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Why Study Conformal Field Theories?

Many reasons to study Conformal Field Theories:

� QFTs often flow to conformal fixed points

� They describe quantum gravity via AdS/CFT

� They describe condensed matter systems

� ...
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Why Study Conformal Field Theories?

� 4D CFTs could play a role in Beyond the Standard Model physics!
� Walking/Conformal Technicolor [Holdom ’81; ...]

� Warped Extra Dimensions [Randall, Sundrum ’99; ...]

� Flavor Hierarchies [Georgi, Nelson, Manohar ’83; Nelson, Strassler ’00; DP, Simmons-Duffin ’09; ...]

� Conformal Sequestering [Luty, Sundrum ’01]

� Solution to μ/Bμ problem [Roy, Schmaltz ’07; Murayama, Nomura, DP ’07]

� ...
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Why Study Conformal Field Theories?

However, ideas often depend crucially on spectrum of operator dim’s...

� Conformal Technicolor [Luty, Okui ’04]:
(previously “Strong ETC”)

� Higgs is CFT operator H , with couplings ∼ (
1

Λ

)d−1
Hqiuj

� Want d = dim(H) ∼ 1 to give top mass without low flavor scale Λ
� Want dim(H†H) � 4 to solve hierarchy problem

Is this even possible???

Theories that don’t work...

� Perturbative CFTs: dim(H) = 1 +O(ε), dim(H†H) = 2 +O(ε)

� Large-N CFTs: dim(H†H) = 2dim(H) +O(1/N2)
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A Way Forward...

[Rattazzi, Rychkov, Tonni, Vichi ’08]:
Crossing Symmetry + Unitarity leads to bounds on operator dimensions!

Method then extended to:

� Bounds in N = 1 Superconformal Theories
[DP, Simmons-Duffin ’10; Vichi ’11]

� Bounds in the presence of global symmetries
[Rattazzi, Rychkov, Vichi ’10; Vichi ’11]

� Bounds on various operator product expansion coefficients
� Scalar 3pt functions [Caracciolo, Rychkov ’09]
� Flavor Symmetry Currents [DP, Simmons-Duffin ’10]
� Stress Tensor → Bounds on central charge c

[DP, Simmons-Duffin ’10; Rattazzi, Rychkov, Vichi ’10; Vichi ’11]

New methods and latest results in [DP, Simmons-Duffin, Vichi ’11]
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CFT Review: Algebra and Primary Operators

The conformal algebra SO(4, 2) contains:

� Translations P a and rotations Mab

� Dilatations D (scale transformations)

� Special conformal generators Ka (inv. → trans. → inv.)

[Ka, P b] = 2ηabD − 2Mab

� Primary operators O(0) are defined by [Ka,O(0)] = 0

� Descendants obtained using [P a,O(0)] = ∂aO(0)
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CFT Review: Correlation Functions

� Conformal symmetry fixes primary 2pt and 3pt functions in terms of
dim’s and spins, up to coefficients λO [Polyakov ’70; Osborn, Petkou ’93]

〈Oa1..a�(x1)Ob1..b�(x2)〉 = Ia1b1 ..Ia�b�

x2Δ12

[
Iab ≡ ηab − 2

xa12x
b
12

x212

]

〈φ(x1)φ(x2)Oa1..a�(x3)〉 = λO
Za1 ..Za�

x2d−Δ+�
12 xΔ−�

23 xΔ−�
13

[
Za ≡ xa31

x231
− xa32

x232

]

� In Unitary CFTs, one also has the bound Δ ≥ �+ 2− δ�,0 [Mack ’77]

� Requirement that 2pt functions of descendants are ≥ 0
� Can always work in basis where λO’s are real

� Higher n-pt functions not fixed by conformal symmetry alone, but
are determined once spectrum and λO’s are known...
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CFT Review: Operator Product Expansion

Let φ be a scalar primary of dimension d in a 4D CFT:

φ(x)φ(0) =
∑

O∈φ×φ

λOCI(x, ∂)OI (0) (OPE)

� Sum runs over primary O’s

� OI = Oa1...a� any spin-� Lorentz rep with � = 0, 2, . . .

� CI(x, ∂) fixed by conformal symmetry
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CFT Review: Conformal Block Decomposition

Use OPE to evaluate 4-point function [Ferrara, Gatto, Grillo ’73; ...]

〈φ(x1)φ(x2)φ(x3)φ(x4)〉
=

∑
O∈φ×φ

λ2
OCI(x12, ∂2)CJ(x34, ∂4)〈OI(x2)OJ(x4)〉

≡ 1

x2d12x
2d
34

∑
O∈φ×φ

λ2
O gΔ,�(u, v)

� u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

conformally-invariant cross ratios.

� gΔ,�(u, v) conformal block (Δ = dimO and � = spin of O)
� Power series expansions known since 70’s, now known fully in terms

of hypergeometric functions [Dolan, Osborn ’00; Dolan, Osborn ’03]
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CFT Review: Crossing Relations

� 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 clearly symmetric under permutations of xi

� After OPE, symmetry is non-manifest!

� Switching x1 ↔ x3 gives the “crossing relation”:

∑∑
=

O O
11

22 33

44

∑
O∈φ×φ

λ2
OgΔ,�(u, v) =

(u
v

)d ∑
O∈φ×φ

λ2
OgΔ,�(v, u)

� Other permutations give no new information
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CFT Review: Crossing Relations

It is convenient to write this as the sum rule∑
O∈φ×φ

λ2
OFΔ,�(u, v) = 0

where

FΔ,�(u, v) ≡ vdgΔ,�(u, v) − udgΔ,�(v, u)

ud − vd
.

This is a constraint on the spectrum of Δ’s, �’s, and λO’s:

� Important implications for BSM scenarios (once generalized)

� Theoretical gold-mine! Many new insights about CFTs are just
waiting to be extracted...
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Generalization to Global Symmetries

Now suppose φi is an SO(N) fundamental. The OPE is

φi × φj ∼
∑
S+

δijO +
∑
T+

O(ij) +
∑
A−

O[ij],

and the 4pt function can be expanded in various tensor structures

x2d12x
2d
34〈φi(x1)φj(x2)φk(x3)φl(x4)〉

=
∑
S+

λ2
O(δijδkl)gΔ,�(u, v)

+
∑
T+

λ2
O

(
δikδjl + δilδjk − 2

N
δijδkl

)
gΔ,�(u, v)

+
∑
A−

λ2
O (δikδjl − δilδjk) gΔ,�(u, v).
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Generalization to Global Symmetries

Symmetry under x1 ↔ x3 and i ↔ k leads to the triple-sum rule:
[Rattazzi, Rychkov, Vichi ’10]

∑
S+

λ2
O

⎛
⎝

0
FΔ,�

HΔ,�

⎞
⎠+

∑
T+

λ2
O

⎛
⎝

FΔ,�

(1− 2

N
)FΔ,�

−(1 + 2

N
)HΔ,�

⎞
⎠+

∑
A−

λ2
O

⎛
⎝

−FΔ,�

FΔ,�

−HΔ,�

⎞
⎠ = 0

(Here HΔ,�(u, v) is FΔ,�(u, v) with − → +)

� 3 sum rules ↔ 3 tensor structures

Similar rules for other global symmetries:

� SU(N) → 6 sum rules

� N = 1 SCFTs → 3 sum rules (since U(1)R ∼ SO(2))
� O’s in same SUSY multiplet have related λ’s: gΔ,� → GΔ,�

(superconformal blocks) [DP, DSD ’10; Fortin, Intriligator, Stergiou ’11]
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How Does Crossing Symmetry Lead to CFT Bounds?

Crossing relation for real scalar φ:

� Separate out the unit operator in φ× φ ∼ 1 + φ2 + . . .

1

︸︷︷︸
unit op.

=
∑

λ2
OFΔ,�(u, v)

︸ ︷︷ ︸
everything else

,

� Make an assumption: all scalars have dimension Δ > Δmin

� Search for a linear functional α such that

α(1) < 0, and

α(FΔ,�) ≥ 0, for all other O ∈ φ× φ.

� If you find one, the assumption is ruled out!
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CFT Bounds

Convenient to phrase search as a convex optimization problem:

Minimize α(1) subject to α(FΔ,�) ≥ 0

� Adding normalization α(FΔ0,�0) = 1 gives a bound λ2
O0

≤ α(1)

� It would be very interesting to solve this analytically! Hard...

� However, great progress has been made numerically

First Approach: [Rattazzi, Rychkov, Tonni, Vichi ’08]

� Impose α(FΔi,�i) ≥ 0 on a finite lattice {(Δi, �i)}
(verify positivity on intermediate values later)

� Take α to be linear combinations of ∂n
z ∂

m
z FΔ,� at some point

� Implement as a linear programming problem that can be solved
numerically (e.g., by Mathematica, GLPK, CPLEX, ...)
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Bounds on dimφ2 (from [Rychkov, Vichi ’09])

� Bound on lowest dim scalar in φ× φ OPE, where d = dim(φ)

� Different lines correspond to increasing space of derivatives
(N = 18 ↔ 55-dimensional space)
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Bounds on dimφ2 (from [Rychkov, Vichi ’09])

� Not yet useful for Conformal Technicolor, since
Re(H0)× Re(H0) ∼ H†H +H†σH + . . .

� Need to distinguish between SU(2)W representations!

� Linear programming tricky for systems of crossing relations...
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Semidefinite Programming

Latest Approach [DP, Simmons-Duffin, Vichi ’11]:

� Derivatives of conformal blocks can be arbitrarily-well approximated
by positive functions times polynomials:

∂m
z ∂n

z FΔ,� � χ�(Δ)Pm,n
� (Δ)

� A polynomial P (Δ) is positive over an interval [0,∞) iff it can be
written as P (Δ) = f(Δ) + Δg(Δ), where f(Δ) and g(Δ) are
sums-of-squares of polynomials [Hilbert, 1888]

� A sum-of-squares can be represented by a positive-semidefinite

matrix A: f(Δ) = [Δ]TdA[Δ]d, where [Δ]Td = (1,Δ, . . . ,Δd)
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Semidefinite Programming

Latest Approach [DP, Simmons-Duffin, Vichi ’11]:

� Written in this way, the problem is phrased as a semidefinite

programming problem, which can be solved by available software
packages (we used SDPA-GMP)

� We were able to push bounds w/ global symmetries from a
10-dimensional space of derivatives to a 66-dimensional space

� We ran points in parallel on the ∼ 10, 000 core Odyssey computing
cluster at Harvard University

Now for some results...



CFT Review Bounds from Crossing Relations Latest Results

Outline

1 CFT Review

2 Bounds from Crossing Relations

3 Latest Results



CFT Review Bounds from Crossing Relations Latest Results

Singlet Dimension Bounds

d

Δ0

Upper bound on φ2

1 1.2 1.4 1.6 1.8
2

2.5

3

3.5

4

4.5

5

5.5

� Bound on lowest dim scalar in φ× φ OPE, where d = dim(φ)

� Best bound: 66-dimensional space of derivatives
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SO(4) or SU(2) Singlet Dimension Bounds

d

Δ0

Upper bound on φ†φ for SO(4) or SU(2)

1 1.2 1.4 1.6 1.8
2

2.5

3

3.5

4

4.5

5

5.5

� Lowest dim singlet in φ†
i × φj , where φi is SU(2) fundamental

� Has implications for Conformal Technicolor [Luty, Okui ’04]
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Bounding Conformal Technicolor

dim(H†H)

dim(H)
1 1.2 1.4 1.6 1.8
2

2.5

3

3.5

4

4.5

5

5.5

� Red: Flavor generic (4-ferm op’s have O(1) flavor violation)

� Green: Flavor optimistic (4-ferm op’s Yukawa suppressed)

� 3 lines: Stability against perturbation cH†H with c ∼ (1, 0.1, 0.01)
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SO(N) or SU(N/2) Singlet Dimension Bounds

d

Δ0

Upper bound on φ†φ for SO(N) or SU(N/2), N = 2..15

1 1.2 1.4 1.6 1.8
2

2.5

3

3.5

4

4.5

5

� Bounds get weaker as N increases

� SO(N) bounds and SU(N/2) bounds are identical
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Superconformal Operator Dimension Bounds

Δ0

Δ0 = 2d

d

Upper bound on dim(Φ†Φ) in SCFTs

1 1.2 1.4 1.6 1.8

2.5

3

3.5

4

4.5

5

5.5

� Bound on lowest dimension scalar in Φ× Φ† OPE, where Φ is a
chiral superconformal primary in an N = 1 SCFT

� Bound appears to asymptote to the line Δ0 = 2d near d ∼ 1
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Superconformal Operator Dimension Bounds

Δ0

Δ0 = 2d

d

Upper bound on dim(Φ†Φ) in SCFTs

1 1.2 1.4 1.6 1.8

2.5

3

3.5

4

4.5

5

5.5

� At large-N , constraint on O(1/N2) corrections to dim(Φ†Φ)

� We also see a kink near d ∼ 1.4, maybe an SCFT lives there?
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For Comparison: 2D Dimension Bounds

��

�

�

�

�
�
�

�

Ψ Ψ
� �

�

�
� � �

�
� � �

[Rychkov, Vichi ’09]

� Kink at 2D Ising model, exact solution: Δσ = 1/8, Δε = 1

� Bound saturated by sequence of unitary minimal models
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Future Directions

Some future directions for this program:

� Explore bounds in 3D CFTs – see Slava’s talk!
[El-Showk, Paulos, DP, Rychkov, Simmons-Duffin, Vichi, in progress]

� Add assumptions about gaps in spectrum

� Explore the kink in Φ†Φ bound → known SCFT or something new?

� Incorporate more operators (e.g., 4pt functions containing φ2)

� 4pt functions of operators with spin
(for conformal blocks see [Costa, Penedones, DP, Rychkov ’11])

� Improve analytic understanding

� AdS dual interpretation?
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To Summarize...

We are learning genuinely new things about strongly-coupled
theories with little or no supersymmetry. Stay tuned!
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Backup Slides
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CFT Review: Conformal Blocks

Explicit formula [Dolan, Osborn ’00]

gΔ,l(u, v) =
zz

z − z
[kΔ+l(z)kΔ−l−2(z)− z ↔ z]

kβ(x) = xβ/22F1(β/2, β/2, β;x),

where u = zz and v = (1− z)(1 − z).

� Similar closed-form expressions in other even dimensions, recursion
relations known in odd dimensions

� Alternatively can be viewed as eigenfunctions of the quadratic
casimir of the conformal group [Dolan, Osborn ’03]
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Scalar OPE Coefficient Bounds

λO0

Upper bounds on scalar OPE coefficients, d = 1.01..1.66

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

Δ0

� Bound on size of scalar OPE coefficient φ× φ ∼ λO0
O0

� As d → 1 nicely converges to free value, λO0
=

√
2 at Δ0 = 2

� However, distribution of operators with λ <
√
2 also allowed?
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Upper and Lower Bounds on Φ2 OPE Coefficient in SCFTs

d

λΦ2

Upper and lower bounds on λΦ2

1 1.2 1.4 1.6 1.8 2

1

1.5

2.5

2

3

0.5

� Now we consider the OPE Φ× Φ ∼ Φ2 + . . . , where ΔΦ2 = 2d

� Scalar descendants of non-chiral operators Q
2O can appear, but

unitarity forces Δ
Q

2
O
≥ |2d− 3|+ 3

� Lower bounds possible due to gap in dimensions for d < 3/2
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The Stress Tensor

T ab is a Δ = 4, � = 2 operator present in every CFT:

� Ward identity fixes 〈φφT 〉 ∝ d

� Only unknown: 〈TT 〉 ∝ c, the central charge

� In SCFT, T part of U(1)R current multiplet (Δ = 3, � = 1)

J a = Ja
R + θσbθT

ab + . . .

� Conformal block contributions are

〈φφφφ〉 ∼ d2

360c
g4,2 (general CFTs)

〈ΦΦ†ΦΦ†〉 ∼ d2

72c
G3,1 (SCFTs)
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Lower Bounds on c

Real Scalar

d

c

1 1.2 1.4 1.6 1.8
0

0.012

0.016

0.004

0.008

d

c
Chiral Scalar in SCFT

1 1.2 1.4 1.6 1.8
0

0.02

0.04

0.06

0.08

� Bound smoothly approaches free values as d → 1
� cfree =

1

120
(real scalar)

� cchiral =
1

24
(chiral superfield)

� If a CFT contains a d = 1 scalar, c = cfree + cint ≥ cfree
� In dual AdS5 description, c ∼ R3M3

P
� Bound → Fundamental limit to strength of quantum gravity!
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Lower Bounds on c for SO(N) or SU(N), N = 2..15

SO(N) or SU(N/2) Scalar

d

c

1.11 1.2 1.3 1.4 1.5 1.6
0

10cfree

12cfree

14cfree

2cfree

4cfree

6cfree

8cfree

d

c
SU(N) Chiral Scalar in SCFT

1 1.2 1.4 1.6 1.8
0

10cchiral
12cchiral
14cchiral
16cchiral

2cchiral
4cchiral
6cchiral
8cchiral

� All lower bounds approach the free values Ncfree or Ncchiral as
d → 1, growing linearly with N near d ∼ 1

� Also similar bounds on current 2pt functions: 〈JIJJ〉 ∝ κδIJ

� Bound on strength of bulk gauge couplings in AdS5!
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N = 1 Superconformal Algebra

dim
+1 Pa

+1/2 Qα Qα̇

0 Mαβ D,R Mα̇β̇

−1/2 Sα Sα̇

−1 Ka,

{Q,Q} = P {S, S} = K

� Superconformal primary means [S,O(0)] = [S,O(0)] = 0

� Descendants obtained by acting with P,Q,Q

� Chiral means [Q,Φ(0)] = 0
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Superconformal Block Decomposition

Φ: scalar chiral superconformal primary of dimension d in an SCFT

〈Φ(x1)Φ†(x2)Φ(x3)Φ
†(x4)〉 =

1

x2d12x
2d
34

∑
O∈Φ×Φ†

|λO|2GΔ,�(u, v)

� Sum over s.c. primaries O with R = 0 and � = 0, 1, 2 . . .

� x1 ↔ x3 gives crossing relation only involving O ∈ Φ× Φ†

� Additional constraints come from relation to Φ× Φ OPE

Note: GΔ,�(u, v) is a finite sum of conformal blocks, since O has finite
number of descendants that are conformal primaries!
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Superconformal Block Derivation

Multiplet built from O (generically) contains four conformal primaries
with vanishing R-charge and definite spin:

name operator dim spin
O O Δ l

J,N QQO +#PO Δ+ 1 l + 1, l − 1

D Q2Q
2O +#PQQO +#PPO Δ+ 2 l

� Superconformal symmetry fixes coefficients of
〈ΦΦ†J〉, 〈ΦΦ†N〉, 〈ΦΦ†D〉 in terms of 〈ΦΦ†O〉

� Must also normalize J,N,D to have canonical 2pt functions

� Superconformal block is then a sum of gΔ,�’s for O, J,N,D
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Superconformal Blocks

We found, [DP, Simmons-Duffin ’10]

GΔ,� = gΔ,� +
(Δ + �)

4(Δ + �+ 1)
gΔ+1,�+1 +

(Δ− �− 2)

4(Δ − �− 1)
gΔ+1,�−1

+
(Δ + �)(Δ − �− 2)

16(Δ + �+ 1)(Δ − �− 1)
gΔ+2,�

� Unitarity bound Δ ≥ �+ 2 saturated → multiplet shortened

� GΔ,� can also be determined from consistency with N = 2
superconformal blocks computed by [Dolan, Osborn ’01]

� Similar results for current 4pt functions recently derived by [Fortin,

Intriligator, Stergiou ’11]



CFT Review Bounds from Crossing Relations Latest Results

Higher-Spin Protected Operators in Φ× Φ

d

λ(QO)�

Upper and lower bounds on λ(QO)�
, � = 2, 4, . . . , 10

1 1.2 1.4 1.6 1.8 2
0.001

0.005
0.01

0.05
0.1

0.5
1

� Φ× Φ OPE also has higher-spin protected operators (QO)�
� Gap since Δ(QO)�

= 2d+ � while Δ
(Q

2
O)�

≥ |2d− 3|+ 3 + �

� Dashed lines large-N values...deviations tightly constrained!
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Current 2pt Function Bounds in SCFTs

d

κ
SUSY lower bound on κ for SU(N) adjoint currents, N = 2..15

1 1.2 1.4 1.6 1.8
0

1

1.5

2

0.5

� Lower bounds on coefficient 〈JIJJ〉 ∝ κδIJ , if JI is the adjoint
SU(N) global symmetry current appearing in Φi × Φj†
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Current 2pt Function Bounds in SCFTs

d

κ
SUSY lower bound on κ for singlet currents of SU(N), N = 2..15

1 1.2 1.4 1.6 1.8
0

10κfree

12κfree

14κfree

2κfree

4κfree

6κfree

8κfree

� Bounds on coefficient 〈JIJJ〉 ∝ κδIJ , assuming JI is a singlet

under the SU(N) global symmetry

� In SCFTs κδIJ = −3Tr(F IF JR) is calculable!
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Bounds on Current 2pt Function and Comparison to SQCD

d

κ
SUSY lower bounds on κR using SU(Nf )L, Nf = 2..15

1 1.2 1.4 1.6 1.8
0

10κfree

12κfree

14κfree

16κfree

18κfree

2κfree

4κfree

6κfree

8κfree

Conformal SU(Nc) SQCD:
3
2Nc < Nf < 3Nc, Mesons: M = QQ̃

� SU(Nf )L × SU(Nf )R: M ×M † ∼ JL + JR + . . .
� Use SU(Nf )L crossing relations to bound 〈JRJR〉 ∝ κR

Realized values: dM = 3− 3Nc

Nf
and κR = 9

16
N2

c

Nf
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