Joint ICTP-TWAS Workshop on Climate Change in Mediterranean and Caribbean Seas:

Research Experiences and New Scientific Challenges 8 - 11 May 2012 CIIFEN Headquarters, Guayaquil, Ecuador









## <u>OUTLINE</u>

**Climatic Domino Effect** 

Temperature effects

Rivers loads and PP

Po River system

## The Domino Effect in Climate Change: the Ocean Case



# HOW SENSITIVE IS THE MEDITERRANEAN ECOSYSTEM TO CLIMATE CHANGE?

The Mediterranean bioprovinces

Objective classification of chl-a satellite images



50 100 150 200



Mediterranean bioprovinces are obtained by a classification of the Chl-a seasonal cycle

Classification strongly influenced by basin physiography and dynamical processes

Strongly interconnected by general circulation processes

Spatial scales small if compared with the global ocean bioprovinces (Longhurst, 2006)

High biodiversity compared to the area and volume (Bianchi and Morri, 2000)

# Mediterranean biogeochemical seasonal cycle: Longhurst diagrams (Longhurst, 1995)



## SEA SURFACE TRENDS FOR XX and XXI CENTURY





Mediterranean Sea.
Seasonal cycle of SST from the 20th and 21st century simulations

Mediterranean Sea.

Time series of SST from the 20th and 21st century simulations

(After Zavatarelli et al., 2010)

# Adaptations strategies of the biota to the sea temperature rise



### Temperature rise: meridionaliation

The positive trends in the temperature ranges facilitate the northward shift of the areal distribution of species typical of South Mediterranean

The ornate wrasse (Thalassoma pavo) (above) and the Mediterranean parrot fish (below), known as termophiclic species, can be found up to the Ligurian basin (Vacchi et al., 1999) and, for the first one, in the North Adriatic Sea (Dulcic, 2003)





# A meridionalization example: the case of *Astroides calycularis*





Climatological surface temperature distribution in February from the ERA40 model simulation(1970-2001) and distributional ranges of *A. calycularis* (open circles, from Bianchi, 2007).

February SST distribution in the present climate SXG20C simulation.

Projected SST distribution at the end of the 21st century (2070-2100) from the SXGA1B simulation (blue triangles = recent records, *Grubelic et al., 2004*) red cross = fossil records, *Zibrowius, 1995*).

(Zavatarelli et al., SESAME WP6 Final Report)

### Tropicalization: aliens species invasion

More than 700 alien species (Galil, 2007), mostly from mid-latitude or tropical origin, have been established in the Mediterranean Sea in the last century

### Origin:

Red Sea through the Suez Canal

Atlantic Ocean through the Gibraltar Strait

Ballast waters through commercial ships









### Tropicalization: impact on community structure







Siganus rivulatus and S. luridus, entered the Mediterranean from the Red Sea through the Suez Canal, and were first recorded off the coast of Israel in 1924 (Steinitz, 1927).

#### Areal distribution:

as west as the southern Adriatic Sea, Sicily and Tunisia (Ktari-Chakroun and Bahloul, 1971);

#### Present abundance:

up to 80% of the abundance of the herbivorous fish in shallow coastal sites in Lebanon (Bariche et al., 2004) one third of the fish biomass in rocky habitats along the Israeli coast (Goren and Galil, 2001).

#### **Ecosystem changes induced:**

The pristine community was poor in herbivores: these fish apparently accelerated the transfer of energy from the producer to the consumer levels impacting on macroalgae crops

The siganids have altered the community structure and the native food web along the Levantine rocky infralittoral

Alien species invasion: *A. catenella*, a cool water

Dynoflagellate



Alexandrium catenella



A. catenella was probably introduced with ballast water discharges. Its resting cells were found in sediment samples from ballast tanks.

#### Areal distribution

Mainly on the South-West French Coasts and Catalan Shelf; signaled in many other spots. Growth is stimulated by the supply of ammonium and inorganic nitrogen. Optimal growth at cool temperature (17-23 °C), and low salinity (26-32).

#### Present abundance:

This species is rapidly expanding and its abundance increasing.

#### **Impacts**

Responsible for creating "red tides", it is a known paralytic shellfish poisoning (PSP) toxins-producing species.

The toxins can affect humans, other mammals, fish and birds. Recently, it has been shown that PSP toxins can also be found in crabs and lobsters

The anthropogenic factor is recognized as one of the most relevant climate change pressure

## RIVERS INPACT ON BIOGEOCHEMICAL CYCLES THE MEDITERRANEAN SEA IN XXI CENTURY

The climatological annual cycle of the Mediterranean Sea circulation and thermohaline/biogeochemical properties have been obtained from simulations carried out with the 20th century ECMWF ERA40 (WP4) data, the 20th century SXG output and the end of the 21st century SXG output



Global Climate Model (CMCC)

Mediterranean Hydrodynamic Model (INGV, UniBO)

Biogeochemical Flux Model (OGS)



A1B scenario belongs to A1 "World Market" IPCC family of scenarios, characterized by increasing of globalization and rapid economic growth.
A1B is defined by a balanced use of all energy sources.

### The role of the river input in the nutrient budget



# Primary production hindcast and future projections



- West East Gradient
- Higher anomaly in the Levantine
- ☐ 'Meandering' anomalies: second order magnitude

| Scenario      | PO4<br>(kTon/y) | NO3<br>(kTon/y) | Redfield ratio |
|---------------|-----------------|-----------------|----------------|
| IMOO-<br>2000 | 60              | 887             | 32.7           |
| BAU-<br>2095  | 107             | 1325            | 27.4           |
| PT-2095       | 106             | 719             | 15.0           |
| DB-2095       | 72              | 324             | 10.0           |

# A1B driven PP Predictions: advective processes responsible for higher Levantine productivity?



Average velocity field for the 10 years simulations for th A1B forcing fields SXG A1B (panel a), and the anomaly between reference simulation (SXG-20C) of gross primary production in che case of and A1B-BAU scenario (panel b)

### Primary Production projections



Gross primary production and community respiration seasonal cycle averaged over the ten years simulation (1991-2000 and 2091-2100), for SXG-20C-IM00 (a) and SXG-A1B-BAU (b)

### Air temperature in Winter A1B Scenario

Control vs Reference (XX cent.)



A1B prediction vs Control



Winter air temperature over the SES region from the SXG climatic model outputs (upper panel) and the ECMWF ERA4 reanalysis (lower panel).

Winter (upper panel) and summer (lower panel) temperature difference at 2 m height between 21<sup>st</sup> and 20<sup>th</sup> century SXG data (climatological means over the period 1970-1999 and 2070-2099, respectively).

## Po river loads in XXI century: sensitivity to the different scenarios



An estimate of Nitrogen (N) and Phosphorus (P) river loads is obtained via a hierarchy of models both under present climate condition and future scenarios (Carniato et al., in prep.)

### Protocol for the river runoff projections

Scenario and storyline

Extrapolation

Projection

(GCM ⇒ RCM)

Population

Land-use

Runoff

(RCM⇒IRIS)

|                               | IM00-2000     | BAU-2095      | PT-2095       | DB-2095       |
|-------------------------------|---------------|---------------|---------------|---------------|
| Rivers Kton P.y <sup>-1</sup> | 60            | 107           | 106           | 72            |
| Rivers Kton N.y <sup>-1</sup> | 887           | 1325          | 719           | 324           |
| Atm Kton P.y <sup>-1</sup>    | 16(W)/20(E)   | 16(W)/20(E)   | 16(W)/20(E)   | 16(W)/20(E)   |
| Atm Kton N.y <sup>-1</sup>    | 580(W)/558(E) | 580(W)/558(E) | 580(W)/558(E) | 580(W)/558(E) |

## Po river loads climatic model RESULTS







Ranges of expected variations at 2100 with respect to Palmeri et al. (2005) for Total Nitrogen and Total Phosphorus



## Po river loads climatic model Nutrient emission pathways and processes in MONERIS

Natural background
Atmospheric deposition
Groundwater
Overland flow

Surplus
Tile drainage
Erosion in agricultural lands
Paved urban areas washout

Civil discharge into surf. Waters
WWTP
Sewers overflow
Discharge from industries

Emissions Process:
Diffuse natural source
Diffuse anthropic source
Point anthropic source

Nutrient
abatement
during
transportation
in the river
network

Nutrient
loads
estimates and
input to
coastal
and/or
oceanic
models

Retention River Loads

## Po river loads climatic model The experiments

Reference hind-cast run (MONERIS only)

Observed input data from gov. sources

Palmeri, Bendoricchio and Artioli, 2005

Calibration period: 1990-1995 Validation period: 1996-2000

Control experiment (RegCM+IRIS+MONERIS)

Modelled runoff from PRUDENCE

Simulation period: 1960-1990

Driving GCM: HadAM3H

Scenario experiment (RegCM+IRIS+MONERIS)

Simulation period: 2071-2100

Driving GCM: HadAM3H (A2 / B2)

Runoff from PRUDENCE, land use variations from IPCC, Population growth extrapolated from ISTAT estimates, variations in fertilizer consumption following either the ELBA model (fixed surpluses) or Tilman 2001 (dependent both on population growth and on the adopted policies in fertilizer consumptions)

### Acidification in Mediterranean Sea

Increase of the CO2 concentration atmosphere

ocean acidification

impacto on primary production

Remineralization and carbon export

### **EcoMED** project on-going



Mediterranean EPOCA companion





### Sea level rise

The Earth 22000 years ago (maximum peak of the last glacial period) was covered by huge ice sheets, even over 4000 meters thick. In our regions, ice coverage included a large portion of northern Europe and the main mountain ranges, such as the Alps.



Geomorphological Italian (Climex maps, Vai & Cantelli., 2004) during the last Glacial (22 ka cal BP).

