Workshop on Strongly Coupled Physics Beyond the Standard Model

25-27 January 2012

The 4D Composite Higgs

Michele Redi
INFN Florence/CERN
ITALY

The 4D Composite Higgs

Michele Redi

with Stefania de Curtis
and Andrea Tesi
arxiv:1110.1613[hep-ph]
Trieste, 27 January

+ work in progress

Technicolor:

Light Higgs ok for composite models

COMPOSITE HIGGS

Logical possibility:
Higgs doublet is a light remnant of strong dynamics.

```
Strong sector:
resonances +
Higgs bound state
```


$$
\begin{aligned}
& \text { spin 1 } \\
& \text { spin 1/2 } \\
& \text { spin 0.... } \quad 2_{\frac{1}{2}}
\end{aligned}
$$

Two parameters:

$$
m_{\rho} \quad g_{\rho} \quad\left(g_{\rho}=\frac{4 \pi}{\sqrt{N}}\right)
$$

Relieves hierarchy problem:

$$
\delta m_{h}^{2} \sim \frac{3 \lambda_{t}^{2}}{4 \pi^{2}} m_{\rho}^{2}
$$

Particularly compelling if the Higgs is a Goldstone Boson: Massless at leading order:

EX: $\frac{S O(5)}{S U(2)_{L} \otimes S U(2)_{R}} \longrightarrow G B=(2,2) \quad$ Agashe, Contino,Pomarol '04

Low energy lagrangian:

$$
\mathcal{L}=f^{2} D_{\mu} \Sigma^{i} D^{\mu} \Sigma^{i}+\ldots \xrightarrow{S U(2)_{L} \otimes S U(2)_{R}} \quad \rho=\frac{m_{W}^{2}}{m_{Z}^{2} \cos \theta_{W}} \approx 1
$$

Extended Higgs sectors:

EX: $\quad \frac{S O(6)}{S O(5)} \quad \frac{S O(6)}{S O(4) \otimes U(1)} \quad \frac{S U(5)}{S U(4) \otimes U(1)}+\ldots$

Gripaios, Pomarol, Riva, Serra '09
Mrazek, Pomarol, Rattazzi, MR, Serra, Wulzer 'II

Main difference from techni-color is that f is not linked to v . Increasing $f \mathrm{CH}$ approximates SM.

$$
\text { TUNING } \sim \frac{\mathrm{v}^{2}}{\mathrm{f}^{2}}
$$

Spectrum:

Reasonable phenomenology can be obtained for $m_{\rho} \sim 3 \mathrm{TeV}$

Recent progress started with Randall-Sundrum constructions.

5D = Effective description of strongly coupled theories
Arkani-Hamed, Porrati, Randall '01
Rattazzi, Zaffaroni '0I
Inspired by AdS/CFT but metric not very important.

Becciolini, MR,Wulzer '09

When 5D theory weakly coupled (large N), one can

 compute. CHM5:
(Contino, da Rold, Pomarol '06)

In practice the 5D theory cannot be very weakly coupled

$$
\Lambda=\frac{16 \pi^{2}}{g_{5}^{2}} \quad N_{e f f}=\frac{\Lambda}{m_{\rho}} \quad \hat{S} \sim \frac{N_{e f f}}{16 \pi^{2}} \frac{v^{2}}{f^{2}}
$$

Phenomenologically strong coupling required!

Necessary a useful 4D description:

- theoretical:
- only very few resonances (I?) weakly coupled
- relevant physics largely independent of 5D or AdS
- what are the most general models?
- practical:
- LHC will at best produce the lightest resonances
- Simplified model useful for LHC

General picture:

Gauging SU(3)xSU(2)xU(I) mixing to fermionic operators

Elementary:
 SM Fermions
 + Gauge Fields

They talk through linear couplings:

$$
\begin{gathered}
\mathcal{L}_{\text {gauge }}=g A_{\mu} J^{\mu} \\
\mathcal{L}_{\text {mixing }}=\lambda_{L} \bar{f}_{L} O_{R}+\lambda_{R} \bar{f}_{R} O_{R} \quad \xrightarrow{\tan \varphi \sim \frac{\lambda}{g_{\rho}}} \quad y \sim \frac{\lambda_{L} \lambda_{R}}{g_{\rho}}
\end{gathered}
$$

Potential generated at I-loop:

$$
V(H) \propto \frac{m_{\rho}^{4}}{g_{\rho}^{2}} \frac{\lambda_{L, R}^{2}}{16 \pi^{2}} \hat{V}\left(\frac{H}{f}\right)
$$

Already on the market:

- Simplified two-sector model:

Contino, Kramer, Son, Sundrum '06

$$
(f \rightarrow \infty)
$$

- Low energy effects

Giudice, Grojean, Pomarol, Rattazzi '07
Barbieri, Bellazzini, Rychkov,Varagnolo ’07
-3-site model
Panico,Wulzer 'II

Take G broken to H. Low energy lagrangian determined by symmetries. CCWZ:

$$
\begin{gathered}
U(\Pi)=e^{\frac{i \Pi^{\widehat{a}} \tau^{\widehat{a}}}{f}} \quad U\left(\Pi^{\prime}\right)=g U(\Pi) h^{\dagger}(\Pi, g) \quad g \in G, \quad h \in H(x) \\
U^{\dagger} \partial_{\mu} U=i E_{\mu}^{a} T^{a}+i D_{\mu}^{\widehat{a}} T^{\widehat{a}}
\end{gathered}
$$

GB lagrangian

$$
\mathcal{L}=\frac{f^{2}}{2} D_{\mu}^{\widehat{a}} D^{\mu \widehat{a}}
$$

Matter couplings,

$$
\bar{\psi} \gamma^{\mu}\left(\partial_{\mu}+i E_{\mu}\right) \psi
$$

Many ways to introduce spin-I resonances...

We start from G/H

$$
\frac{G_{L} \otimes G_{R}}{G_{L+R}} \quad \Omega \rightarrow g_{L} \Omega g_{R}^{\dagger} \quad+\quad \frac{G}{H}
$$

and gauge $G_{R}+G$

$$
\begin{gathered}
\mathcal{L}_{2-\text { site }}=\frac{f_{1}^{2}}{4} \operatorname{Tr}\left|D_{\mu} \Omega\right|^{2}+\frac{f_{2}^{2}}{2} \mathcal{D}_{\mu}^{\hat{a}} \mathcal{D}^{\mu \widehat{a}}-\frac{1}{4 g_{\rho}^{2}} \rho_{\mu \nu}^{A} \rho^{A \mu \nu} \\
D_{\mu} \Omega=\partial_{\mu} \Omega-i A_{\mu} \Omega+i \Omega \rho_{\mu}
\end{gathered}
$$

Natural to have H and G / H resonances. In QCD these are vector and axial resonances.

We recover CCWZ for $f_{2} \rightarrow \infty$

$$
\mathcal{L}=\frac{f^{2}}{2} D_{\mu}^{\widehat{a}} D^{\mu \widehat{a}}-\frac{1}{4 g_{\rho}^{2}} \rho_{\mu \nu}^{a} \rho^{\mu \nu a}+\frac{f^{\prime 2}}{2}\left(\rho_{\mu}^{a}-E_{\mu}^{a}\right)^{2}
$$

In general:

GBs are

$$
\begin{array}{ll}
\Omega_{n}=\exp i \frac{f}{f_{n}^{2}} \Pi, \quad n=1, \ldots, N & \sum_{n=1}^{N} \frac{1}{f_{n}^{2}}=\frac{1}{f^{2}} \\
U^{\prime} \equiv\left(\Pi_{n=1}^{N-1} \Omega_{n}\right) U &
\end{array}
$$

For N large we recover the 5D theory.
Boundary conditions not rigid for f_{N} finite.

Fermions:

$$
\begin{aligned}
\mathcal{L}_{\text {fermions }} & =\sum_{n=1}^{N-1} \bar{\Psi}_{n}^{(r)}\left[i D^{\rho_{n}}-m_{n}^{(r)}\right] \Psi_{n}^{(r)}+\sum_{n=1}^{N-1} \Delta_{n}^{(r)}\left(\bar{\Psi}_{r, L}^{n-1} \Omega_{n} \Psi_{r, R}^{n}+h . c .\right) \\
D^{\mu} \Psi_{n}^{(r)} & =\partial^{\mu} \Psi_{n}^{(r)}-i \rho_{n}^{\mu} \Psi_{n}^{(r)} \\
& \mathcal{L}_{\frac{G}{H}}=m_{\Psi} \sum \bar{\Psi}_{L}^{(r), N-1} U(\Pi) P_{A}^{r s} U(\Pi)^{\dagger} \Psi_{R}^{(s), N-1}+\text { h.c }
\end{aligned}
$$

LR structure

Inspired by 5D.

MINIMAL 4D COMPOSITE HIGGS

- One resonance for each SM field

Explicit breaking of global symmetry

Minimal coset:

$$
\frac{S O(5)}{S U(2)_{L} \otimes S U(2)_{R}}
$$

Extra $U(1)_{X}$

$$
Y=T_{3 R}+X
$$

Composite spin-I lagrangian:

$$
\begin{gathered}
\mathcal{L}_{\text {gauge }}=\frac{f_{1}^{2}}{4} \operatorname{Tr}\left|D_{\mu} \Omega_{1}\right|^{2}+\frac{f_{2}^{2}}{2}\left(D_{\mu} \Phi_{2}\right)\left(D^{\mu} \Phi_{2}\right)^{T}-\frac{1}{4 g_{\rho}^{2}} \rho_{\mu \nu}^{A} \rho^{A \mu \nu} \\
\Omega_{1}=\mathbf{1}+i \frac{s_{1}}{h} \Pi+\frac{c_{1}-1}{h^{2}} \Pi^{2} \quad \Phi_{2}=\phi_{0} e^{-i \frac{\Pi}{f_{2}}}=\frac{1}{h} \sin \frac{h}{f_{2}}\left(h_{1}, h_{2}, h_{3}, h_{4}, h \cot \frac{h}{f_{2}}\right)
\end{gathered}
$$

Spectrum:

$$
\begin{gathered}
m_{\rho}^{2}=\frac{g_{\rho}^{2} f_{1}^{2}}{2} \\
m_{a_{1}}^{2}=\frac{g_{\rho}^{2}\left(f_{1}^{2}+f_{2}^{2}\right)}{2} \\
m_{\rho_{X}}^{2}=\frac{g_{\rho_{X}}^{2} f_{X}^{2}}{2}
\end{gathered}
$$

SM fields are introduced adding kinetic terms for the sources

$$
\mathcal{L}_{\text {gauge }}^{e l}=-\frac{1}{4 g_{0}^{2}} F_{\mu \nu}^{a} F_{\mu \nu}^{a}-\frac{1}{4 g_{0 Y}^{2}} Y_{\mu \nu} Y^{\mu \nu}
$$

Physical parameters:

$$
\begin{aligned}
\frac{1}{g^{2}} & =\frac{1}{g_{0}^{2}}+\frac{1}{g_{\rho}^{2}} \\
\frac{1}{g^{\prime 2}} & =\frac{1}{g_{0 Y}^{2}}+\frac{1}{g_{\rho}^{2}}+\frac{1}{g_{\rho_{X}}^{2}} \\
m_{\rho_{a L}} & =\frac{m_{\rho}}{\cos \theta_{L}}, \quad \tan \theta_{L}=\frac{g_{0}}{g_{\rho}}
\end{aligned}
$$

Each SM fermion is associated to a rep of SO (5).
CHM5:

$$
\mathbf{5}_{2 / 3}=(\mathbf{2}, \mathbf{2})_{2 / 3} \oplus(\mathbf{1}, \mathbf{1})_{2 / 3}, \quad(\mathbf{2}, \mathbf{2})_{2 / 3}=\left(\begin{array}{cc}
T & T_{\frac{5}{3}} \\
B & T_{\frac{2}{3}}
\end{array}\right)
$$

Left and right components correspond to different 5.

Down quarks

$$
\mathbf{5}_{-1 / 3}=(\mathbf{2}, \mathbf{2})_{-1 / 3} \oplus(\mathbf{1}, \mathbf{1})_{-1 / 3}, \quad(\mathbf{2}, \mathbf{2})_{-1 / 3}=\left(\begin{array}{cc}
B_{-\frac{1}{3}} & T^{\prime} \\
B_{-\frac{4}{3}} & B^{\prime}
\end{array}\right) .
$$

Explicit breaking of global symmetry

Composite sector $S O(5) / S O(4)$

Third generation:

$$
\begin{array}{rlrl}
\mathcal{L}^{\mathrm{CHM}_{5}} & =\mathcal{L}_{\text {fermions }}^{e l} & & \\
& +\Delta_{t_{L}} \bar{q}_{L}^{e l} \Omega_{1} \Psi_{T}+\Delta_{t_{R}} \bar{t}_{R}^{e l} \Omega_{1} \Psi_{\widetilde{T}}+h . c . & \text { ExplicitSO(5) breaking } \\
& +\bar{\Psi}_{T}\left(i D^{\rho}-m_{T}\right) \Psi_{T}+\bar{\Psi}_{\widetilde{T}}\left(i D^{\rho}-m_{\widetilde{T}}\right) \Psi_{\widetilde{T}} & & \text { Composite physics } \\
& -Y_{T} \bar{\Psi}_{T, L} \Phi_{2}^{T} \Phi_{2} \Psi_{\widetilde{T}, R}-m_{Y_{T}} \bar{\Psi}_{T, L} \Psi_{\widetilde{T}, R}+h . c . & \longrightarrow & \text { SO(5)/SO(4) } \\
& +(T \rightarrow B) & & \\
& & & \\
\mathcal{L}_{\text {fermions }}^{e l}=\bar{q}_{L}^{e l} i D^{e l} q_{L}^{e l}+\bar{t}_{R}^{e l} i D^{e l} t_{R}^{e l}+\bar{b}_{R}^{e l} i D^{e l} b_{R}^{e l} & &
\end{array}
$$

Masses:

$$
m_{t} \sim \frac{v}{\sqrt{2}} \frac{\Delta_{t_{L}}}{m_{T}} \frac{\Delta_{t_{R}}}{m_{\widetilde{T}}} \frac{Y_{T}}{f}
$$

Relation to 2-site picture:

$$
\begin{aligned}
& \mathcal{L}_{\text {comp }}^{g a u g e}=-\frac{1}{4} \rho_{\mu \nu}^{A} \rho^{A \mu \nu}+\frac{1}{2} m_{\rho}^{2} \rho_{\mu}^{a} \rho^{a \mu}+\frac{1}{2} m_{a_{1}}^{2} \rho_{\mu}^{\hat{a}} \rho^{\hat{a} \mu}+\left|\partial_{\mu}-i g_{\rho} \rho_{\mu}^{a} H\right|^{2}+\mathrm{nl} \text { terms } \\
& \mathcal{L}_{m i x}=\frac{1}{2} m_{\rho}^{2} \frac{g_{0}^{2}}{g_{\rho}^{2}} A_{\mu}^{a} A^{a \mu}-m_{\rho}^{2} \frac{g_{0}}{g_{\rho}} A_{\mu}^{a} \rho^{a \mu}+g_{0} \frac{f^{2}}{f_{1}^{2}}\left(\partial^{\mu} H^{\dagger} A_{\mu} H\right)+\ldots
\end{aligned}
$$

- Non linear GB structure included.
- Correlations of 2-site model removed.

Ex:

We can borrow 5D techniques and write the effective action of SM fields:

$$
\begin{aligned}
\mathcal{L}_{\text {eff }}^{f e r m} & =\bar{q}_{L} \not p\left[\Pi_{0}^{q}\left(p^{2}\right)+\frac{s_{h}^{2}}{2}\left(\Pi_{1}^{q 1}\left(p^{2}\right) \widehat{H}^{c} \widehat{H}^{c \dagger}+\Pi_{1}^{q 2}\left(p^{2}\right) \widehat{H} \widehat{H}^{\dagger}\right)\right] q_{L} \\
& +\bar{u}_{R} \not p\left(\Pi_{0}^{u}\left(p^{2}\right)+\frac{s_{h}^{2}}{2} \Pi_{1}^{u}\left(p^{2}\right)\right) u_{R}+\bar{d}_{R} \not p\left(\Pi_{0}^{d}\left(p^{2}\right)+\frac{s_{h}^{2}}{2} \Pi_{1}^{d}\left(p^{2}\right)\right) d_{R} \\
& +\frac{s_{h} c_{h}}{\sqrt{2}} M_{1}^{u}\left(p^{2}\right) \bar{q}_{L} \widehat{H}^{c} u_{R}+\frac{s_{h} c_{h}}{\sqrt{2}} M_{1}^{d}\left(p^{2}\right) \bar{q}_{L} \widehat{H} d_{R}+h . c . \\
\mathcal{L}_{\text {eff }}^{\text {gauge }} & =\frac{1}{2} P_{\mu \nu}^{T}\left[\left(\Pi_{0}\left(p^{2}\right)+\frac{s_{h}^{2}}{4} \Pi_{1}\left(p^{2}\right)\right) A_{a L}^{\mu} A_{a L}^{\nu}\right. \\
& \left.+\left(\Pi_{Y}\left(p^{2}\right)+\frac{s_{h}^{2}}{4} \Pi_{1}\left(p^{2}\right)\right) Y^{\mu} Y^{\nu}+2 s_{h}^{2} \Pi_{1}\left(p^{2}\right) \widehat{H}^{\dagger} T_{L}^{a} Y \widehat{H} A_{\mu}^{a L} Y_{\nu}\right]
\end{aligned}
$$

Coleman-Weinberg effective potential:

$$
\begin{gathered}
V(h)_{\text {fermions }}=-2 N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}}\left[\ln \Pi_{b_{L}}+\ln \left(p^{2} \Pi_{t_{L}} \Pi_{t_{R}}-\Pi_{t_{L} t_{R}}^{2}\right)\right] \\
V(h)_{\text {gauge }}=\frac{9}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \ln \left[1+\frac{1}{4} \frac{\Pi_{1}\left(p^{2}\right)}{\Pi_{0}\left(p^{2}\right)} \sin ^{2} \frac{h}{f}\right]
\end{gathered}
$$

Form factors are simple functions:

$$
\begin{aligned}
& \widehat{\Pi}\left[m_{1}, m_{2}, m_{3}\right]=\frac{\left(m_{2}^{2}+m_{3}^{2}-p^{2}\right)}{p^{4}-p^{2}\left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)+m_{1}^{2} m_{2}^{2}} \\
& \widehat{M}\left[m_{1}, m_{2}, m_{3}\right]=-\frac{m_{1} m_{2} m_{3}}{p^{4}-p^{2}\left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)+m_{1}^{2} m_{2}^{2}} \\
& \Pi_{\text {gauge }}\left[m_{V}\right]=\frac{p^{2}}{p^{2}-m_{V}^{2}}
\end{aligned}
$$

Gauge potential:

$$
\begin{aligned}
V(h)_{\text {gauge }} & \approx \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{9}{8} \frac{\Pi_{1}}{\Pi_{0}} \sin ^{2} \frac{h}{f} \\
& =\frac{9}{4} \frac{1}{16 \pi^{2}} \frac{g_{0}^{2}}{g_{\rho}^{2}} \frac{m_{\rho}^{4}\left(m_{a_{1}}^{2}-m_{\rho}^{2}\right)}{m_{a_{1}}^{2}-m_{\rho}^{2}\left(1+g_{0}^{2} / g_{\rho}^{2}\right)} \ln \left[\frac{m_{a_{1}}^{2}}{m_{\rho}^{2}\left(1+g_{0}^{2} / g_{\rho}^{2}\right)}\right] \sin ^{2} \frac{h}{f}
\end{aligned}
$$

Potential is finite with a single $\mathrm{SO}(5)$ multiplet!

HIGGS MASS

General scan:

$$
f=500 \mathrm{GeV}
$$

If $\mathrm{mH}=125 \mathrm{GeV}$, nearby fermionic partners.
Might be visible at LHC7!

$$
f=800 \mathrm{GeV}
$$

Partners above experimental bound.

Large mixing:

$f=500 \mathrm{GeV}$

$$
\begin{array}{cr}
1.2 \leq \Delta_{t_{L}} / m_{T} \leq 1.8 & 0.7 \leq \Delta_{t_{R}} / m_{\tilde{T}} \leq 1.3 \\
0.5 \leq Y_{T} \leq 3 & -1.2 Y_{T} \leq m_{Y_{T}} \leq-0.8 Y_{T}
\end{array}
$$

Moderate mixing:

$$
\begin{array}{cc}
0.6 \leq \Delta_{t_{L}} / m_{T} \leq 0.9 & 0.35 \leq \Delta_{t_{R}} / m_{\widetilde{T}} \leq 0.7 \\
0.5 \leq Y_{T} \leq 3 & -0.5 \leq m_{Y_{T}} \leq 0.5
\end{array}
$$

Singlet lightest fermion

$\mathrm{SO}(6) / \mathrm{SO}(5):$

5 GBs:

$$
5=(2,2)+1
$$

$$
\Phi=\sin \frac{\varphi}{f}\left(\frac{h_{1}}{\varphi}, \frac{h_{2}}{\varphi}, \frac{h_{3}}{\varphi}, \frac{h_{4}}{\varphi}, \frac{s}{\varphi}, \cot \frac{\varphi}{f}\right) . \quad \varphi=\sqrt{\vec{h}^{2}+s^{2}}
$$

Fermions can be embedded in the $6=(2,2)+2 \times 1$

$$
q_{L} \rightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{c}
b_{L} \\
-i b_{L} \\
t_{L} \\
i t_{L} \\
0 \\
0
\end{array}\right) \quad t_{R} \rightarrow\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
i \cos \theta t_{R} \\
\sin \theta t_{R}
\end{array}\right)
$$

For $\theta=\frac{\pi}{4}$ singlet becomes exact GB.

NATURALNESS

$$
\mathcal{L}_{Y u k}=y_{t} f \frac{s_{h} c_{h}}{h}\left(\bar{q}_{L} H^{c} t_{R}+h . c .\right) \quad \longrightarrow \quad V(h)_{Y u k} \sim N_{c} \frac{y_{t}^{2}}{4 \pi^{2}} m_{T}^{2} f^{2} s_{h}^{2} c_{h}^{2}
$$

$$
\mathcal{L}_{k i n}=\frac{y_{t_{L}}^{2}}{2 y_{T}^{2}} s_{h}^{2} \bar{t}_{L} D t_{L}+\frac{y_{t_{R}}^{2}}{y_{\widetilde{T}}^{2}} c_{h}^{2} \bar{t}_{R} D t_{R} \quad \longrightarrow \quad V(h)_{k i n}^{(1)} \sim N_{c} \frac{2 y_{t_{R}}^{2}-y_{t_{L}}^{2}}{32 \pi^{2}} \frac{m_{T}^{4}}{y_{T}^{2}} s_{h}^{2}
$$

Potential:

$$
V(h) \approx \alpha s_{h}^{2}-\beta s_{h}^{2} c_{h}^{2}
$$

Quartic is determined by top Yukawa,

$$
m_{H} \sim 0.3 y_{t} \frac{m_{T}}{f} v
$$

NON MINIMALTERMS

Most general 2-site lagrangian contains

$$
\begin{gathered}
\frac{f_{0}^{2}}{2}\left(D_{\mu} \Phi\right)\left(D^{\mu} \Phi\right)^{T} \quad \Phi=\Phi_{2} \Omega_{1}^{T} \\
f^{2}=f_{0}^{2}+\frac{f_{1}^{2} f_{2}^{2}}{f_{1}^{2}+f_{2}^{2}}
\end{gathered}
$$

Similar terms are considered in QCD.

New term modifies interactions

$$
\begin{array}{ll}
g_{\rho \pi \pi}=\frac{f^{2}-f_{0}^{2}}{2 f^{2}} g_{\rho} & \\
m_{\rho}^{2}=2 \frac{f^{2}}{f^{2}-f_{0}^{2}} g_{\rho \pi \pi}^{2} f^{2} & \left(m_{a_{1}} \rightarrow \infty\right)
\end{array}
$$

Coset resonance could give further modifications.

Phenomenology modified

New term modifies S-parameter:

$$
S=4 \pi v^{2}\left(\frac{1}{m_{\rho}^{2}}+\frac{1}{m_{a_{1}}^{2}}\right) \frac{f^{2}-f_{0}^{2}}{f^{2}}
$$

S can vanish

$$
f_{0}=f
$$

H and G / H resonances degenerate and do not participate to unitarization.

In QCD:

$$
f_{0}^{2} \sim-f^{2}
$$

General?

CONCLUSIONS

- All relevant features of CHM can be reproduced from a 4D point view. First resonance sufficient for theory \& LHC.
- In general a light Higgs requires light fermionic partners.
- More general models can be considered in 4D than 5D. Contributions to S and modified couplings.

Correlations of 2 site model are modified:

$$
Y_{T} \bar{\Psi}_{T, L} \Phi_{2}^{T} \Phi_{2} \Psi_{\widetilde{T}, R} \quad \longrightarrow \quad \frac{Y_{T}}{2 h} \sin \frac{2 h f}{f_{2}^{2}} \operatorname{Tr}\left[\left(\begin{array}{cc}
T & T_{\frac{5}{3}} \\
B & T_{\frac{2}{3}}
\end{array}\right)_{L} \cdot\left(\begin{array}{cc}
h_{0}^{\dagger} & h_{+} \\
h_{+}^{\dagger} & h_{0}
\end{array}\right)\right] \tilde{T}_{R}
$$

$$
\sim \frac{Y_{T} f}{f_{2}^{2}} c_{L} s_{R}
$$

$$
\left(2-\text { site }: \frac{Y_{T}}{f} c_{L} S_{R}\right)
$$

Production and decay can be very different from 2 site

Relevant phenomenologically!

