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1) They exist

Motivations
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Motivations

1) They exist |m ~ GeV

If there is strongly coupled physics behind the EW scale

There may even be one with [m ~ 1072%e¢V

2) Self-interactions of the longitudinal polarization of spin-1
at E>>m is well known

v?Tr[(D,X) D*E] + O(p*)

What is the analogue for spin-2?

m ~ TeV




Plan of the talk

EFT for a spin-2 resonance with a parametric separation
between the mass m and the cutoff A

Massive graviton Charged spin-2 resonance

) coupled to EM
A>mm™

Strong coupling at a low scale
6th ghost-like degree of freedom

Superluminal propagation



EFT for a massive spin-2

1. Write a massive lagrangian (non-gauge invariant);

2. Introduce the gauge symmetry by adding the Stiickelberg fields;

3. For charged particles, introduce the intaraction with a U(1) massless
vector by replacing ordinary derivatives with covariant ones;

4. Diagonalize all kinetic terms by field redefinitions and/or covariant
gauge fixing

5. Look for the most divergent terms in the Lagrangian

6. Try to remove these terms by adding non-minimal interactions (not
always possible)

7. Find the cutoff of the EFT



Charged Spin-1

Lagrangian of a complex massive spin-1 field
L = 18W o, W, |? 2WHWH
= 510 = QW[ —m®W;

Make it gauge invariant by adding a scalar field (Stickelberg)
through the substitution

W,=V,—0.90/m o0V, = O0ye

0p = me
Couple it to a massless U(1) via the minimal substitution
0 == Db, = Oyfded,

1€ e?
—F d) (D/LVV — DVV#) + c.c. — ﬁ

2 %
m F,uy¢ ¢

Strong coupling at | A ~ m/e | or new d.o.f




Charged Spin-1

Lagrangian of a complex massive spin-1 field
L = 18W o, W, |? 2WHWH
= 510 = QW[ —m®W;

Make it gauge invariant by adding a scalar field (Stickelberg)
through the substitution

W, = Vu_au¢/m o0V, = O0ye
0p = me
Couple it to a massless U(1) by doing the minimal substitution
0, = Dy, = 0 fie A,
2

ie v % € 2 g x
% F* Cb (DMVV — DV‘/;L) 4+ c.c. — ﬁ F“V¢ ¢

We can add another operator ieF‘“’W;WV

Can we cancel the dangerous interaction and raise the cutoff scale? No



Charged Spin-1

Lagrangian of a complex massive spin-1 field
L = 18W o, W, |? 2WHWH
= 510 = QW[ —m®W;

Make it gauge invariant by adding a scalar field (Stickelberg)
through the substitution

W, = Vu_au¢/m o0V, = O0ye

0p = me
Couple it to a massless U(1) by doing the minimal substitution
0, = Dy, = 0 fie A,

62

Ze LV I *
— F"™¢*(D,V, — D,V,) + c.c. 5

2 %
m F,uyqb ¢

We know a UV completion: add a neutral physical Higgs scalar below A

SU(2) broken to U(1) by an adjoint Higgs



MClSSive gr‘aVi‘l'on In flat space, the background metric is 7.

Fierz Pauli mass term. Why?

L= —Tr[F, F*]+m*Tr[4,4%]  a(0uA")° + b(0uAy)?
A, — UAU +UB,U U=e'm™
2, a=b o .9 Ghost with
(37r) + — (8 7r) ost with mass 1M
9 m
1 9 9 g — A ~ 41—
Tr|D“U = — b~

1672 | | ¢ 1672 7

_m



MdSSive gl"aVi‘l'on In flat space, the background metric is 7.

£ = MR(OH)? - O(H?)

Arkani-Hamed, Georgi, Schwartz ‘02

Reintroduce the gauge symmetry (diff invariance) and 4 Goldstone

H,, =h,+0,A, +0,A,—0,A%, A,

Transform as a covariant tensor under diff % — % 4 £“
Provided that 0A, = —¢§,

As before for the spin-1 introduce an extra U(l) gauge symmetry
A,=A,+0,0 0A, = =&, +0,€

0 = —e Pathological kinetic term
H =h+0A+ (0A)* + 0A0°¢ + 90°¢ + (0%¢)* (0?¢)? absent in FP



Massive graviton
H =h+0A+ (0A)? + 0AD*¢ + 0%¢ + (0°¢)?

The scalar is invariant under the global galilean symmeftry

¢ — ¢+ c+blz,
¢ acquires a normal 2 derivatives kinetic term only via mixing with &

Diagonalize the kinetic operator by doing the field redefinition

hpw = Py — My (m32¢)  The Kinetic termis  M%md(9¢)2

The mass term contains dim >4 operators

hC
h, = -2
g Mp,
Go to canonical normalization A - A
for the fields to read the scales B mMp
¢C

¢ - m2Mp1



Massive graviton
H=h+0A+ (8A)2 + 0AD%p + 0%¢ + (0%¢)?

1 2 c 2 c c c c 2 c
As—( > Mp )1/3

—_— Ay

S

Can we add interactions to raise the cutoff?

m’ Mp,(H o H" — H?)



Massive graviton
H=h+0A+ (8A)2 + 0AD%¢ + 0%¢ + (0°%¢)?

As = (m 2 2 Mp )1/3

—_— Ay

S

Can we add interactions to raise the cutoff?

m2M3 (H,, H* — H* +a3H> + asH* + ...)



Massive graviton

There is a choice of higher order interactions that removes all (9%¢)™

self-couplings from the action.
Arkani-Hamed, Georgi, Schwartz ‘02

The final strong coupling scale is A3 = (mgMpl)l/S ~ (1000 Km) ™1

2 1\n . .
The leading intaractions are h(0%¢)" Decoupling limit

Ag(n_l) m — 0 Mp1 — 0
A3 fixed

Is this choice unique? No

For n = D=4 there is a combination (0%¢)™ that is a total deriv
(O¢)° — 306 (0,0,9)* + 2 (9,0,9)°
We can add the combination L3° =+/—g (3[H|[H?] — [H]? — 2[H?])

With an arbitrary coeff. without reintroducing ¢ self-couplings

Creminellii, Nicolis, Papucci, ET ‘05



Massive graviton in the presence of a source

(he + ¢c)(8%pc)™ L1 (
Mp

(Ohe)? + (0¢c) + WA 4+ 3e) Ty

Ag(n_l)
Solution in the presence of a macroscopic source
M 1 M1
— 83 + o~ —
p = Mo*(r) he Mpy 7 "™ Mprr

S

rvy
- 5 1
Classical non-linearities important C Nl =>ry~ (M A3)§ ~ 10'®km
Pl
. 2 1
6th ghost-like dof appears Mgy ot (7 ~ Tv) ~ )
1%

Creminellii, Nicolis, Papucci, ET ‘05



Boulware Deser ghost

Hamiltonian formalism using ADM variables

3D metric on spatial hypersurfaces g;;
Lapse ]V‘7 = Jo;

Shift N =1/1/—g%

the lapse and the shift are non dynamical fields:

no time derivatives — their conjugate momenta vanish

v
They appear linearly as Lagrange multiplier y

Their eom constrain the other dof and conj momenta §ij, 7 J

The Hamiltonian system reduces to 2 indipendent (g, p) airs



Boulware Deser ghost

Hamiltonian formalism using ADM variables

3D metric on spatial hypersurfaces g;;

Lapse ]V‘7 = Jo;

Shift N =1/1/—g%

the lapse and the shift are non dynamical fields:
no time derivatives — their conjugate momenta vanish

/\/—_gR —m?\/g F(g,H)

They do not appear linearly in general
Their eom determine them but do not constrain other dof

10—4 =6 Massive graviton + extra dof



Ghost-free massive gravity and the Galileon

2 L\
There is a choice of the potential for H such that only the first 3 02"

. . A3(n—1)
interactions are non-zero. 3
Moreover, the structure of the derivatives on the scalar has no more than

2 time derivatives — no ghost
De Rham, Gabadadze, Tolley ‘10

Demixing metric and scalar generates the 4 Galileon self-interactions

£O — (3’ £ = (00)(0°0)"

£® = (or)*0Or LW = (8m)?[(Or)? — 8,8, 708" 7]
L = (on)%[(Or)? — 3070,0, 040" + 20,0, 10" 0100 d*T]
Nicolis, Rattazzi, ET ‘09

Galilean invariant up to a total derivative ¢ — ¢+ct+blz,
They have two time-derivative eom

In the full theory in ADM variables, this specific choice of the potential
gives an Hamiltonian linear in the shift N Hassan, Rosen, ‘11



Ghost-free massive gravity and the Galileon
: . . h(0%¢)"
There is a choice of the potential for Hsuch that only the first 3 —
interactions are non-zero. Ay

Moreover, the structure of the derivatives on the scalar has no more than

2 time derivatives — no ghost
De Rham, Gabadadze, Tolley ‘10

Demixing metric and scalar generates the 4 Galileon self-interactions

(09)°(8%9) | 1 1
A%n + Mp; oT + MP1A§

L = (04)* + (0¢)°T

Non-renormalization theorem Luty, Porrati, Rattazzi 03

Loops of quantum fields with interactions £, £®*) £5) generate
terms involving at least 2 derivatives on the external legs.

In particular galilean terms are not renormalized



The Galileon

0%, M 1

3

Classical non-linearities important ~1 =ry~(

MpiA3

All the other operators are suppressed by extra powers of %



General Relativity
2 v
MI—Z)IR R y RMURM gooo

h h? 1 h 1
Ohe)? + ——(0he)? + —5(0he)® + .. - —5 (0%he)® + —5 (0%he)®* + ... ) —hT
( ) ]\4’131 ( ) Mgl ( ) Mlgl ( ) Mgl ( ) MPI
Juv = Nuv + ]\;1:1
M 1
- M53 T h, ~N — —
p () ™ Vo r
1/Mp1 rs
, " , he M
Non-linearities become important at a scale rywhere —— ~ 1 = rg= —
Mp, M,
All the other terms are suppressed by extra powers of o J\l/[ <1
Pl T ip]

We can compute classical non-linearities without knowing the UV compl.



scalar-tensor

O(1)

g~ Hgt
1028 cm

vDVZ discontinuity

Van Dam, Veltman, Zacharov 70



almost GR scalar-tensor
< - - > < >
non-linear regime linear regime

O(1)

-~ -1
Fpiuto N~ Ho
1014 cm 1028 cm

screening mechanism

Vainshtein effect: non-linear dynamics suppresses the scalar contribution
Vainshtein 72



Superluminality

Scalar excitation are luminal around ¢ = 0

Turn on a localized source that generates a weak stationary field ¢o(Z)

Self-interactions are unimportant to determine the solution, V2¢0 ~ ()

The quadratic lagrangian for fluctuations around the solution ¢ = ¢g +

9,0, y
(M + “A—;)O) Ot pd”

It is narrower than the Minkowski light-cone in some directions but

wider in others o .
Nicolis, Rattazzi, ET ‘09

The conclusion relies only on the presence of the cubic Galileon



Charged massive spin-2

Write the Fierz-Pauli Lagrangian (neglect h self-interactions)
Complexify the fields

Replace ordinary derivatives with covariant ones
Porrati, Rahman ‘08

L = — |Dyhy,[* + 2|Dh* > + |Dyh|* — [Duh™ Dy + c.c.] — m?[R], h* — h*h]
Introduce the Stiickerlberg fields B, ¢ and the extra-gauge symmetries

1 1 1 1
,=hy+—D,(B,——D,6)+—D,(B,— —D
H H +m ”( om ¢>+m (” 2m “¢>

o>

dhy = DA, +DyA,,

0B, = D,A—mA\,, All fields are canonically normalized

0p = 2mA.

1
The field redefinition h,, — hy,, — Enu,yqb eliminates the Kinetic mixing



Charged massive spin-2

The intaractions that become strongly coupled are Lg+ L7 + Lg + Ls
Ly = % 0,F"((i/2)0,6"9°0,6 + c.c.]

Ly = %F‘“’ {20,B:6°0,6 — 8,B;06} + c.c.

m — 0
m 3 . 3
A~ —— In the limit e — 0 only the first survives
61/4 4
m*/e — const

Can we raise the cutoff? Add a dipole term z'eozF“”ilzpiny

L{™9 = D8P (/90,8 0, + o]

1eq

dipole v *
L™ = ——5 FR9,B0°0,6 + c..
m
Choose o =1 A~ 1/3 L, cannot be cancelled
€
Porrati, Rahman ‘08




The 6th mode
L = —|D,hy,[* +2|D,h* > + |D,h — [D A Db + c.c.] — mP [, h* — h*h)
ieaF“”ﬁ:pﬁpy

Write down the equations of motion and combine them

m?*n**(EOM) ., + D*DY(EOM),,, =

m4h = ie(e — 1)F** D, DPh,, + (% — 2)e2F*F by, — Se2F* F, b

A constraint is turned into a propagating field equation unless o = 1

Study propagation in a constant electromagnetic field

Superluminality also for very small values of the EM field invariants

The Velo-Zwanziger causaliy problem
Velo, Zwanziger ‘69
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