

2400-12

Workshop on Strongly Coupled Physics Beyond the Standard Model

25 - 27 January 2012

Spin 2 resonances

Enrico Trincherini SNS Pisa ITALY

Enrico Trincherini (SNS, Pisa)

Spin 2 resonances

Motivations

 $\begin{array}{c} 10.6 \ e^+ e^- \rightarrow \\ e^+ e^- K^+ K^- \\ 0.9 \ \overline{\rho} p \rightarrow \pi^0 \eta \eta \\ 1.94 \ \overline{\rho} p \rightarrow \pi^0 \eta \eta \end{array}$

etc. 0.0 $\overline{p}p$, πN $\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$ 18 $\pi^- p \rightarrow w \pi^- \pi^0 p$ $\gamma \gamma \rightarrow K_2^0 K_2^0$, $EE_{m}^0 = 91$, 183–299 GeV 40 $\pi^- p \rightarrow K_2^0 K_2^0$, $\sigma \gamma \gamma \rightarrow \pi^0 K_2^0 S^0$

etc. • • •

1) They exist

02 CBAR 998 CBAR

 VALUE (MeV)
 EVTS
 DOCUMENT ID
 TECN
 CHG
 COMMENT

 1732±16 OUR AVERAGE
 Error includes scale factor of 1.9.
 Error includesctor includes scale factor of 1.9.
 Erro

¹ AMSLER

ABELE · · · We do not use the following data for averages, fits, limits

 $\begin{array}{l} \label{eq:constraint} 1\mbox{T-matrix pole.} \\ 2\mbox{From analysis of L3 data at 183-209 GeV.} \\ 3\mbox{Statistical error only.} \\ \begin{tabular}{l} \end{tabular} \\ \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} \end{tabular}$

ABE 04 BELL

ANISOVICH 09 RVUE ² SCHEGELSKY 06 RVUE 0 ³ UMAN 06 E835 LU 05 B852 ⁴ ACCIARRI 01H L3

⁵ GRYGOREV 99 SPEC

ACCIARRI 97T L3

a2(1700) WIDTH

 $a_2(1700)$

 $1737\pm~5\pm~7$

1675±25 1722± 9±15 18k 1702± 7 80k

1721±13±44 145k 1767±14 221

 1698 ± 44 1660 ± 40

 ~ 1775 $1752 \pm 21 \pm 4$

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1275.1± 1.2 O	UR AVERAG	E Error includes	scale f	actor of	1.1.
$1262 + \frac{1}{2} \pm 8$	3	ABLIKIM	06v	BES2	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^+\pi^-$
1275 ± 15		ABLIKIM			$J/\psi \rightarrow \phi \pi^+ \pi^-$
1283 ± 5		ALDE	98	GAM4	$100 \pi^- \rho \rightarrow \pi^0 \pi^0 n$
1278 ± 5		¹ BERTIN	97C	OBLX	$0.0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^0$
1272 ± 8	200k	PROKOSHKIN	94	GAM2	$38 \pi^- \rho \rightarrow \pi^0 \pi^0 \rho$
1269.7 ± 5.2	5730	AUGUSTIN	89	DM2	$e^+e^- \rightarrow 5\pi$
1283 ± 8	400	² ALDE	87	GAM4	$100 \pi^- \rho \rightarrow 4\pi^0 n$
1274 ± 5		² AUGUSTIN	87	DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
1283 ± 6		³ LONGACRE	86	MPS	$22 \pi^- p \rightarrow \pi 2 K_c^0$
1276 ± 7		COURAU	84	DLCO	$e^+e^- \rightarrow e^+e^-\pi^+\pi^-$
1273.3 ± 2.3		⁴ CHABAUD	83	ASPK	17 $\pi^- \rho$ polarized
1280 ± 4		⁵ CASON	82	STRC	$8 \pi^+ \rho \rightarrow \Delta^{++} \pi^0 \pi^0$
1281 ± 7	11600	GIDAL	81	MRK2	J/ψ decay
1282 ± 5		⁶ CORDEN			$12-15 \pi^- p \rightarrow n2\pi$
1269 ± 4	10k	APEL	75	NICE	$40 \pi^- \rho \rightarrow n 2 \pi^0$
1272 ± 4	4600	ENGLER	74	DBC	$6\pi^+n \rightarrow \pi^+\pi^-p$
1277 ± 4	5300	FLATTE	71	HBC	7.0 m ⁺ p
1273 ± 8		² STUNTEBECK	70	HBC	$8 \pi^- p$, 5.4 $\pi^+ d$
1265 ± 8		BOESEBECK	68	HBC	8 m ⁺ p

62(1270) WIDTH

VALUE (MeV) EV	DOCUMENT ID	TECN	COMMENT
185.1 + 2.9 OUR FIT	Error includes scale factor	of 1.5.	

184.2 + 4.0 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below.

VALUE (40 OUR AV	FRACE				<u>COMMENT</u> ee the ideogram below.
151±			ABE	04	BELL	10.6 at a
265±	55		⁶ AMSLER	02	CBAR	$e^+e^-K^+K^-$ $0.9 \overline{p}p \rightarrow \pi^0\eta\eta$
280±	70		ABELE	99B	CBAR	$1.94 \overline{p}p \rightarrow \pi^0 \eta \eta$
•••\	Ve do not a	se the fol	llowing data for ave	rages	i, fits, limits,	etc. • • •
270+	50 20		ANISOVICH	09	RVUE	0.0 <u>p</u> p, πN
336±	20±20	18k	⁷ SCHEGELSKY	06	RVUE 0	$\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$
417±	19	80k	⁸ UMAN	06	E835	$5.2 \overline{p} p \rightarrow \eta \eta \pi^0$
279± 4	49±66	145k	LU	05	B852	$18 \pi^- p \rightarrow \omega \pi^- \pi^0$
187 ± 0	50	221	9 ACCIARRI	01H	L3	$\gamma \gamma \rightarrow K_S^0 K_S^0$, Egg
150±1	10 ± 34		ACCIARRI	97T	L3	91, 183–209 GeV $\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$

Motivations

1) They exist $m \sim {
m GeV}$

If there is strongly coupled physics behind the EW scale $m \sim {
m TeV}$

There may even be one with $m \sim 10^{-33} {
m eV}$

 Self-interactions of the longitudinal polarization of spin-1 at E>>m is well known

 $v^2 \operatorname{Tr}[(D_{\mu}\Sigma)^{\dagger}D^{\mu}\Sigma] + \mathcal{O}(p^4)$

What is the analogue for spin-2?

Plan of the talk

EFT for a spin-2 resonance with a parametric separation between the mass m and the cutoff Λ

Massive graviton

Charged spin-2 resonance coupled to EM

 $\Lambda > \mathrm{mm}^{-1}$

Strong coupling at a low scale

6th ghost-like degree of freedom

Superluminal propagation

EFT for a massive spin-2

- 1. Write a massive lagrangian (non-gauge invariant);
- 2. Introduce the gauge symmetry by adding the Stückelberg fields;
- 3. For charged particles, introduce the intaraction with a U(1) massless vector by replacing ordinary derivatives with covariant ones;
- 4. Diagonalize all kinetic terms by field redefinitions and/or covariant gauge fixing
- 5. Look for the most divergent terms in the Lagrangian
- 6. Try to remove these terms by adding non-minimal interactions (not always possible)
- 7. Find the cutoff of the EFT

Charged Spin-1

Lagrangian of a complex massive spin-1 field

$$L = -\frac{1}{2} |\partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu}|^{2} - m^{2}W_{\mu}^{*}W^{\mu}$$

Make it gauge invariant by adding a scalar field (Stückelberg) through the substitution

$$W_{\mu} = V_{\mu} - \partial_{\mu}\phi/m \qquad \qquad \delta V_{\mu} = \partial_{\mu}\epsilon \\ \delta \phi = m\epsilon$$

Couple it to a massless U(1) via the minimal substitution $\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu} + ieA_{\mu}$ $\frac{ie}{2m} F^{\mu\nu} \phi^* (D_{\mu}V_{\nu} - D_{\nu}V_{\mu}) + \text{c.c.} - \frac{e^2}{2m^2} F_{\mu\nu}^2 \phi^* \phi$ Strong coupling at $\Lambda \sim m/e$ or new d.o.f

Charged Spin-1

Lagrangian of a complex massive spin-1 field

$$L = -\frac{1}{2} |\partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu}|^{2} - m^{2}W_{\mu}^{*}W^{\mu}$$

Make it gauge invariant by adding a scalar field (Stückelberg) through the substitution

$$W_{\mu} = V_{\mu} - \partial_{\mu}\phi/m \qquad \qquad \delta V_{\mu} = \partial_{\mu}\epsilon \\ \delta \phi = m\epsilon$$

Couple it to a massless U(1) by doing the minimal substitution $\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu} + ieA_{\mu}$ $\frac{ie}{2m} F^{\mu\nu} \phi^* (D_{\mu}V_{\nu} - D_{\nu}V_{\mu}) + \text{c.c.} - \frac{e^2}{2m^2} F^2_{\mu\nu} \phi^* \phi$

We can add another operator $ieF^{\mu
u}W^*_\mu W_
u$

Can we cancel the dangerous interaction and raise the cutoff scale? No

Charged Spin-1

Lagrangian of a complex massive spin-1 field

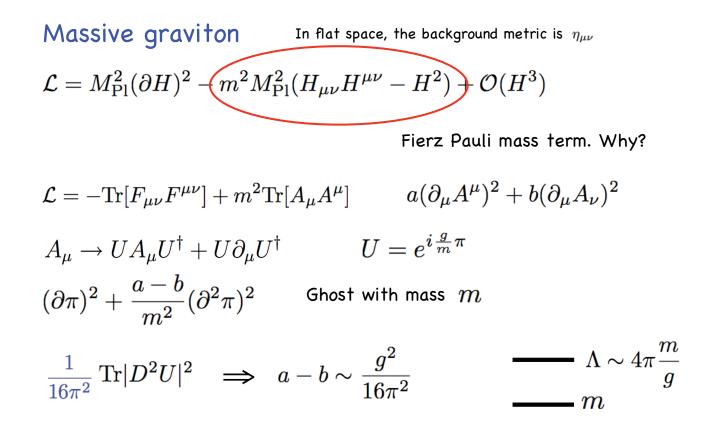
$$L = -\frac{1}{2} |\partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu}|^{2} - m^{2}W_{\mu}^{*}W^{\mu}$$

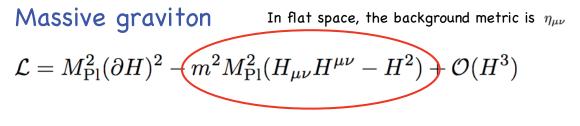
Make it gauge invariant by adding a scalar field (Stückelberg) through the substitution

$$W_{\mu} = V_{\mu} - \partial_{\mu}\phi/m \qquad \qquad \delta V_{\mu} = \partial_{\mu}\epsilon \\ \delta \phi = m\epsilon$$

Couple it to a massless U(1) by doing the minimal substitution $\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu} + ieA_{\mu}$ $\frac{ie}{2m} F^{\mu\nu} \phi^* (D_{\mu}V_{\nu} - D_{\nu}V_{\mu}) + \text{c.c.} - \frac{e^2}{2m^2} F^2_{\mu\nu} \phi^* \phi$

We know a UV completion: add a neutral physical Higgs scalar below Λ SU(2) broken to U(1) by an adjoint Higgs





Arkani-Hamed, Georgi, Schwartz '02

Reintroduce the gauge symmetry (diff invariance) and 4 Goldstone $H_{\mu\nu} = h_{\mu\nu} + \partial_{\mu}A_{\nu} + \partial_{\nu}A_{\mu} - \partial_{\mu}A^{\alpha}\partial_{\nu}A_{\alpha}$ Transform as a covariant tensor under diff $x^{\alpha} \rightarrow x^{\alpha} + \xi^{\alpha}$

Provided that $\,\,\delta A_\mu = -\xi_\mu\,\,$

As before for the spin-1 introduce an extra U(1) gauge symmetry

$$egin{aligned} A_\mu &= A_\mu + \partial_\mu \phi & \delta A_\mu &= -\xi_\mu + \partial_\mu \epsilon \ &\delta \phi &= -\epsilon & ext{Pathological kinetic term} \ &H &= h + \partial A + (\partial A)^2 + \partial A \partial^2 \phi + \partial^2 \phi + (\partial^2 \phi)^2 & (\partial^2 \phi)^2 & ext{absent in FP} \end{aligned}$$

Massive graviton

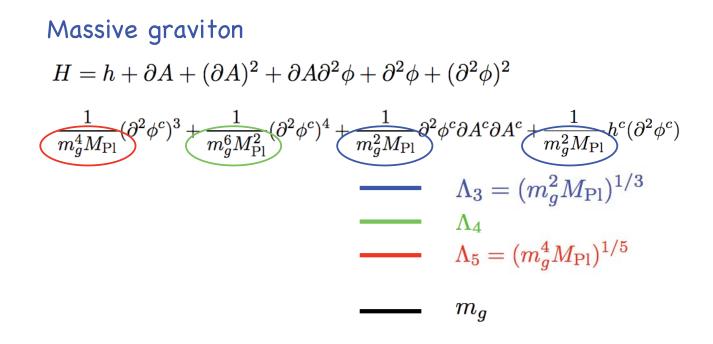
$$\begin{split} H &= h + \partial A + (\partial A)^2 + \partial A \partial^2 \phi + \partial^2 \phi + (\partial^2 \phi)^2 \\ \text{The scalar is invariant under the global galilean symmetry} \\ \phi &\to \phi + c + b^\mu x_\mu \end{split}$$

 ϕ acquires a normal 2 derivatives kinetic term only via mixing with h

Diagonalize the kinetic operator by doing the field redefinition $h_{\mu\nu} = \hat{h}_{\mu\nu} - \eta_{\mu\nu}(m_g^2\phi)$ The kinetic term is $M_{Pl}^2m_g^4(\partial\phi)^2$

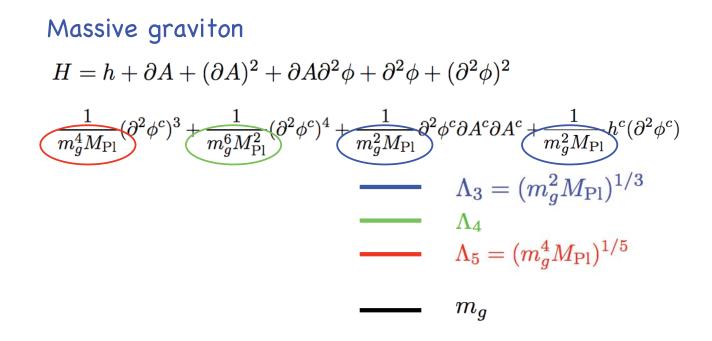
The mass term contains dim >4 operators

Go to canonical normalization
for the fields to read the scales
$$\begin{array}{rcl}
h_{\mu\nu} &=& \displaystyle \frac{h_{\mu\nu}^c}{M_{\rm Pl}} \\
A_{\mu} &=& \displaystyle \frac{A_{\mu}^c}{mM_{\rm Pl}} \\
\phi &=& \displaystyle \frac{\phi^c}{m^2 M_{\rm Pl}}
\end{array}$$



Can we add interactions to raise the cutoff?

 $m^2 M_{\rm Pl}^2 (H_{\mu\nu} H^{\mu\nu} - H^2)$



Can we add interactions to raise the cutoff?

 $m^2 M_{\rm Pl}^2 (H_{\mu\nu} H^{\mu\nu} - H^2 + a_3 H^3 + a_4 H^4 + ...)$

Massive graviton

There is a choice of higher order interactions that removes all $(\partial^2 \phi)^n$ self-couplings from the action.

Arkani-Hamed, Georgi, Schwartz '02

The final strong coupling scale is $\ \Lambda_3 = (m_q^2 M_{
m Pl})^{1/3} \sim (1000\,{
m Km})^{-1}$

 Λ_3 fixed

Is this choice unique? No

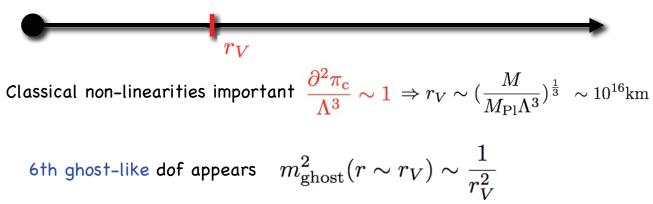
For n \leq D=4 there is a combination $(\partial^2 \phi)^n$ that is a total deriv $(\Box \phi)^3 - 3 \Box \phi (\partial_\mu \partial_\nu \phi)^2 + 2 (\partial_\mu \partial_\nu \phi)^3$ We can add the combination $\mathcal{L}_3^{\mathrm{TD}} = \sqrt{-g} \left(3[H][H^2] - [H]^3 - 2[H^3] \right)$ With an arbitrary coeff. without reintroducing ϕ self-couplings Creminellii, Nicolis, Papucci, ET '05

Massive graviton in the presence of a source

$$(\partial h_c)^2 + (\partial \phi_c)^2 + \frac{(h_c + \phi_c)(\partial^2 \phi_c)^n}{\Lambda_3^{3(n-1)}} + \frac{1}{M_{\rm Pl}}(h_c^{\mu\nu} + \eta^{\mu\nu}\phi_c)T_{\mu\nu}$$

Solution in the presence of a macroscopic source

 $ho = M \delta^3(r) \qquad h_{
m c} \sim rac{M}{M_{
m Pl}} rac{1}{r} \qquad \pi_{
m c} \sim rac{M}{M_{
m Pl}} rac{1}{r}$



Creminellii, Nicolis, Papucci, ET '05

Boulware Deser ghost

Hamiltonian formalism using ADM variables

3D metric on spatial hypersurfaces g_{ij}

Lapse $N_j \equiv g_{0j}$

Shift
$$N\equiv 1/\sqrt{-g^{00}}$$

the lapse and the shift are non dynamical fields: no time derivatives \rightarrow their conjugate momenta vanish

$$\int \sqrt{-g}R$$

They appear linearly as Lagrange multiplier Their eom constrain the other dof and conj momenta g_{ij},π^{ij}

The Hamiltonian system reduces to 2 indipendent (q, p) airs

Boulware Deser ghost

Hamiltonian formalism using ADM variables

3D metric on spatial hypersurfaces g_{ij}

Lapse $N_j \equiv g_{0j}$

Shift $N \equiv 1/\sqrt{-g^{00}}$

the lapse and the shift are non dynamical fields: no time derivatives \rightarrow their conjugate momenta vanish

$$\int \sqrt{-g}R \ -m^2\sqrt{g} F(g,H)$$

They do not appear linearly in general Their eom determine them but do not constrain other dof

10-4=6 Massive graviton + extra dof

Ghost-free massive gravity and the Galileon

There is a choice of the potential for H such that only the first 3 $\frac{h(\partial^2 \phi)^n}{\Lambda_3^{3(n-1)}}$

Moreover, the structure of the derivatives on the scalar has no more than 2 time derivatives \rightarrow no ghost

De Rham, Gabadadze, Tolley '10

Demixing metric and scalar generates the 4 Galileon self-interactions $\mathcal{L}^{(2)} = (\partial \pi)^2 \qquad \qquad \mathcal{L}^{(2)} = (\partial \pi)^2 \Box \pi \qquad \qquad \mathcal{L}^{(4)} = (\partial \pi)^2 [(\Box \pi)^2 - \partial_\mu \partial_\nu \pi \partial^\mu \partial^\nu \pi]$ $\mathcal{L}^{(5)} = (\partial \pi)^2 [(\Box \pi)^3 - 3\Box \pi \partial_\mu \partial_\nu \pi \partial^\mu \partial^\nu \pi + 2\partial_\mu \partial_\nu \pi \partial^\nu \partial^\alpha \pi \partial_\alpha \partial^\mu \pi]$ Nicolis, Rattazzi, ET '09 Galilean invariant up to a total derivative $\phi \rightarrow \phi + c + b^\mu x_\mu$ They have two time-derivative eom

In the full theory in ADM variables, this specific choice of the potential gives an Hamiltonian linear in the shift N Hassan, Rosen, '11

Ghost-free massive gravity and the Galileon

There is a choice of the potential for H such that only the first 3 interactions are non-zero.

Moreover, the structure of the derivatives on the scalar has no more than 2 time derivatives \rightarrow no ghost

De Rham, Gabadadze, Tolley '10

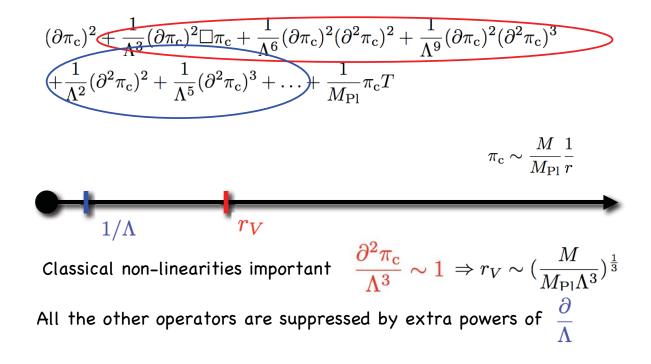
Demixing metric and scalar generates the 4 Galileon self-interactions

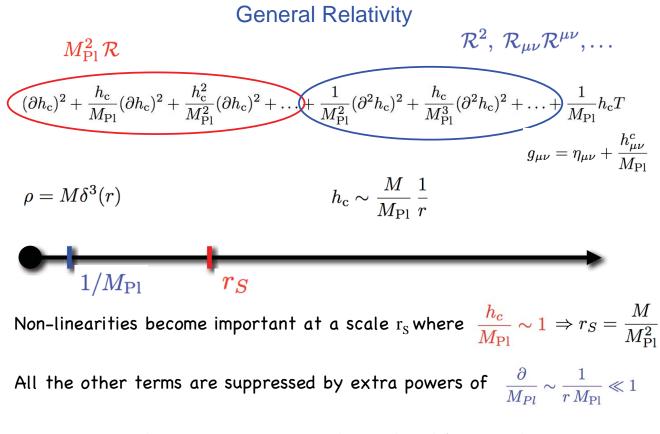
$$\mathcal{L} = (\partial \phi)^2 + rac{(\partial \phi)^2 (\partial^2 \phi)^n}{\Lambda_3^{3n}} + rac{1}{M_{ ext{Pl}}} \phi T + rac{1}{M_{ ext{Pl}} \Lambda_3^3} (\partial \phi)^2 T$$

Non-renormalization theorem Luty, Porrati, Rattazzi 03

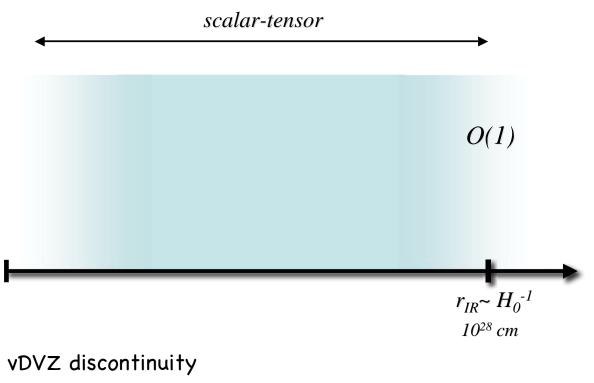
Loops of quantum fields with interactions $\mathcal{L}^{(3)}, \mathcal{L}^{(4)}, \mathcal{L}^{(5)}$ generate terms involving at least 2 derivatives on the external legs. In particular galilean terms are not renormalized

The Galileon

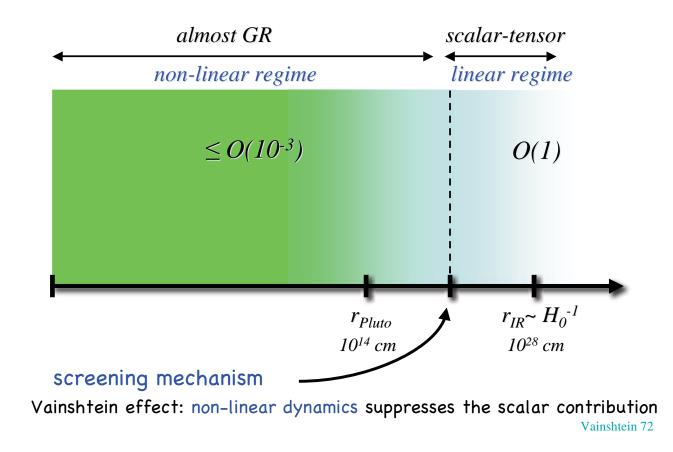




We can compute classical non-linearities without knowing the UV compl.



Van Dam, Veltman, Zacharov 70



Superluminality

Scalar excitation are luminal around $\,\phi=0\,$

Turn on a localized source that generates a weak stationary field $\phi_0(\vec{x})$ Self-interactions are unimportant to determine the solution, $abla^2 \phi_0 \simeq 0$

The quadratic lagrangian for fluctuations around the solution $\phi=\phi_0+arphi$

$$(\eta_{\mu\nu} + \frac{\partial_{\mu}\partial_{\nu}\phi_0}{\Lambda_3^3})\,\partial^{\mu}\varphi\partial^{\nu}\varphi$$

It is narrower than the Minkowski light-cone in some directions but wider in others Nicolis, Rattazzi, ET '09

The conclusion relies only on the presence of the cubic Galileon

Charged massive spin-2

Write the Fierz-Pauli Lagrangian (neglect h self-interactions) Complexify the fields Replace ordinary derivatives with covariant ones

Porrati, Rahman '08

$$L = -|D_{\mu}\tilde{h}_{\nu\rho}|^{2} + 2|D_{\mu}\tilde{h}^{\mu\nu}|^{2} + |D_{\mu}\tilde{h}|^{2} - [D_{\mu}\tilde{h}^{*\mu\nu}D_{\nu}\tilde{h} + \text{c.c.}] - m^{2}[\tilde{h}^{*}_{\mu\nu}\tilde{h}^{\mu\nu} - \tilde{h}^{*}\tilde{h}]$$

Introduce the Stückerlberg fields $B_{\mu}, \ \phi$ and the extra-gauge symmetries

$$\begin{split} \tilde{h}_{\mu\nu} &= h_{\mu\nu} + \frac{1}{m} D_{\mu} \left(B_{\nu} - \frac{1}{2m} D_{\nu} \phi \right) + \frac{1}{m} D_{\nu} \left(B_{\mu} - \frac{1}{2m} D_{\mu} \phi \right) \\ \delta h_{\mu\nu} &= D_{\mu} \lambda_{\nu} + D_{\nu} \lambda_{\mu}, \\ \delta B_{\mu} &= D_{\mu} \lambda - m \lambda_{\mu}, \\ \delta \phi &= 2m \lambda. \end{split}$$

The field redefinition $h_{\mu
u}
ightarrow h_{\mu
u} - rac{1}{2} \eta_{\mu
u} \phi_{\mu}$ eliminates the kinetic mixing

Charged massive spin-2

The intaractions that become strongly coupled are $L_8 + L_7 + L_6 + L_5$

$$\begin{split} L_8 &= \frac{e}{m^4} \partial_{\mu} F^{\mu\nu}[(i/2)\partial_{\rho} \phi^* \partial^{\rho} \partial_{\nu} \phi + \text{c.c.}] \\ L_7 &= \frac{ie}{m^3} F^{\mu\nu} \left\{ 2 \partial_{\mu} B^*_{\rho} \partial^{\rho} \partial_{\nu} \phi - \partial_{\mu} B^*_{\nu} \Box \phi \right\} + \text{c.c.} \\ \hline \Lambda \sim \frac{m}{e^{1/4}} \quad \text{In the limit} \quad e \to 0 \\ \text{In the limit} \quad e \to 0 \\ m^4/e \to \text{ const} \end{split} \text{ only the first survives}$$

Can we raise the cutoff? Add a dipole term $ie\alpha F^{\mu\nu}\tilde{h}^*_{\mu\rho}\tilde{h}^{\rho}_{\nu}$ $L_8^{(\text{dipole})} = \frac{e}{m^4}\partial_{\mu}F^{\mu\nu}[-(i\alpha/2)\partial_{\rho}\phi^*\partial^{\rho}\partial_{\nu}\phi + \text{c.c.}]$ $L_7^{(\text{dipole})} = -\frac{ie\alpha}{m^3}F^{\mu\nu}\partial_{(\mu}B^*_{\rho)}\partial^{\rho}\partial_{\nu}\phi + \text{c.c.}$ Choose $\alpha = 1$ $\Lambda \sim \frac{m}{e^{1/3}}$ L_7 cannot be cancelled Porrati, Rahman '08

The 6th mode

$$\begin{split} L &= - |D_{\mu}\tilde{h}_{\nu\rho}|^{2} + 2|D_{\mu}\tilde{h}^{\mu\nu}|^{2} + |D_{\mu}\tilde{h}|^{2} - [D_{\mu}\tilde{h}^{*\mu\nu}D_{\nu}\tilde{h} + \text{c.c.}] - m^{2}[\tilde{h}^{*}_{\mu\nu}\tilde{h}^{\mu\nu} - \tilde{h}^{*}\tilde{h}] \\ &ie\alpha F^{\mu\nu}\tilde{h}^{*}_{\mu\rho}\tilde{h}^{\rho}_{\ \nu} \end{split}$$

Write down the equations of motion and combine them $m^2 \eta^{\mu\nu} (\text{EOM})_{\mu\nu} + D^{\mu} D^{\nu} (\text{EOM})_{\mu\nu} = 0$

$$m^{4}\tilde{h} = ie(\alpha - 1)F^{\mu\nu}D_{\mu}D^{\rho}\tilde{h}_{\rho\nu} + (\frac{\alpha}{2} - 2)e^{2}F^{\mu\rho}F_{\rho\nu}\tilde{h}_{\mu\nu} - \frac{3}{4}e^{2}F^{\mu\nu}F_{\mu\nu}\tilde{h}_{\mu\nu}$$

A constraint is turned into a propagating field equation unless $\,lpha=1$

Study propagation in a constant electromagnetic field Superluminality also for very small values of the EM field invariants The Velo-Zwanziger causaliy problem Velo, Zwanziger '69