa = K_0 \, l_{\text{eq}}$$

[Micklitz, Rech & KM, PRB 81, 115313 (2010)]

Electrical vs. thermal conductance

In long wires the electrical conductance saturates

$$G \to \frac{2e^2}{h} \left[1 - \frac{\pi^2}{3} \left(\frac{T}{v_F p_F} \right)^2 \right] \simeq \frac{2e^2}{h}$$

Momentum conservation results in infinite conductivity

But the thermal conductance is small: $K = \frac{\kappa}{L}$

Strong violation of the Wiedemann-Franz law:

$$K \ll \frac{\pi^2 T}{3e^2} G$$

 V_{\perp}

Thermoelectric figure of merit:
$$ZT = \frac{GS^2T}{K} \propto L \rightarrow \infty$$

Summary

Electron-electron scattering reduces thermal conductance of quantum wires

Small reduction $\sim T^2$ of thermal conductance in short wires

In (exponentially) long wires the thermal conductance is strongly suppressed