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Plasmonics
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Experimentally the refractive index is a function of
wavelength (frequency)
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This phenomenon is called DISPERSION.

DISPERSION

Nucleus: ~2000 electron mass, i.e., infinite mass

The polarization in a material medium can be
explained considering the electrons tied to the atoms
as harmonic oscillators.
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DISPERSION
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the induced moment is calculated:
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For N oscillators per volume unit, the polarization is:
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where  is the electric susceptibility.
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If the second term is lower than 1 (as it happens in
gases):
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In the expression n comes out to be a complex
number.
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ABSORPTION
The term i is responsible for absorption. The
complex index can be written as
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If we consider a plane wave 

 E Aexp i( t kz) where
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The last exponential represents a term of attenuation.
The attenuation coefficient may be defined from:
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By comparison with the previous equation
4 k 
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we see that, substituting the complex refractive
index, one has 2k (n ik)  



which gives
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METALS
In a metal the electrons are free and they do not
oscillate around the atoms. Therefore k = 0 and
0 = 0.
In the equation for n2 it is sufficient to put 0 = 0.
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Frequency of plasma

For Al, Cu, Au, Ag    N ~ 1023 cm-3 and P~ 2.1016 s-1.
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For n is real and the waves propagate freely.

For n is pure imaginary and the field is
exponentially attenuated with the distance from the
surface. Therefore the radiation is reflected from the
surface.

Therefore, for visible radiation and infrared  < P
and n is imaginary. In general, n is complex because
there is :
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From the refractive index expression we may derive
the dielectric function

ε≃ 1 – (ωp / ω)2

This is the so-called Drude expression for the
dielectric function in a metal-

It is positive for ω > ωp and negative for ω < ωp
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SURFACE PLASMONS ON SMOOTH SURFACES

The electron charges on a metal boundary can
perform coherent fluctuations which are called
surface plasma oscillations. The frequency  of these
longitudinal oscillations is tied to its wave vector kx by
a dispersion relation (kx).
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Fig.1 The charges and the electromagnetic field of SPs propagating on a surface in the x direction are shown
schematically. The exponential dependence of the field Ez is seen on the right. Hy shows the magnetic field in
the y direction of this p-polarized wave.

These charge fluctuations, which can be localized in
the z direction within the Thomas-Fermi screening
length of about 1 Å, are accompanied by a mixed
transversal and longitudinal electromagnetic field
which disappears at (fig.1) and has its
maximum in the surface z = 0, typical for surface
waves. This explains their sensitivity to surface
properties.

z 
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The field is described by

  0 x zE E exp i k x k z t (1)   

with + for z≥0, - for z≤0, and with imaginary kz, which
causes the exponential decay of the field Ez.

The wave vector kx lies parallel to the x direction; kx =
2/p, where p is the wavelength of the plasma
oscillation.



14

The wave propagates in the x-direction. The problem
does not depend on y. The field is
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The fields obey to Maxwell equations
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Taking (1) and (2) at z = 0
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Because E1x = E2x it follows
 1 1 2 2exp ( ) expx xE i k x t E i k x t  
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Moreover
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Because Ex2 = Ex1 it is
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summing (Ex2 = Ex1)
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But because H1y= H2y it is

k2z /ε2 + k1z /ε1 = 0       (15)
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Finally we have

K2
x = ε1(ω/c)2 – k2

z1

K2
x = ε2(ω/c)2 – k2

z2

K1z /ε1 =  -K2z /ε2
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If we assume 2 = 1 (air) and 1 < 0 (metal) with |ε1|>ε2

kx is real and

xk
c
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and k2z and k1z are immaginary or complex.
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Maxwell’s equations yield the retarded dispersion
relation for the plane surface of a semi-infinite metal
with the dielectric function adjacent to a
medium 2 as air or vacuum:
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The wave vector kx is continuous through the
interface. The dispersion relation can be written as
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For real kx one needs 1 < 0 and which can be
fulfilled in a metal and also in a doped semiconductor
near the eigen frequency; determines the internal
absorption. In the following we write kx in general
instead of kx.

1 2,  

2k



26

Let us take 2 real and 1 = 1 + i1
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The dispersion relation (see figure) approaches the
light line at small kx, but remains larger than
so that the SPs cannot transform into light: it is a
“nonradiative” SP.

2 / c  2 / c 

Fig.2. The dispersion relation of nonradiative SPs (―), right of the light line  = ckx; the retardation region
extends from kx = 0 up to about kp = 2/p (p plasma wavelength). The dashed line, right of  = ckx,
represents SPs on a metal surface coated with a dielectric film (2). Left of the light line, (kx) of the radiative
SPs starts at p (―). The slight modulation in the dashed dispersion curve comes from an eigen frequency in
a monomolecular dye dilm deposited on a Langmuir-Blodgett film (2).
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By substituting the expression of the dielectric
constant of metals kx may be written as

kx = (ω//c)√｛(ω2 – ωp
2)/(2ω2 – ωp

2)}

When k is very large it should be

ω = ωp √2

And more in general if the first medium is not air
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At large kx or
1 2 (7)  

the value of  approaches
1
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for a free electron gas where p is the plasma
frequency with n the bulk electron density.

With increasing 2, the value of sp is reduced.

At large kx the group velocity goes to zero as well as
the phase velocity, so that the SP resembles a
localized fluctuation of the electron plasma.
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