

2371-16

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries

15 - 24 October 2012

Kinetic Approach to 1D Energy Transport

Herbert SPOHN

Technische Universitaet Muenchen TUM, Zentrum Mathematik M5, Garching Germany

Kinetic Approach to 1D Energy Transport

Herbert Spohn TU München

jointly with J. Lukkarinen, P. Mei (Univ. Helsinki)
M. Fürst, C. Mendl (TUM)

goal: kinetic theory as a universal tool to study 1D energy
transport

Example 1: FPU type chain

in competition with

- · molecular dynamics
- mode coupling theory ⇒ lectures Livi.
 ⇒ van Beijeren 2012, link to KPZ

Example 2: Hubbard chain

draw back: small nonlinearity

I. FPU type chain

A: on-site potential, no momentum conservation

$$H = \sum_{i} \left\{ \frac{1}{2} P_{i}^{2} + \frac{1}{2} \omega_{o}^{2} q_{i}^{2} - \delta \omega_{o}^{2} q_{i} q_{i+1} + \frac{1}{4} \lambda q_{i}^{4} \right\}$$
"coupling"

on-site non-linear stability $\Rightarrow 0 < \delta \leq \frac{1}{2}$

- · kinetic equation small λ
- dispersion relation $\omega(k)^2 = (1 25 \cos k) \omega_0^2$
- normal modes $a(k) = \frac{1}{\sqrt{2}} \left(\sqrt{\omega} \, \hat{q}(k) + i \frac{1}{\sqrt{\omega}} \, \hat{p}(k) \right)$ $|k| \leq \pi, \quad T = [-\pi, \pi]$

· average Wigner function spatially homogeneous

$$\langle a(k)^{*} a(k') \rangle_{t} = W^{2}(k,t) \delta(k-k')$$

variation on time scale λ^{-2} ($t \sim \lambda^{-2}t$)

$$(t \sim \lambda^{-2} t)$$

 $\frac{\partial}{\partial t} W_1 = \int_{\mathbb{T}^3} dk_2 dk_3 dk_4 \left(\omega_1 \omega_2 \omega_3 \omega_4 \right)^{-1} \delta(\underline{k}) \delta(\underline{\omega}) = \text{energy}$

$$\times \left[W_{2}W_{3}W_{4} + W_{1}W_{3}W_{4} - W_{1}W_{2}W_{3} - W_{1}W_{2}W_{4} \right]$$

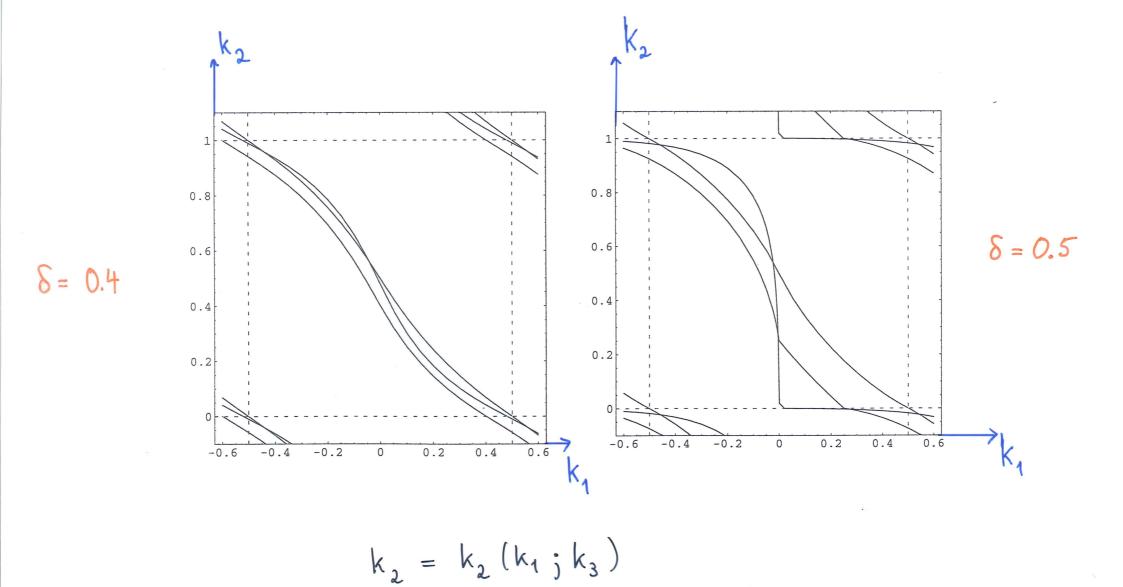
$$W_{i} = W(k_{i})$$
 $\omega_{i} = \omega(k_{i})$

 $\underline{w} = \omega_1 + \omega_2 - \omega_3 - \omega_4$

 $\underline{K} = K_1 + K_2 - K_3 - K_4$

spatially in homogeneous

$$W(\tau, k, t)$$
 ADD - $w'(k) \frac{\partial}{\partial \tau}$



• stationary solutions: equilibrium $W_{\beta}(k) = \frac{1}{\beta \omega(k)}$

∥ energy transport ⇔ energy current correlation in equilibrium. ∥

$$\int_{j_{1}j+1}^{en} = -\frac{1}{2} \delta \omega_{o}^{2} (p_{j} q_{j+1} - p_{j+1} q_{j})$$

$$C_{\lambda}(t) = \sum_{i} \langle j_{i,i+1}^{en}(t) j_{o,i}^{en}(0) \rangle_{eq}$$

total

· non-equilibrium

$$\langle \zeta_{0,1}^{en}(t) \rangle = \delta \int_{\pi} dk \sin 2k \quad W^{\lambda}(k,t)$$

$$\frac{1}{3} = \omega' \omega$$

small 2

$$C^{\lambda}(\lambda^{-2}t) = \langle \omega g \rangle e^{-\omega L \omega |t|} \omega g \rangle$$

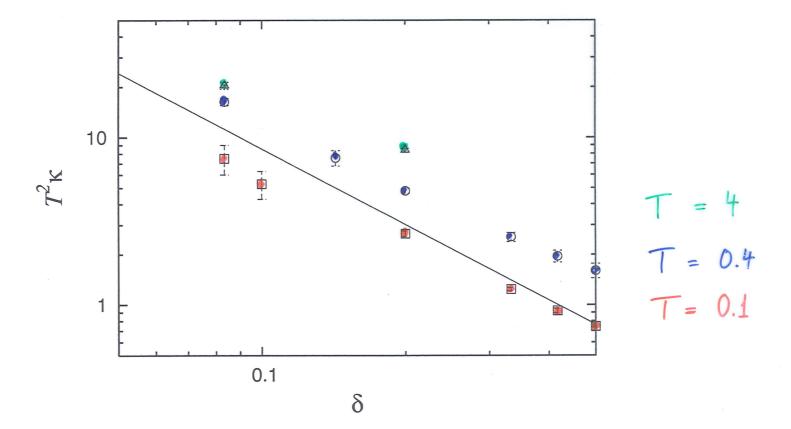
$$\langle g, f \rangle = \int dk g(k) f(k)$$

linearized collision operator

$$\langle f, L f \rangle = \int_{T^4} dk \left[\omega_1 \omega_2 \omega_3 \omega_4 \right]^{-2} \delta(\underline{k}) \delta(\underline{\omega}) \left(f_1 + f_2 - f_3 - f_4 \right)^2$$

w L w has spectral gap

thermal conductivity Sdt <wg, e-wLwltl wg> >0, finite



momentum conservation

$$H = \sum_{i} \left\{ \frac{1}{2} P_{i}^{2} + \frac{1}{2} (q_{i} - q_{i+1})^{2} + \frac{1}{2} \lambda (q_{i} - q_{i+1})^{4} \right\}$$

$$\omega(k) = \left| \sin\left(\frac{k}{2}\right) \right|$$

collision operator!

$$\mathcal{E}(W)_{4} = \int dk_{2}dk_{3}dk_{4} \, \omega_{1}\omega_{2}\omega_{3}\omega_{4} \, \delta(\underline{k}) \, \delta(\underline{\omega}) \left[W_{1}W_{3}W_{4} + W_{2}W_{3}W_{4} - W_{1}W_{2}W_{3} - W_{1}W_{2}W_{4} \right]$$

linearized

$$< f, L f> = \int dk \delta(k) \delta(\omega) (f_1 + f_2 - f_3 - f_4)^2$$

$$(\omega L \omega f)(k) = \int dk' R(k,k') f(k') - V(k) f(k)$$
explicit

1/relaxation time

R is "nice" integral operator,

$$V(k) \cong |k|^{5/3}$$

$$k \to 0$$

NO spectral gap $\langle w', e^{-\omega L \omega | t|} w' \rangle \cong t^{-3/5}$

Super diffusive energy transport /

steady state energy current $N^{-3/5}$ mode coupling $N^{-2/3}$

I. Hubbard chain

A: some theory

fermions on lattice Z, weak on-site interaction

(similarly ZD, several bands,

example: graphene D=2,2bands, honeycomb)

Fermi field $a_{\sigma}(x)$, $a_{\sigma}^{*}(x)$, $\sigma = \pm 1$, $x \in \mathbb{Z}$

dispersion $\omega(k) = \hat{\alpha}(k)$

SU(2) invariant

NO square

$$\langle \hat{a}_{\sigma}(k)^* a_{\sigma}(k') \rangle_{t} = \delta(k-k') W_{\sigma\sigma}^{\lambda}(k,t)$$

spatially homogeneous

W(k,t) is 2×2 matrix-valued 0 × W × 1

 $|\lambda| \ll 1$, kinetic time scale λ^{-2} .

$$\frac{d}{dt} W = C(W)$$

unitary, no entropy production

$$H_{qp,1} = \int dk_2 dk_3 dk_4 \, \delta(\underline{k}) \, \mathcal{P}(\underline{\underline{w}}) \, [W_3 W_4 - W_2 W_3 - W_3 W_2 - (t_7 W_4) W_3 + (t_7 W_2) W_3 + W_2]$$
order!

P principle value

Ccol

use
$$J(W) = + W - W$$
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} d - b \\ -c & a \end{pmatrix}$

$$\mathcal{C}_{COL, \perp} = \int_{\mathbb{T}^3} dk_2 dk_3 dk_4 \, \delta(\underline{k}) \, \delta(\underline{\omega})$$

$$\times \left[\widetilde{W}_1 \, W_3 \, \widetilde{J}(\widetilde{W}_2 W_4) + \widetilde{J}(W_4 \widetilde{W}_2) \, W_3 \widetilde{W}_1 - W_1 \widetilde{W}_3 \, \widetilde{J}(W_2 \widetilde{W}_4) - \widetilde{J}(\widetilde{W}_4 W_2) \widetilde{W}_3 W_1 \right]$$

order!

=> in condensed matter it is always assumed

>> two component classical Boltzmann

$$\frac{d}{dt} W_{+} = C_{+} (W_{+}, W_{-})$$

$$\frac{d}{dt} W_{-} = \mathcal{E}_{-}(W_{+}, W_{-})$$

properties of Hubbard-Boltzmann

- Fermi constraint propagates $0 \le W(k,t) \le 1$ based on the inequality matrices: A,B,C hermitean, > 0

ABC+CBA-tr(AB)C-tr(CB)A <0

· conservation laws, approach to equilibrium

$$\frac{d}{dt} \left(dk W(k,t) \right) = 0$$

energy
$$\frac{d}{dt} \int dk \, \omega(k) \, tr \, W(k,t) = 0$$

SU(2) fixes basis

energy

2 eigenvalues

» µ+, µ-, β

in the intial basis $t \to \infty$

→ off-diagonal → 0

 \Rightarrow diagonal $\rightarrow \frac{1}{1+e^{\beta(\omega(k)-\mu_{\pm})}}$

· H-theorem

entropy S(W) = - (dk { W log W + W log W }

entropy production $\sigma = \frac{d}{dt} S$

e > 0

• stationary solutions C(W) = 0

$$C(W) = 0$$

 $C(W) = 0 \iff \sigma(W) = 0 \implies \text{collision invariants}$

D>2, generic w,

5(W) = 0, then there exists k-independent basis 4, 4 such that

$$W = \sum_{\alpha=\pm} \left(1 + e^{\beta(\omega(k) - \mu_{\alpha})} \right)^{-1} \left[1 + e^{\beta(\omega(k) - \mu_{\alpha})} \right]^{-1}$$

B: some simulations

- C has to be mollified
- nearest neighbor hopping
 stationary solutions are

- integrable quantum model -

$$W_{st}(k) = \sum_{\alpha=\pm} \left(1 + e^{f(k) - C_{\alpha}}\right)^{-1} |Y_{\alpha}\rangle\langle Y_{\alpha}|$$

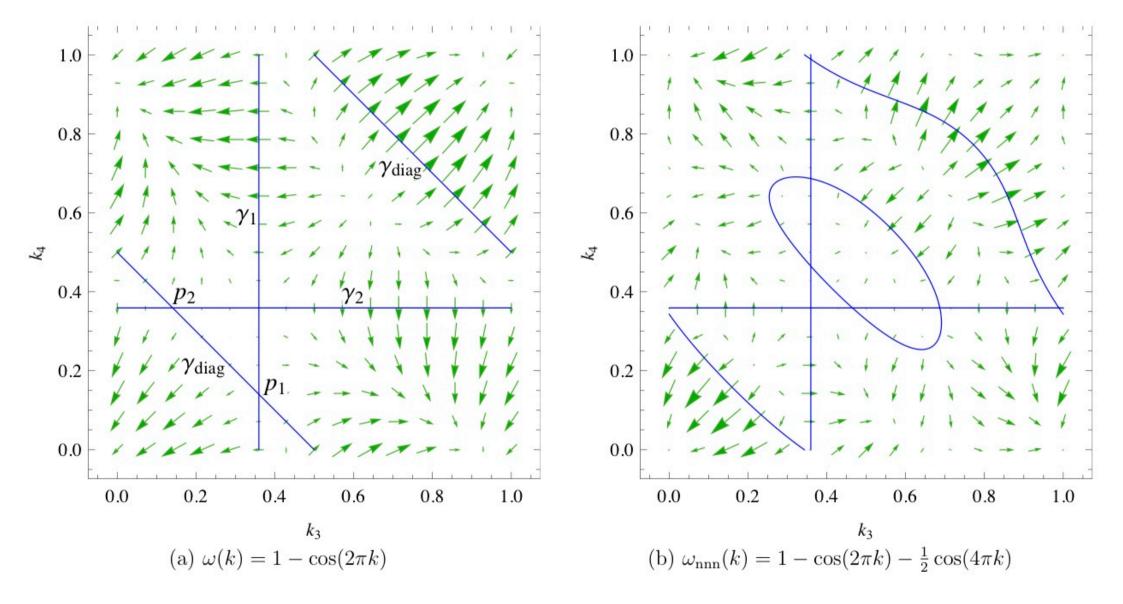
and
$$f(k) = -f(\pi-k)$$

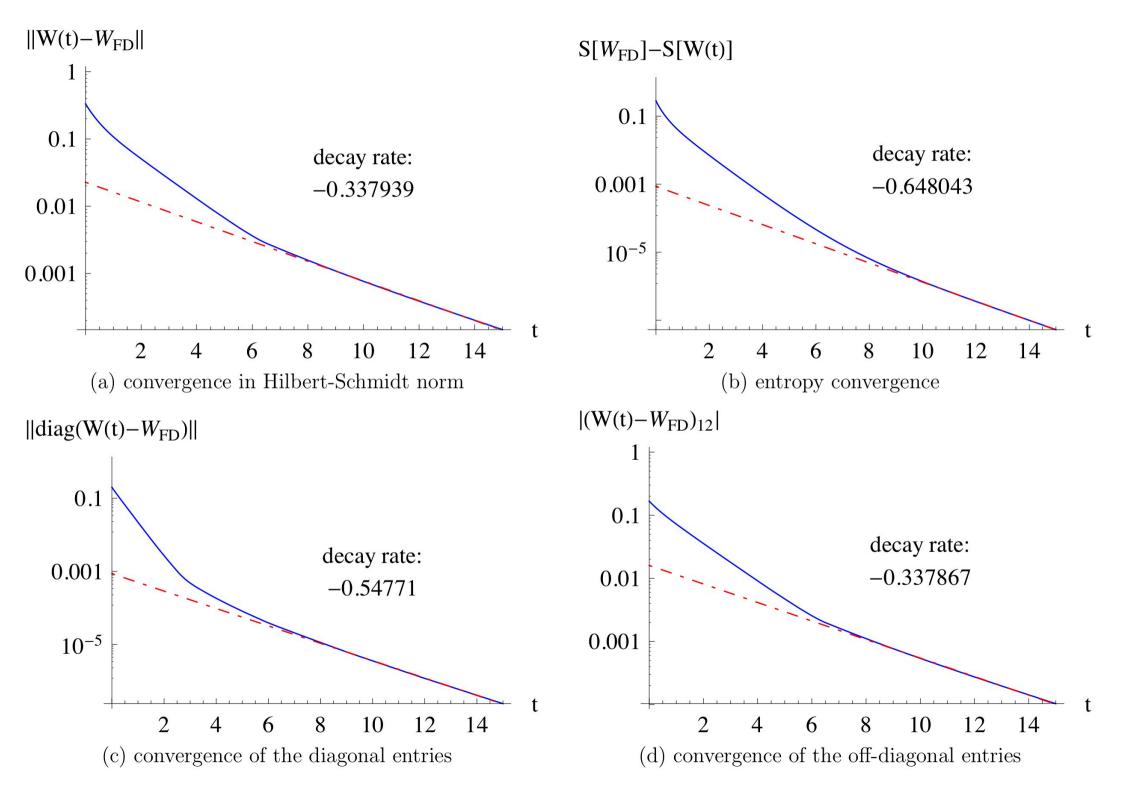
next nearest neighbor hopping
 thermal

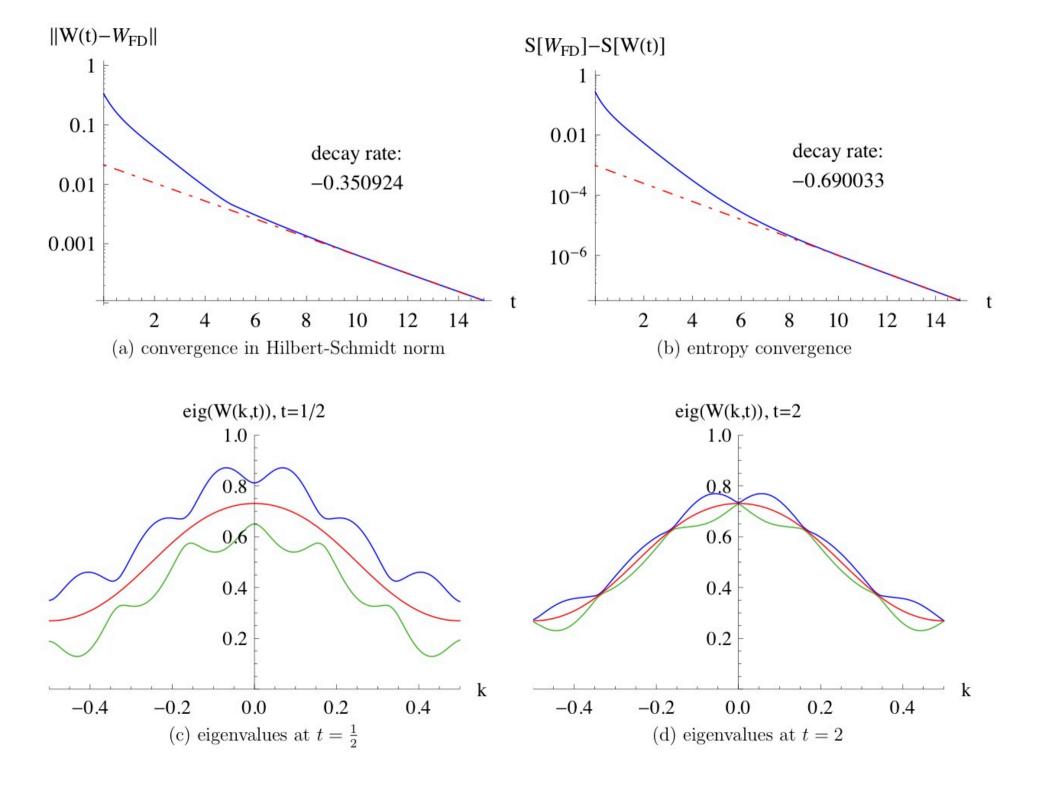
- non-integrable -

N.h.

exponential convergence to steady state







Conclusions

- ⇒ kinetic theory is a useful tool SEE wave turbulence
- > more work is needed
 - · linearization, energy transport
 - quantum gases in optical lattices: expansion into vacuum via nonlinear diffusion 2D Fermi-Hubbard
 - · graphene