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outlook of the presentation

e the “state of art” of the climate changes regarding the
ocean (temperature, salinity and circulation);

e zooming on the marginal seas: the Mediterranean case
and other relevant ocean basins;

e some conclusions.




Climate scientific problems involvi

Observations

Instrumental records of increasing duration and spatial coverage document s

variability in the path and intensity of climate system characteristics on timesca
months to decades: oscillations or trends?;

Heterogenity and nonlinearity

the climate system is heterogeneous, describable by many variables thatvary
significantly over space and time scale covering many order of magnitude, moreover
the nonlinearity is also an intrinsic proprerty of the system, if only due to the

dominance of local/regional fluxes exchange , but also to the many complex feedback
between the domains;

Instability

positive (negative) feedback can lead to instability that drives the system to new
modes of behaviour that bear little resemblance to the external forcing, if such

destabilizing processes are not properly represented, the system may not able to
display important modes of internal variability.

SST (H =500 m)




“tipping point”’ a critical threshold at which a tiny
perturbation can alter the state of a system,

AGENZIA NAZIONALE
PER LE NUOVE TECNOLOGIE, LENERGIA
E LO SVILUPPO ECONOMICO SOSTENIBILE

below the large-scale components of the Earth
system that may pass a tipping point.
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Fig. 8.8 Double diffusion: (a) Salt fingering interface (cold, fresh water warms and rises; warm, salty
water cools and sinks). (b) Diffusive interface. (¢) North Atlantic Mediterranean eddy salinity profile
with steps due to salt fingering (25° 23'N, 26°W). (d) Arctic temperature profile with diffusive
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éathqC.

—~—West Wind Drift



OBSERVATION: TEMPERATURE
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Salinity balances and changes: example of importance of zonal |
redistribution pathways in addition to meridional (Talley, Proc. in Ocean. 2008)
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Salinity trends and relation to
changes in freshwater forcing
Boyer et al. (2005)
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Salinity variation: new data set to observe global pattern

Example of what will be possible with many years of Argo,
the pattern much cleaner than historical trend because

sampling is so much better.
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Hosoda et al., 2008
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Salinity changes from quasi-synoptic data: trends or variability?

1990s minus 1950s-1960s 2000s minus 1990s

Atlantic salinity difference (2003 minus 1989) with salinity from 1989
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Moving towards to the next IPCC report

Equal attention should be given to global-reaching changes originating in the
Antarctic/Southern Ocean (e.g. bottom water has warmed by about 0.005 to
0.01°C in recent decades- Johnson et al., Kawano et al.);

Analysis in terms of global redistributions, not just meridional changes;

Apparent trends based on decadal differences must be treated with
caution;

changes in integrating properties such as salinity, temperature, oxygen
can be better interpreted in terms of trends than can synoptic changes
in circulation;

Can ocean heat, chemistry and circulation changes be partially
understood in terms of the natural modes of variability?



Mediterranean ocean variability over recent
centuries inferred from observation and
climate modeling
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Mediterranean climate

The Mediterranean is located in a transitional zone where mid-latitude
and tropical variability are both important and compete

The northern part of the Mediterranean region presents a Maritime west
coastal climate while the southern part is characterized by a Subtropical
desert climate

iIn summer is exposed to South Asian Monsoon and the Siberian high
pressure system in winter

The southern part is mostly under the influence of the descending

branch of the Hadley cell, while the northern is more linked to NAO and
other mid-latitude teleconnections patterns

16 5/9/12



The hydrological Mediterranean cycle

(The closure depends on the Gibraltar Strait !!1)

In the Mediterranean P has an annual mean ranging from 331 to 477 mm
yr-1, with a seasonal cycle amplitude of 700 mm yr-1.

Evaporation is estimated in the range of 934-1176 mm yr-1 with

a seasonal cycle amplitude of 1000 mm yr-1.

The E-P gives an annual mean Mediterranean Sea water loss

from 500 to 700 mm yr-1.

The annual mean river discharge is 100 mm yr-1.

The estimated Mediterranean freshwater deficit of about 500 mm yr-1,
consistent with the water flux at the Gibraltar Strait of about 1 Sv

(from Mariotti et al., 2002)

17 5/9/12



Closure of the Mediterranean hydrological cycle
(from Mariotti et al., 2002)
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The main components of the Mediterranean Sea hy-|
‘drological cycle are shown in the schematic two-box|
ldiagram of Fig. 1. The time-varying equation for thef
vertically integrated atmospheric water budget is ‘
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Here Q is the Vertlcally integrated atmospheric m01sture
Lflux (V is the wind, ¢ is atmospheric specific humidit “
and H is the height in meters). On an annual mean basis/ B
the 1hs of Eq. (1) can be neglected and the atmospheric| ¥
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EHere we have also neglected the analysis error (Schubert}i
et al. 1993) that for NCEP reanalyses is at most about
25% of the annual mean D. The time-varying equation |
for the total Mediterranean Sea water content M is '
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Role of the Mediterranean at global scale

as heat resorvoir and source of moisture for surrounding land
areas

as source of energy and latent heat for cyclone development
and its possible effect on remote areas, such as Sahel region

on the Atlantic overturning circulation (MOC)

e 5/9/12



Mediterranean thermohaline circulation

the basin-scale circulation is composed by three major thermohaline
circulation : the first is “open” zonal circulation that connects the
western to the eastern part of the basin; the others two are meridional
cells confined to the western and eastern basin

the driving force is derived by air-sea interaction that determines
localized convection processes

the western and eastern sub-basins are disconnected at deep levels
and their thermohaline circulation are driven by the respective sources.
The eastern is a closed cell endowed with multiple equilibria (EMT), in
the western sub-basin observational and modelling studies are lacking

20 5/9/12
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Atlantic Ocean: salinity from 35.50 to 36.50 PSU
Mediterranean Sea: salinity from 38.50 to 39.00 PSU
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Hydrological characteristic of
the Mediterranean sea at

multidecadal scale

(Marullo, Artale and Santoleri, published in ]. of Climate, 2011)

1- SST (from 1854-today)




SST Variability

Patterns of sea surface temperature (SST) variability on interannual and longer
timescales result from a combination of atmospheric and oceanic processes.

These SST anomaly patterns may be due to intrinsic modes of atmospheric

circulation variability that imprint themselves upon the SST field mainly via surface
energy fluxes.

Examples include SST fluctuations in the Southern Ocean associated with the
Southern Annular Mode, a tripolar pattern of SST anomalies in the North Atlantic
associated with the North Atlantic Oscillation, and a pan-Pacific mode known as the
Pacific Decadal Oscillation.

They may also result from coupled ocean-atmosphere interactions, such as the El
Nino-Southern Oscillation phenomenon in the tropical Indo-Pacific, the tropical
Atlantic Nino, and the cross-equatorial meridional modes in the tropical Pacific and
Atlantic.

Finally, patterns of SST variability may arise from intrinsic oceanic
modes, notably the Atlantic Multidecadal Oscillation (AMO).

24 5/9/12



Goals

Surface Temperature (as climatic index) in the
North Atlantic Ocean and Mediterranean Sea

® To understand relations between Atlantic and
Mediterranean variations

® To measure the contribution of harmonic
components to long terms variations
(multidecadal variability)

25

® o evaluate long term variations of the Sea
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Available Data

The Sea Surface Temperature is the longest instrumental
information available for the global world ocean.

 Interpolated: Reconstructed SST produced by NCDC
(ERSST.v3 1854-present) and Hadley Centre (HadISST
1870-present) including pre-1942 adjustment.

* Non interpolated: ICOADS (International
Comprehensive Ocean-Atmosphere Data Set) SST
(gridded, non interpolated 1x1 , 2x2) up to may 2007.

26 5/9/12



C. K. FOLLAND and D. k. PARKER

ERSST.v3 pre-1942 SST corrections are
based on Smith and Reynolds (2002)
while HadISST corrections are based on

Figure 9. (a) The UK Meteorological Office REF 1800 black insulated bucket, German metal and leather

bucket and the UK Meteorological Office Mk 1T canvas sea temperature bucket and (b) ship's wooden bucket.
FO a n a n P a r e r 1 9 9 5 1591 (courtesy of Scottish Maritime Muscum).




SST Increase: 0.4-0.5 °C
in 35 years ’
SST constant

SST Increase: 0.4-0.5 °C
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Having no independent sea truth data to validate
the reconstructed SST products for most of the
analysis period (1854 - today), a strategy could be
either to investigate the consistency between the
two time series evaluating differences in long term
trends or oscillations and seasonal components or
to produce a third SST time series over some region
where more original ICOADS data are available
using a simple but robust space average that
consider the number of valid ICOADS SST for each
month in the whole region.



0. SST Increase: 0.4-0.5 °C
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Mediterranean at global scale

SOLVOII and source of moisture tor surrounding land:a:

glsigke a d its

‘

impact on the Atlantic overturning circulation (MOC)
Mediterranean SST (from 1854-today) shows multidecadal

° variability similar to the Atlantic Multidecadal Oscillation
(AMO)
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WARMING OF THE MEDITERRANEAN SURFACE LAYER:
SST ARE INCREASING SINCE 1860 BY 0.4°C

SST Anomaly
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Eigenvalues
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a)MTM spectrum of the Med ERSST
time series, the estimated red noise
background and associated 90%,
95%, 99% significance levels are
shown by the four smooth curves.
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':"':ﬁfCorreIatlon map between Azores ngh Sea LeveI Pressure Anomaly (SIgn g

changed) and Sea Surface Temperature Anomaly (Period 1870-2007).
Areas with high correlation values indicate situations where periods of
higher SLP at about 30-35 N in the Atlantic Ocean correspond to period of
~_colder SST (and vice versa) e ARER R
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lon: plotted from 150.00 to 390

lat: plotted from 0.00 to 90.00

t: averaged over Jan 1948 to Dec 1948
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Third Santa Fe Conference on Global and Regional Climate Change;
Santa Fe, New Mexico, 30 October to 4 November 2011

....Within the natural internal oscillations associated
with ocean-atmosphere coupling, the most notable of
these couplings is the

Atlantic Multidecadal Oscillation (AMO), which was
suggested to account for up to one half

of regional rapid warming since 1970 and

for the relatively constant global temperature

signal seen subsequent to 2000.



2- Change of temperature and
salinity for the entire water column
in the last 50 yrs
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Time series (MEDAR-MEDATLAS) for the period 1950-2000 of volume mean
salinity (left scale) and salt content (103 PSU*m?, right scale) anomalies

600m —bottom and 0-bettom (from Rixen et al, 2005)
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~ The Mediterranean outflow:
source of heat and salt at intermediate depth (1000m)
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~ SALINIFICATION OF MEDITERRANEAN OUTFLOW

Atlantic Water Masses
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MEDITERRANEAN OUTFLOW: SOURCE OF WARMING AT MID-DEPTH
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IN THE GULF OF CADIZ SEVERAL EVENTS OF SALT
ANOMALY ARE OBSERVED (Fusco, Artale, Cotroneo,
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Some Conclusion

From a review of all available data set for the Mediterranean Sea we found
an warming trend of 0.022 °C/decade in SST over the last 150 yrs, moreover
in the Gulf of Cadiz the MOW displays a trend of 0.16 °C/decade and
0.05/decade in salinity over the last 50 yrs;

The Mediterranean isn’t a isolated basin, but is a relevant component

of the North Atlantic climate system, e.g. the northern part of Atlantic and
Mediterranean show an high correlated multi decadal variability typically
of 70-yrs;

The coupled model (Protheus System) predicts significant interannual variability
including EMT and acceleration of warming in particular after the 2020 with an average
value of 0.16 °C/decade (not shown);

But more significantly is relevant that the numerical models have to represent in the next
future, beside the air-sea interaction processes, the driver mechanisms of the Mediterranean
thermohaline circulation like
the physics and hydrological characteristics within the Gibraltar Strait (Salinity Valve),
the advection-convection feedback (multiple steady state of ocean circulation,
EMT can be considered an element of its),
the internal salt anomaly in the North Atlantic due to the MOW, that can contribute
to stabilize the MOC (not shown);
further investigation have to be dedicated on the relation between natural modes of

variability and the observed changes of heat, chemistry and circulation in the ocean
49 5/9/12



...... in what sense does the fact that a model cannot duplicate a warming
of a few tenths of a degree constitute evidence that anthropogenic forcing is
necessary? The alternative hypothesis is that the warming is simply natural
unforced internal climate variability. It is well known that the climate does
indeed fluctuate without any external forcing. There are several reasons for
this. At the most fundamental level, the atmosphere and oceans are
turbulent fluids, and it is a general property of such fluids that they can
fluctuate widely without external forcing.

There are moreover specific features of the oceans and atmosphere that
lend themselves to such changes. The most obvious is that the oceans are
never in equilibrium with the surface. There are exchanges of heat on all
time scales between the abyssal oceans and the near surface thermocline
region. Such exchanges are involved in phenomena like EI Nino and the
Pacific Decadal Oscillations, and produce large variable forcing for the
atmosphere. (from Lindzen, 2007)
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