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Why heat?

• Thermal management
– e.g. passive cooling devices

– thermal barrier coating

• Renewable energy
– thermoelectric materials 

High thermal 
conductivity

Low thermal 
conductivity

Much less studied than electronic transport



From Fourier ...
macroscopic theory

Joseph Fourier
1768-1830

“Analytic theory of Heat”
continuum theory, partial 

differential equations

�J = κ�∇T
thermal 

conductivity

Steady-state condition:



...to Peierls
kinetic theory of heat transport
Heat carriers: electrons and 
lattice vibrations (phonons)
Electrons: Wiedman-Franz 
law:

Phonons: obey a transport 
equation analogous to the 
Boltzmann transport 
equation, but with quantum 
statistics.

κ

σ
= LT

Rudolf 
Peierls

1907-1995
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Equilibrium Molecular Dynamics

– Green-Kubo formula (fluctuation dissipation theorem):

– J is the heat flux, to be calculated as the time derivative of the energy 
density R

– Equivalently κ can be obtained by fitting an Einstein-like relation for 
Brownian motion (Helfand):

– Special care must be taken when calculating R with periodic 
boundary conditions.

– Time and size convergence issues.
– MD details: DLPOLY code - Tersoff interatomic potential. 
– Data collected in NVE runs.

k =
1

VkbT
2 J(t)J(0) dt
0

∞

∫

R(t) − R(0)( )2
≈ 2κ t +τ(e−t /τ −1)[ ] with R(t) = d ′ t J( ′ t )

0

t

∫
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hot cold hot

Non equilibrium MD

• Use Fourier’s relation:

• Exchange heat by exchanging particle 
velocities every τ

• At stationary non-equilibrium compute 
the gradient of T

• Results are strongly size dependent. 
     The standard approach is to scale k as:

J = −κ∇T

κ =

1

2
m vhot

2 − vcold
2( )∑

2τA∇T

1

κLz

=
1

κ
+
A

Lz
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Outline

• Suspended graphene

• Silicon nanostructures:
– Thin wires
– Nanoporous Si and SiGe
– Contact conductance: SiNW/crystalline   

Si interface
– Finite size wires 

• Phase-change materials
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Suspended graphene
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Suspended Graphene

• Transport coeff. in 2D 
systems normally 
diverge

• This is not the case for 
graphene, due to out-of-
plane (ZA) modes*

-

*Ab initio anharmonic lattice dynamics (up to 3-phonon scattering): 
N. Bonini, J. Garg, N. Marzari, Nano Lett. 12, 2673 (2012)
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Uniaxially Strained Graphene

• Ab initio LD predicts 
divergence of κ for any strain

• k diverges for tensile strain 
larger than 2% at finite 
temperature

• raising the temperature to 
800 K does not change the 
crossover value of strain
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Boltzmann transport equation
(made easy)

• Boltzmann-Peierls equation: 

• single mode relaxation time approximation, 

• τ contains all orders of anharmonicities
• Calculation of the single contribution from each phonon mode
• Evaluation of the importance of quantum effects

• This approach reproduces MD results for Carbon Nanotubes 
(see DD, G. Galli PRL 2007)

κ i(q) = Ci(q)vi
2(q)τ i(q) τ from MD
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Phonon dispersions and lifetimes

• Linearization of ZA modes near the Γ point along the strain axis
• assume: that each phonon contributes as                                

– for ω→0 τ~ω-α, κ diverges for exponents larger than 1
κ i(q) = Ci(q)vi

2(q)τ i(q)

unstrained
4% strained
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• 50% reduction of κ in unstrained graphene by isotopic doping, 
as seen in experiments*

• divergence of κ persists even at 50% C12/C13 ratio

Can isotopic (C12-C13) disorder suppress 
divergence?

*Chen et al. Nat. Mater. 11, 203 (2012)
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Silicon nanostructures
for thermoelectric applications
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Electronic properties are strongly intertwined, but the ionic 
thermal conductivity may be decoupled
ZT>1 for thermoelectric applications

Thermoelectric efficiency:

• Figure of merit ZT:

Seebeck coefficient

Electronic thermal conductivity

Electrical conductivity

Ionic thermal conductivity

ZT =
S2σ

κe +κph
T

η =
ΔT
TH

1+ ZT −1

1+ ZT + TC /TH
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Silicon Nanostructures
Bulk silicon has a very low ZT (0.01 @ RT) but nano-Silicon may 
reach ZT~1 + are compatible with Si-based technology

High ZT is mostly due to a drop of κi :

κi bulk @ room temperature ~ 160 W/m K
κi nano-Si @ room temperature <   4 W/m K
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Nanostructures and disorder

Different growth processes:
• VLS:

– Growth in a preferential 
direction only (<110>)

– Wires with smooth surfaces 
and thin a-SiO2 layers

• Electro-less Etching
– The orientation of the wires is 

the same as the substrate
– Thicker oxide layer with rough 

core-shell interface 

• Dimensionality reduction
• Surface scattering

Hochbaum et al. Nature 451, (2008)
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MD results: thin Si nanowires

2 nm

3 nm

crystalline core/shell

Phonon-phonon scattering Lattice disorder scattering

a-Si bulk

a-Si thin film

Si bulk ~ 200 W/m-K
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Dispersion curves and group velocities

Group velocities vanish in 
the systems with surface 

disorder
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main contribution 
from low freq. 
acoustic modes

Boltzmann Transport Equation: results

BTE reproduces MD results for 
crystalline systems
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Allen-Feldman theory for heat transport in 
disordered systems

• Group velocities are ill-defined in amorphous systems
• Vibrational modes may be propagating (like phonons), 

diffusive or localized.
• Diffusive modes are heat carriers: they contribute to κ as:

• Diffusive modes are treated within the harmonic approximation

P.B. Allen & J.L. Feldman PRB 48, 12581 (1993)

ki = CiDi;

Di =
πV 2

2ω 2 i Jz j
2
δ ω i −ω j( )

j≠ i

∑
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Comparison with transport equation

• Single phonon contribution to thermal conductivity: 

• The Boltzmann transport equation result has to be supplemented by extra terms 
accounting for “non-propagating” modes in core-shell wires

• “non-propagating” modes have zero group velocity but still contribute to heat 
transport by hopping mechanism

Finite length model 
with quantum 
statistics

Rough 2 nm wire

MD

classical

κ i(q) = Ci(q)vi
2(q)τ i(q)
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Nanomeshes & Nanoporous Silicon
First theoretical predictions of low κ:  

J-H. Lee, et al. APL (2007)

Fabrication and measurements:
J.-K. Yu et al. Nature Nanotech. (2010)
J. Tang Nano Lett. (2010)
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Nanoporous Silicon
A bulk nanostructured material

κorthogonal

κparallel

a-Si

φ =
πdp

2

4 dp + ds( )
2

J-H. Lee, et al. APL (2007) 
J-H. Lee, et al. NL (2008)
Y. He et al. ACS-Nano (2011)

Effective reduction of κ, well beyond the 
volume reduction
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Nanoporous Silicon
Effect of surface roughening

κorthogonal

κparallel

amorphized pore surface

Surface amorphization significantly reduces thermal conductivity along 
the axis of the pores.

Y. He, DD, J-Y. Lee, J. Grossman, G. Galli ACS-Nano 2011

a-Si

S f hi ti ii
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np-SiGe alloy
• Even lower κ
• Weak dependence on 

porosity, morphology and pore 
alignment

• No temperature dependence

Y. He, DD and G. Galli Nano Lett. (2011)
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Summary on Si nanostructures

• Main contribution to κ in 1-D systems is provided by low frequency 
acoustic modes

• Crystalline NW have κ comparable to bulk
• κ can be reduced by 2 decades by surface amorphization 
• The main reason for κ reduction is the transformation of 

propagating phonons into diffuse non-propagating vibrations: group 
velocities are significantly reduced

• Nanostructuring, alloying and dimensionality reduction (thin films) 
lead to extremely low k in nanoporous Si and SiGe 

• DD and G. Galli, Phys. Rev. Lett. 102, 195801 (2009)  SiNW
• DD and G. Galli Nano Lett 10, 847 (2010)  SiNW
• MYK Chan et al. Phys. Rev. B 81, 174303 (2010)         SiGe heterostructures 
• Y. He, et al. ACS Nano 5, 1839 (2011)                        np-Si
• Y. He,  DD, G. Galli Nano Lett. (2011)                         np-SiGe
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Simulations of open systems
Silicon Nanowire-based devices
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Open systems: scattering matrix approach

Bulk Si

ΦA→B = dω
ω
2π

Sij (ω)
2
f (ω,TA ) − f (ω,TB )[ ]

j∈B

∑
i∈A

∑∫

The energy flux between two parts A and B is expressed 
in terms of the scattering matrix: S



• S is obtained by decomposing the eigenmodes of the system 
into the incoming and outgoing reservoir states:

• The transmission function is given by T  (ω)=ΣiΣjSij(ω)2
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Scalable scattering approach: theory
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Scalable scattering approach: implementation

• Partitioning and knitting algorithm:

• The eigenvalue problem is equivalent to a 
kernel equation*

• The approach is equivalent to Green’s Function 
• The final outcome are transmission spectrum T   (ω) and conductance:

* Note that frequencies are not quantized in an open system!

p (

es are not quantized in an open

σ =
2π

dωT (ω)ω
∂fBE
∂T

∫
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Knitting algorithm: serial reconstruction

single
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Knitting algorithm: parallel reconstruction
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Bulk/wire monolithic coherent contacts

• Coherent contacts achieved by 
photolitography

• Critical thickness ~ 80 nm 
• Length from 5 to 55 μm

• (almost) zero contact thermal resistance
• κ~ 20 Wm-1K-1

• κ(T)~T3 at low T 

Hippalgaonkar et al. Nano Lett 10, 4341 (2010)
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Model: bulk/SiNW contact

semi-infinite 3D
bulk

semi-infinite 1D
SiNW

(100)

diameter from 2 to 14 nm



Energy Transport in Low-D Systems - ICTP 2012

Thermal transport in nanomaterials

Transmission spectra and conductance

• Transmission and conductance scale with the wire section (number of 
atoms per slice). 

• There are deviations from the trend for NWs with d<7 nm 
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Shape and dimensionality

• Bulk convergence is achieved 
already at 8.7 nm

• The normalized  spectrum never 
approaches the 3D bulk limit 
(dimensionality/periodicity effect)

• The shape of the normalized 
spectrum depends also on the 
shape



Energy Transport in Low-D Systems - ICTP 2012

Thermal transport in nanomaterials

 Real space evaluation of the heat flux for each channel

Crystal/nanowire interface

surface trasport vs core transport
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10 nm diameter wires between bulk leads

Very convenient to treat with our implementation:
- semi-periodic leads can be represented by replicating unit-cell solutions
- the wire can be divided in boxes, finding the optimal performance between 

kernel equation and intersection

L between 10 and 100 nm
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10 nm wire between bulk reservoirs

• The transmission spectrum 
resembles the bulk for very 
short wires 

   −> phonon tunneling
• For longer wires contact 

resistance dominates

ballistic crossover
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10 nm diameter wire between bulk leads

The conductance goes like T3

at low temperature as in  
experiments
(Heron et al. Nano Lett. 2009)
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Transport regime in crystalline wires

Local energy Local flux

ballistic conduction

tunneling

surface transport

bulk transport
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Rough wires

60 nm
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Transmission and 
attenuation

• The reduction of conductance is not as 
significant as in the infinite size limit of thin 
wires 

• Rough wires act as a low frequency pass filter 
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Contact and wire resistance 

T2 dependence at low T
Contact resistance rules at low T and 
remains significant at room 
temperature: e.g. ~30% in 90 nm wire
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Summary
• Scattering matrix approach 

– numerically stable and scalable (at worst O(N2.3))
– efficient parallel implementation
– direct space representation of energy and heat flux
– open source project to be released

• Nanowire devices
– calculation of the conductance of bulk/SiNW contacts
– effects of dimensionality reduction and shape
– phonon tunneling in short SiNW devices
– Effect of surface roughness much smaller than in infinite thin SiNW
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