

2400-2

Workshop on Strongly Coupled Physics Beyond the Standard Model

25 - 27 January 2012

Modeling and Testing a Composite Higgs

Andrea Wulzer University of Padova/ETH ITALY

Modeling and Testing a Composite Higgs

Andrea Wulzer Univ. Padova

Based on: "The Discrete Composite Higgs model", with G. Panico, and work in progress with G.Panico and A.Matsedonski

Introduction:

Good reasons to advocate a **light Higgs**:

I. EWPT

2. We have (perhaps) almost seen one !

Introduction:

Imagine the Higgs is **Composite** (Georgi, Kaplan et al. 1984; Agashe, Contino, Pomarol 2004)

Hierarchy Problem is solved :

Corrections to m_H screened above $1/l_H$ m_H is **IR-saturated**

Introduction:

Postulate a New Strong Sector

But $m_H \ll m_{
ho}$ if the Higgs is a **Goldstone** Higgs Decay Constant: $f = m_{
ho}/g_{
ho}$

Models of Composite Higgs

The non-linear sigma-model

$$\mathcal{L} = \frac{f^2}{2} D_{\mu} \Sigma^t D^{\mu} \Sigma$$

Composite Sector

Elementary states

 $\Sigma_I = U_{I5}$ $U = \operatorname{Exp}\left[ih_a T^a/f\right]$

$$\begin{split} D_{\mu}\Sigma &= \partial_{\mu}\Sigma - iA_{\mu}\Sigma \\ A_{\mu} &= gW^{\alpha}_{\mu}T^{\alpha}_{L} + g'B_{\mu}T^{3}_{R} \end{split}$$

Models of Composite Higgs

The non-linear sigma-model

Perfect to study modified Higgs couplings (Giudice et al, Barbieri et al, Espinosa et al.)

$$\lambda \simeq \lambda^{\text{SM}} \left(1 + c \, \xi\right) \quad \xi = (v/f)^2 \quad \text{EWPT suggest}: \xi = 0.2, \, 0.1$$

However, it is not completely predictive framework : Higgs Potential is not IR-saturated

$$V^{(1)}(h/f) = \Lambda^2 f^2 \left(\frac{\Lambda}{4\pi f}\right)^2 \left(\frac{gf}{\Lambda}\right)^2 v(h/f) = g^2 \frac{\Lambda^2 f^2}{16\pi^2} v(h/f)$$

Each U is a Goldstone matrix of $SO(5)_L \times SO(5)_R / SO(5)_V$

$Models_{\rho} G Composite_{\rho} Higgs$

The Discrete Composite Higgs model

Higgs is Goldstone under three symmetry groups :

Collective Breaking

(Arkani-Hamed, Cohen, Georgi)

EWSB effects only through the breaking of all groups

Similar constructions in the framework of Little-Higgs: Cheng et al. (2006); Foadi et al. (2010); Baumgart (2007)

Models of Composite Higgs

The Discrete Composite Higgs model

Higgs Potential is now **finite** at one loop

$$V^{(1)}(h/f) = \Lambda^2 f^2 \left(\frac{\Lambda}{4\pi f}\right)^2 \left(\frac{gf}{\Lambda}\right)^2 \left(\frac{g_*f}{\Lambda}\right)^2 \left(\frac{\widetilde{g}_*f}{\Lambda}\right)^2 v(h/f)$$

Careful analysis reveals stronger (g_*^4) suppression

Similar protection mechanism for S and T

Models of Composite Higgs ψ

The Discrete Composite Higgs model $\mathcal{H}_{L/R}$

Fermionic sector :

$$\mathcal{L}_{\rm mix} = \overline{q}_L \Delta_L U_1 \psi + \overline{t}_R \Delta_R U_1 \psi + \overline{\psi} \Delta U_2 \widetilde{\psi}$$

Partial compositeness

(Kaplan 1991; Contino et. al. 2006)

 $\Delta_{L,R} \simeq y_{L,R} f$ $y_t \simeq y_L y_R / g_\rho$

Dominated by fermionic contribution :

$$V(h/f) = c \left[(y_L)^2 - 4(y_R)^2 \right] \frac{N_c}{16\pi^2} \frac{m_{\rho}^4}{g_{\rho}^2} \sin^2\left(\frac{h}{f_{\pi}}\right) + \frac{N_c}{16\pi^2} m_{\rho}^4 \left(\frac{y^2}{g_{\rho}^2}\right)^2 v(h/f)$$

Cancel the leading term in order to get realistic EWSB: $y_L \simeq 2y_R \simeq \sqrt{2y_t g_{\rho}}$

Dominated by fermionic contribution :

$$V(h/f) = c \left[(y_L)^2 - 4(y_B)^2 \right] \frac{N_c}{16\pi^2} \frac{m_{\rho}^4}{g_{\rho}^2} \sin^2\left(\frac{h}{f_{\pi}}\right) + \frac{N_c}{16\pi^2} m_{\rho}^4 \left(\frac{y^2}{g_{\rho}^2}\right)^2 v(h/f)$$
Cancel the leading term in order to get realistic EWsB: $y_L \simeq 2y_R \simeq \sqrt{2y_t g_{\rho}}$
The Higgs quartic from the subleading term : $V^{(4)} \simeq \frac{N_c}{16\pi^2} y_L^4 h^4$
 $m_H \simeq \sqrt{8N_c} \frac{y_L^2}{4\pi} v \simeq 4\sqrt{2N_c} \frac{g_{\rho}}{4\pi} m_t$

However

However

The naive estimate fails if there are light top partners Higgs is **heavy** without light partners! (and typically excluded)

The light top partners **enhance** m_t : $\Delta \cdot \overline{t} T + m_T \cdot \overline{T} T \longrightarrow \tan \theta = \frac{\Delta}{m_T} = \frac{yf}{m_T}$ $y_t \simeq \frac{y_L y_R f}{m_T}$ $(y_L = 2y_R)$ $y_L \simeq \sqrt{2y_t \frac{m_T}{f}}$ The quartic stays the same: $V^{(4)} \simeq \frac{N_c}{16\pi^2} y_L^4 h^4 \longrightarrow m_H \simeq \sqrt{8N_c} \frac{y_L^2}{4\pi} v \simeq 4\sqrt{2N_c} \frac{m_T}{4\pi f} m_t$ $\frac{m_H}{m_t} \simeq \frac{\sqrt{2N_c}}{\pi} \frac{m_{T_-} m_{\widetilde{T}_-}}{f} \sqrt{\frac{\log\left(m_{T_-}/m_{\widetilde{T}_-}\right)}{m_{T_-}^2 - m_{\widetilde{T}}^2}}$

More refined formula:

Light Higgs wants Light Partners :

Light Higgs wants Light Partners :

Exotic Bidoublet is even **lighter :**

LHC has already probed part of this plot :

For
$$\xi = 0.1$$
:

Two more comments :

I) easy to make the partners light:

flat-prior scan with no constraint on m_H

Two more comments :

2) partners have a peculiar spectrum:

doublet-doublet splitting from the mixing:

EWSB **only after** Goldstone symm. breaking :

$$\Delta m_{\rm EWSB} \simeq \left(y_L f\right)^2 / m \cdot \left(\frac{v}{f}\right)^2$$

Two more comments :

2) have a peculiar spectrum:

 $_{\rm es}/m_{
ho}$

characteristic of a Goldstone boson Higgs

Conclusions and Outlook

The DCHM is a complete, minimal model of CH (simple enough to be implemented in a MG card)

• Applications:

I) Provide a **benchmark model** to visualize impact of exclusion

2) **Playground** for verifying (discovering) general aspects of CH

3) Parametrize the data in case of discovery

Some deformation will be described in Redi's talk (De Curtis, Redi, Tesi 2011)

Conclusions and Outlook

• LHC is already testing the CH, much more at 14 TeV:

- I) Top Partners: Contino et al. 2008; Aguilar-Saavedra 2009; Mrazek et al. 2009; Dissertori et al. 2010;
- 2) Higgs couplings: SILH; Espinosa et al. 2010; Contino et al.
- 3) KK-Gluons: Barcelo et al. 2010; Bini et al. 2010
- 4) EW resonances: Agashe et al. 2006/2007; Contino et al. 2011