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Botzmann transport equation 
The distribution function for electrons in thermal equilibrium is given by the Fermi-
Dirac statistics: 

Out of equilibrium, the rate of change of the distribution function can be written as: 

where all applied forces are considered. Since the number of states is constant, 

The total applied forces can be split into external and internal (defects, impurities, 
phonons, etc.): 



Let us call                the probability per unit time that an electron located in a given 
position with a given wave number is scattered. The number of occupied states in 
dt must change 

Finally, it is easy to show that the Boltzmann equation can be written as 

Let us assume that in t=0 we suppress the external fields. In that case, 

Where  is the relaxation time. The solution of this equation is 

We can define the relaxation time in terms of the probability of scattering: 



If there is only an electric field, the Boltzmann equation in the relaxation time 
approximation is 

The distribution function is, in terms of that in equilibrium 

If the electric field is not so large, we can assume linearity, 

In the general case of an electric and magnetic field the external force is the 
Lorentz force: 

In order to solve the Boltzmann equation we need the derivatives of the 
distribution function. 



The equilibrium distribution function for electrons (Fermi-Dirac) is: 

The derivative with respect to the vector position is 

which is conveniently wrote in terms of the derivative of the distribution function 
with respect to the energy 

The derivative with respect to the wavenumber is written directly in terms of an 
energy derivative: 
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Derivatives of the distribution 
function with respect to the 
temperature and the energy 



Our initial Boltzmann equation writes 

Assuming that the distribution function is not very far from that of equilibrium, 

If we define 

The deviation of the distribution function can be written in the compact form 

If there is no magnetic field, this is the right expression. But we have lost actually the 
magnetic field because it is a second order effect as compare to the electric field. It 
can be recovered through a recurrent expression. We include the term 



The final result can be also written in a compact way 

but now  is a more bulky expression 

All the microscopic expressions like the electrical current or the current flow can be 
written in terms of        . 



Electric and energy density 
The electric current density can be defined as 

In terms of the derived expressions, 

In a similar way, for the heat or energy density flow 

which can be written as 



Electrical conductivity 
If there is no magnetic field or gradients of temperature or concentration, 

Actually, in this expression the conductivity is a tensor: 

In the case of an isotropic material, the conductivity can be reduced to 

For a non-degenerated semiconductor, taking the approximation 



Introducing the carrier density as 

and the relaxation time average 

The conductivity can be written with the well known expression 

If we have a degenerate semiconductor (or a metal), 



If a semiconductor is submitted to a temperature gradient, there is a heat flow in the 
opposite direction of the temperature gradient: 

There are two contributions to the thermal conductivity , the contribution to the 
heat due to the electron current and that due to the lattice (phonons). In a 
semiconductor                while in a metal               . 

The electron contribution in a semiconductor strongly depends on the 
temperature and composition. We can calculate it very easily. Let us write the 
transport equations in the way 

 
where                                                   are the Onsager coefficients. 



If there is no electrical current (open circuit conditions) 

Substituting in the second equation, 

And we can easily derive an expression for electronic contribution to the thermal 
conductivity  

The ratio                is defined as the Lorentz number, which in terms of the 
Onsager coefficient reads 

The Wiedeman-Franz law stablishes that the ratio between the electronic contribution 
to the thermal conductivity and the electrical conductivity is a constant                  and 
the Lorent number is 



Thermoelectric effects 
Without a magnetic field, there are basically three effects, the last one related to the 
first two effects through the Kelvin relations. The first one is called the Seebeck 
effect. It is the appearance of a voltage difference produced by a temperature 
difference between two ends of a semiconductors or a semiconductor junction. 

The total voltage will be 

and a is called Seebeck coefficient 1 2 
If an electromotive force is applied to the contact between 
two materials,  a heat flow appears in the sense of the 
current or opposite to it. The quantity of supplied heat is 
proportional to the charges crossing the surface of separation 
between the materials. 

The thermoelectric coefficients can be derived from the Onsager coefficients: 



Schematic illustrations of a thermoelectric module for (a) power generation (Seebeck eff ect) and 
(b) active refrigeration (Peltier eff ect). (a) An applied temperature difference causes charge 
carriers in the material (electrons or holes) to diff use from the hot side to the cold side, resulting 
in current fl ow through the circuit. (b) Heat evolves at the upper junction and is absorbed at the 
lower junction when a current is made to flow through the circuit. 

Seebeck and Peltier effects 



Thermoelectric figure of merit 
The efficiency of a thermoelectric material can be written as 

where                         is called undimensional figure of merit. 

In 3D materials the three properties governing thermoelectrics are related. By 
increasing the doping we increase the thermal conductivity but decrease the 
Seebeck coefficient. 
The idea of low-dimensional materials is to separate the inter-relation between 
the material parameters. The following ideas are: 
1. Low-dimensional systems can reduce the thermal conductivity without 
leaving basically unchanged the mobility. The phonon mean free path will be 
limited by the dimensions of the system. 
2. By increasing the Seebeck coefficient without decreasing the electrical 
conductivity. This can be done by optimizing mainly the shape in the DOS. 



Density of states of bulk, quantum wells, quantum wires or quantum dots 

There are several other ideas, like to change the dependence of the 
relaxation time on the energy, but all of them have the common objective of 
separating the material properties or act on them in a separated way to 
optimize them.  
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