

2415-7

Winter School on Quantitative Systems Biology

26 November - 7 December, 2011

An engineer's view of brain anatomy: an economically wired highly interconnected neural network

> M. Chkovskii Howard Hughes Medical Inst. Virginia USA

An engineer's view of brain anatomy: an economically wired highly interconnected neural network Dmitri "Mitya" Chklovskii Janelia Farm Research Campus Howard Hughes Medical Institute

Why can't we model the brain?

Normative theory of brain structure

• Understand structure as a result of minimizing cost to the organism for given functionality

Example:

- Structure placement of neurons
- Cost wiring length (occupied volume, signal propagation delays and attenuation, metabolic energy)
- Functionality wiring diagram, sensory inputs and motor outputs

Distributed vs. centralized nervous systems (Cajal 1899)

What determines brain placement?

What determines brain placement?

Brain location is biased towards the dominant source of connections

Numbers of connections to the human brain

Anterior/posterior ratio > 1 is consistent with forward brain placement

Cherniak, 1994

For given connectivity, wiring optimization largely predicts neuronal layout in invertebrates and long-range connections in vertebrates

Pyramidal neuron

Courtesy: G. Shepherd

Computational function of a neuron

Is this an appropriate level of abstraction?

Wiring problem

What is the smallest volume of the all-to-all connected network of *N* neurons with wires of diameter *d*?

Example, N = 6:

Wiring designs for an all-to-all network

 $R^{3} \sim N^{3}d^{3}$ $R^{3} \sim N^{5/2}d^{3}$ $R^{3} \sim N^{2}d^{3}$ $R^{3} \sim N^{2}d^{4}/s$

Cortical column: $N=10^5$, $d=0.2\mu$ m; 0.5 μ m, s=1.5 μ m, R=1mm

8,000mm³

30mm³

2mm³

0.6mm³

Synaptic connectivity in mammalian cortex can change with time: possible memory mechanism

Potential synapse a proximity between a dendrite and an axon that can be bridged by a spine

Stepanyants, Hof & Chklovskii (2002)

Trachtenberg, Chen, Knott, Feng, Sanes, Welker, Svoboda, 2002

Characterize neuronal functionality by the number of potential synapses

Network volume for different designs

Chklovskii, 2004

Do shapes of mammalian neurons reflect interesting computations in dendrites or just wiring cost minimization for given connectivity?

Mammalian neurons: 10⁴-10⁵ synapses - Large parameter! ©

Packing of axons and dendrites is space-filling

Hippocampus: axons in all directions Mishchenko,Spacek,Mendenhall,Harris,Chklovskii Cerebellum: axons orthogonal to dendrites

Sanford Palay

What determines the total length of dendrites? The airport terminal theory

Total dendritic length, *L*, is determined by the number of potential synapses, N: $L \sim Nd^2/s$

Pyramidal cells: $N = 10^5 d = 0.2 \mu m s = 1.5 \mu m \implies L = 2.6 m m$

Why do dendrites branch?

Two dendrite designs with the same total length and number of potential synapses

Branching arbor

Non-branching arbor

Chicago O'Hare airport

Branching dendrites have shorter path from synapses to cell body

Cuntz, Borst & Segev (2007), Wen & Chklovskii (2008)

Compact arbor minimizes path length for a given total dendritic length

THE JOURNAL OF COMPARATIVE NEUROLOGY 361:479-490 (1995)

For a given number of potential synapses, flat compact arbor minimizes wiring cost

Double-hits reduce the number of axons accessible to a dendritic arbor

For a given total dendritic length, sparse 3D dendritic arbor has fewer double-hits, and, therefore, can access more axons Statistical preference for sparse arbors, or self-repulsion Samsonovich & Ascoli (2003)

Airport terminal with double-hits

Arbor radius maximizes connectivity repertoire while minimizing cost = min{Cost - Connectivity repertoire}

Free energy = Energy - Entropy

Scaling of basal dendrites of pyramidal cells

 $R \sim L^{\nu}$ v= 0.44 ± 0.01 v_{theory} = 0.4

 $\tilde{n} = g(r/R)^{1/\nu-1} \exp[-h(r/R)^{\gamma}]$

Dendrites are "stretched" by the path length cost

Why do neurons and trees look alike?

Minimize: Wiring cost

Maximize: Connectivity repertoire

Summary

- Minimizing wiring cost for given connectivity explains neuronal layout in invertebrates and long-range connections in vertebrates
- Minimizing wiring cost while maximizing connectivity repertoire can account for the shape of mammalian neurons

Acknowledgements

Beth Chen (Cold Spring Harbor Laboratory) Quan Wen (CSHL, Janelia, Harvard) Armen Stepanyants (CSHL, Northeastern) Alexander Grosberg (NYU) Guy Elson (Queensland)