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Introduction:

Good reasons to advocate a light Higgs:

1. EWPT

2. We have (perhaps) almost seen one !



Introduction:

Imagine the Higgs is Composite (Georgi, Kaplan et al.1984;     
                                                                      Agashe, Contino, Pomarol 2004)

Hierarchy Problem is solved :

Corrections to        screened above     \

       is IR-saturated

1/lHmH

mH



Introduction:

Postulate a New Strong Sector

SILH Paradigm (or Prejudice) :
(Giudice, Grojean, Pomarol, Rattazzi)

One mass scale

One coupling

(Example:                         )

But                   if the Higgs is a Goldstone

Higgs Decay Constant:                   



Models of Composite Higgs

The non-linear sigma-model

Composite Sector Elementary states

U = Exp [ihaT a/f ]



Models of Composite Higgs

The non-linear sigma-model

Perfect to study modified Higgs couplings 
(Giudice et al, Barbieri et al, Espinosa et al.)

However, it is not completely predictive framework :

EWPT suggest : λ � λSM (1 + c ξ)

Higgs Potential is not IR-saturated 



Models of Composite Higgs

The Discrete Composite Higgs model

Introduce resonances that protect the potential
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Figure 2: The same as figure 1, but for the three-site model.

reduces the degree of divergence from quadratic to logarithmic. To further reduce the divergence

and make the potential finite we need to introduce one additional symmetry under which the Higgs

is a Goldstone. This is achieved in the three-site DCHM, as we will now discuss.

2.2.2 Three sites

The central ingredient for the construction of the three-site model, schematically depicted in fig-

ure 2, is a pair of identical σ-models, based as before on the coset SO(5)L×SO(5)R/SO(5)V . These

are parametrized by two SO(5) matrices U1 and U2, for a total of 20 Goldstone bosons ΠA
1 and ΠA

2 .

The Goldstone Lagrangian is given, at the leading order, by

Lπ =
f2

4
Tr

�
(DµU1)

tDµU1
�
+

f2

4
Tr

�
(DµU2)

tDµU2
�
. (30)

The assumption that the two σ-models are identical, which led to the choice of equal decay constants

in the above equation, is equivalent to imposing a 1 ↔ 2 discrete symmetry.

The symmetries of the two σ-models, SO(5)1L × SO(5)1R and SO(5)2L × SO(5)2R, are broken by

gauging. As in the two-site case, the “first” group SO(5)1L is broken by the couplings with the

SM gauge bosons and the “last” one, SO(5)2R, by the couplings with �ρ. We break the remaining

groups, SO(5)1R and SO(5)2L, by gauging their vector combination. The 10 associated gauge fields

ρAµ , whose coupling is denoted by g∗, become massive by eating 10 Goldstones and are interpreted

as resonances of the strongly-interacting sector. The expressions for the masses of the composite

resonances and for the gauge couplings of the massless states will be given in section 3.3.

This gauge structure, summarized in figure 2, corresponds to the covariant derivatives

DµU1 = ∂µU1 − iAµU1 + iU1Rµ ,

DµU2 = ∂µU2 − iLµU2 + iU2
�Rµ , (31)

where Rµ and Lµ are actually identical, Rµ = Lµ = g∗ρAµTA, and Aµ is defined in eq. (17). After

14
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groups, SO(5)1R and SO(5)2L, by gauging their vector combination. The 10 associated gauge fields
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Each U is a Goldstone matrix of 
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is a Goldstone. This is achieved in the three-site DCHM, as we will now discuss.
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10+10 scalar d.o.f reduced to 4 by gauging                       ,

G.Panico, A.W.:  arXiv:1106.2719

{

Introduce resonances that protect the potential



Models of Composite Higgs

The Discrete Composite Higgs model

Higgs is Goldstone under three symmetry groups :

Collective Breaking
(Arkani-Hamed, Cohen, Georgi)

EWSB effects only through the breaking of all groups
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is a Goldstone. This is achieved in the three-site DCHM, as we will now discuss.
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ρAµ , whose coupling is denoted by g∗, become massive by eating 10 Goldstones and are interpreted
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Similar constructions in the framework of Little-Higgs: 
Cheng et al. (2006); Foadi et al. (2010); Baumgart (2007)



Models of Composite Higgs

The Discrete Composite Higgs model

Higgs Potential is now finite at one loop

Careful analysis reveals stronger (    ) suppression

Similar protection mechanism for S and T



Models of Composite Higgs

The Discrete Composite Higgs model

Fermionic sector :
�ψ

�m

U

U1 U2

�ψqL/tR

∆L/R �m

qL/tR

∆L/R ∆

ψ

Figure 4: The matter sector of the three-site DCHM.

breaking, for which two powers of ∆L would have been sufficient. Finally, again as for the gauge

sector, the fermionic contributions to the Higgs potential are still logarithmically divergent. The

local operators associated to the divergence are

cR
16π2

∆†
RU �m2 U t∆R and

cL
16π2

�

α

∆(α)
L

†
U �m2 U t∆(α)

L , (43)

and originate, respectively, from loops of the elementary tR and qL .

To obtain a calculable Higgs potential we have to consider the three-site model. As shown

in figure 4, this is constructed by introducing two five-plets of fermionic Dirac resonances ψ and

�ψ. The first one, ψ, transforms under the right group of the first link, SO(5)1R, while
�ψ is in the

fundamental of SO(5)2R. The mixing Lagrangian is similar to the one of the two-site case, with

the difference that the elementary fields mix now with ψ and not with �ψ. Introducing the ∆L,R

spurions, we have

Lmix = qL
i∆iI

L (U1)IJ ψ
J + tR ∆I

R (U1)IJ ψ
J + ψ

I
∆ J

I (U2)JK
�ψK + h.c. . (44)

The associated spurions, ∆L and∆R, transform under both the elementary SU(2)0L×U(1)0R×U(1)0X

and the SO(5)1L×U(1)X group, and break the global symmetry to the SM group as explained above

in the case of two sites. The new spurion, ∆, has indices in SO(5)1R and in SO(5)2L. Its physical

value ∆ J
I = ∆ δ J

I is proportional to the identity, and therefore breaks SO(5)1R × SO(5)2L to the

vector subgroup. The other terms which are present in the leading order Lagrangian are

Lf
el = i qLγ

µDµqL + i tRγ
µDµtR ,

Lf
st = i �ψγµDµ

�ψ + �mIJ �ψI
�ψJ

+ iψγµDµψ + mψψ , (45)

where the covariant derivatives are defined in eq. (38), and

Dµψ =

�
∂µ − i

2g�0
3

Bµ − iGR
AρAµ

�
ψ . (46)

20

Partial compositeness 
(Kaplan 1991; Contino et. al. 2006)

Top Partners: ψ, �ψ ∈ 5 =

�
T X5/3

B X2/3

�
⊗ �T

∆L,R � yL,Rf

Lmix = qL∆LU1ψ + tR∆RU1ψ + ψ∆U2
�ψ



The Higgs Potential

Cancel the leading term in order to get realistic EWSB: 

Dominated by fermionic contribution :

yL � 2yR �
�

2ytgρ



Cancel the leading term in order to get realistic EWSB: 

The Higgs Potential

The Higgs quartic from the subleading term :

Dominated by fermionic contribution :

mH �
�

8Nc

y2
L

4π
v � 4

�
2Nc

gρ
4π

mt

V (4) � Nc

16π2
y4Lh

4

yL � 2yR �
�

2ytgρ



The Higgs Potential

Blind Scan Points without light partners

The naive estimate fails if there are light top partners
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However ....



The Higgs Potential

Blind Scan

The naive estimate fails if there are light top partners

Higgs is heavy without light partners!
(and typically excluded)

However ....
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The light top partners enhance       : \

tan θ =
∆

mT
=

yf

mT

yt �
yLyRf

mT

(yL = 2yR)

yL �
�

2yt
mT

f

V (4) � Nc

16π2
y4Lh

4 mH �
�

8Nc

y2
L

4π
v � 4

�
2Nc

mT

4πf
mt

More refined formula:
mH

mt

�
√
2Nc

π

mT−m�T−

f

���� log
�
mT−/m�T−

�

m2
T−

−m2
�T−

Top Partners

The quartic stays the same:
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LHC has already probed part of this plot :

CMS search of B :
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Two more comments :

Top Partners

1) easy to make the partners light:

flat-prior scan with no 
constraint on mH

t'
t''
t'''
b'
t5�3
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m�MStrong



Two more comments :

Top Partners

2) partners have a peculiar spectrum:

doublet-doublet splitting from the mixing:

qL
yL

EWSB only after Goldstone symm. breaking :

�
T X5/3

B X2/3

�

∆mEWSB � (yLf)
2 /m ·

�
v

f

�2

∆m � (yLf)
2 /m



Two more comments :

Top Partners

2) have a peculiar spectrum:
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Figure 8: The left panel shows the distribution of the masses of the first level of fermionic resonances
compared with the typical mass scale of the composite sector mρ. The mass mρ has been estimated
by geometric average of the composite sector masses (mu, �mu

Q, �mu

T and ∆u). The top mass has
been selected in the interval (100−200)GeV. The right panel shows the mass spectrum of the first
level of fermionic resonances for a set of sample points. For the range of parameters used in the
scan and for the meaning of the symbols used see the caption of fig. 6.

are significantly lighter than the typical scale of the mass parameters in the composite sector. This

means that eq. (80) and eq. (82) hold accurately enough to lead to light states in a large portion

of the parameter space. The presence of these light particles, the “top-partners”, has been noticed

already in the context of the 5d holographic models and constitutes the most visible manifestation

of the composite Higgs scenario. We have seen that they arise in the DCHM as well. Notice that

there is typically no light b� state because its mass is lifted by corrections of order (yu
L
)2f2.

Finally, we can derive the formula for the top mass at the leading order in the mixing of the

elementary fermions with the composite sector:

mt �
yu
L
yu
R
f2

4

������

(∆u)2
�
�mu

T − �mu

Q

�

�
mu �mu

Q − (∆u)2
��

mu �mu

T − (∆u)2
�

������
sin

�
2�h�
fπ

�
. (85)

The denominator in eq. (85) vanishes if one of the relations (80) or (82) is satisfied. This means

that, if light states are present in the top tower, then the top mass gets an enhancement with

respect to the estimate in eq. (61). This effect is a consequence of the fact that, when the top is

mixed with a light resonance, its degree of compositeness becomes larger and thus it can interact

more strongly with the composite sector. In this situation the approximate formula for the top

mass is no longer accurate.
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characteristic of a Goldstone boson Higgs



Conclusions and Outlook

 The DCHM is a complete, minimal model of CH
(simple enough to be implemented in a MG card)

 Applications:

1) Provide a benchmark model to visualize impact of exclusion

2) Playground for verifying (discovering) general aspects of CH

3) Parametrize the data in case of discovery

 Some deformation will be described in Redi’s talk 
                              (De Curtis, Redi, Tesi 2011) 



Conclusions and Outlook

 LHC is already testing the CH, much more at 14 TeV: 
      
        1) Top Partners: Contino et al. 2008;  Aguilar-Saavedra 2009;  
                                           Mrazek et al. 2009; Dissertori et al. 2010; 

        2) Higgs couplings: SILH; Espinosa et al. 2010; Contino et al. 
           

           3) KK-Gluons: Barcelo et al. 2010; Bini et al. 2010

        
        4) EW resonances: Agashe et al. 2006/2007; Contino et al. 2011


	Blank Page



