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Metabolic network
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Metabolic network consists the set of biochemical reactions that convert nutrient
molecules into key molecules required for growth and maintenance of the cell.
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Large-scale structure of metabolic networks

Small-world, Scale-free and Hierarchical Organization
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Small Average Path Length, High Local Clustering, Power-law degree distribution

Bow-tie architecture

22NN Directed graph with a giant component of strongly
connected nodes along with associated IN and OUT
component.

Bow-tie architecture of the metabolism is similar to that
found in the WWW by Broder et al.

OOO

0 3 Disconnected componeats
Ma and Zeng (2003); Large-scale structure of metabolic networks is very
Csete and Doyle (2004) different from random networks and is similar in many
respects to real world networks.




Are the observed structural features of a metabolic

network ‘unusual’ or ‘atXEicaI’?

» Extremely popular to study network measures such as degree
distribution, clustering coefficient, assortativity, motifs, etc. in biological

networks.

» But mere observation of scale-free, small-world or other striking
structural features in biological networks do not mean these properties
are non-obvious or atypical features of cellular networks.

» A distinction needs to be made between observation of these structural
properties in real networks and our understanding of the generative
principles that may have led to these properties in real networks.



Questions of Interest

» Are the observed structural properties of biological networks frozen accidents?
» What are the adaptive features of a network?

» Which features of a biological network are under selection and which are mere
byproducts of selection on other traits?

To answer these questions adequately, one needs proper controls or null models of
biological networks.

» Current controls are not well posed for biological networks, especially, metabolic
networks.

» Furthermore, proper controls should account for biological function.

What are the non-obvious or atypical properties of metabolic networks once
biological function is accounted in the control or null model?



Is the large-scale structure of E. coli metabolic network

atxeical?

We decided to compare the following structural properties of E. coli
metabolic network with those in randomized metabolic networks:

* Metabolite Degree distribution
» Clustering Coefficient

* Average Path Length

« P_: Probability that a path exists between two nodes in ]|

the directed graph

» Largest strongly component (LSC) and the union of
LSC, IN and OUT components

However, the widely used null model to generate
randomized metabolic networks is not well posed

to answer this question!
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Scale Free and Small World

Ref: Jeong et al (2000); Wagner & Fell (2001)

Bow-tie architecture of the
Internet and metabolism

Ref: Broder et al (1999); Ma and Zeng (2003)



Edge-randomization algorithm: widely-used null model

1) Measure the ‘chosen property in the
investigated real network.

w

o

o
)

250 T Investigated
2) Generate randomized networks with network
structure similar to the investigated real 5 | o-value
network using edge-randomization. g T k>
3) Use the distribution of the ‘chosen o
property’ for the randomized networks to J L
estimate a p-value. o e L e

Chosen Property

BUT this null model does not account for phenotypic or functional
constraints central to cellular networks!

Reference:

Milo et al
(2002,2004);
Maslov &
Sneppen (2002)

Investigated Network After 1 exchange After 2 exchanges



Edge-randomization: unsuitable for metabolic networks

Null-model used in
many studies
including: Guimera &
Amaral Nature (2005)

ASPT CITL ASPT* G-
“y‘\' OIOROIS
ASPT.  asp-L — fum + nh4 ASPT*. asp-L— ac+nh4

CITL: cit - oaa + ac CITL*:  cit — oaa + fum

Preserves degree of each node in the network but generates fictitious reactions that violate
, and atomic balance satisfied by real chemical reactions!!
Note that fum has 4 carbon atoms while ac has 2 carbon atoms in the example shown.

Biochemically meaningless randomization inappropriate for metabolic networks

We decided to develop a proper null model for metabolic networks that accounts
for basic biochemical and functional constraints.




Framework: Global reaction set

METABOLIC PATHWAYS

Problem 1: Edge-randomization generates fictitious

reactions which violate mass and atomic balance.

Solution: We decided to overcome this problem by
limiting the set of reactions in random metabolic
networks to those within KEGG database.

»We have use a curated database of 5870 mass
balanced reactions derived from KEGG by
Rodrigues and Wagner (2009).

»E. coli metabolic network iJR904 is a subset of
reactions in KEGG with n=931 reactions. Number of
possible networks with n=931 reactions like E. coli

. within KEGG is:
(3870

~ 1113
931 ) 10
which is > 1078 (estimated number of atoms in

universe!)

» One can implement Flux Balance Analysis (FBA)
within this database unlike KEGG.



Constraint-based Flux Balance Analysis (FBA)

v

List of metabolic reactions with

stoichiometric coefficients Growth rate for

v

Flux Balance the given medium
Biomass composition Analysis (FBA) ‘Biomass Yield’
> Fluxes of all
reactions

A 4

Set of nutrients in the
environment

Advantages
FBA does not require enzyme kinetic information which is not known for most reactions.

Disadvantages

FBA cannot predict internal metabolite concentrations and is restricted to steady states.
Basic models do not account for metabolic regulation.

Reference: Varma and Palsson, Biotechnology (1994); Price et al (2004)



Bit string representation of metabolic network

KEGG Database E. coli
R,: 3pg + nad — 3php + h + nadh 1 Present - 1
R,: 6pge + nadp — co2 + nadph + ruSp-D (1) Absent - 0

Rj3: 6pgc — 2ddg6bp + h2o0

Contains n reactions

N = 5870 reactions within KEGG (1’s in the bit string)

(or global reaction set)

The E. coli metabolic network or any random network of reactions within KEGG
can be represented as a bit string of length N with exactly r entries equal to 1
where n is the number of reactions in E. coli.



Definition of Growth Phenotype

Metabolic Genotypes Ability to synthesize
biomass components

0
1 —-—
1
—-—
. G,
0
O —-—
1
—-—
GB

Flux
Balance

==> | Analysis

(FBA)
Y

\O \
- Deleted O

reaction

Bit string and equivalent network
representation of genotypes

Viability

Viable
genotype

O

=)
O

Unviable
genotype

Growth

No Growth



Fraction of networks satisfying functional constraints

Question: What fraction of possible metabolic networks within KEGG with exactly n
reactions can grow under glucose minimal media like E. coli?

Answer:

To estimate this fraction:

 Generate random networks within KEGG
with exactly n reactions.

« Determine the fraction of networks that
can grow under glucose minimal media
using FBA.

Fraction of genotypes that are viable

—————Analytic prefactor

T T T T T
2000 2200 2400 2600 2800

Number of reactions in genotype

We estimate the fraction of possible networks with n=931 reactions like E. coli that
have this phenotype is: ~ 1070

Only a tiny fraction of possible networks satisfy functional constraints!

Reference: Samal et al., BMC Systems Biology (2010)



Necessity for Markov Chain Monte Carlo (MCMC) Sampling

Space of possible networks ~ 101113

Space of networks with desired
phenotype ~ 101050

We wish to uniformly sample the
space of viable metabolic
networks within KEGG having
the same number of reactions
as E. coli.

But one cannot sample the
viable space by generating
random bit strings followed by a
test for phenotype.

We resort to Markov Chain
Monte Carlo (MCMC) method
to sample the space of
networks satisfying functional
constraints.



MCMC sampling of metabolic networks with growth

Ehenotxee

KEGG Database E. coli Step 1 Step 2
R,: 3pg + nad — 3php + h + nadh 1 5 1 3 0
R,: 6pgc + nadp — co2 + nadph + ruSp-D 0 S 1 PR 0 IS 1 EEEEEE 0
R3: 6pge — 2ddg6p + h20 l e | O > | || pmmm| | | i |
0 0 1 0 0
1 1 Accept 0 Erase 0 Saving 1
: . . memory of . Frequency
.. - ) . . initial . .
. A A ~—+  network S S
N = 5870 reactions within KEGG
reaction universe Reject Reject v v
store store

Accept/Reject Criterion of reaction swap:

Accept if
(a) No. of metabolites in the new network is less than or equal to E. coli
(b) New network is able to grow on the specified environment(s)



Randomizing metabolic networks

We have developed a new method using Markov Chain Monte Carlo (MCMC)
sampling and Flux Balance Analysis (FBA) to generate meaningful randomized
ensembles for metabolic networks by successively imposing constraints.

Ensemble R . =3
Given no. of valid Constraint | o
biochemical reactions g
0,

+ . >

. Ensemble RM Constraint Il @

Fix the no. of metabolites 2

@

o

+ Ensemble uRM Constraint Ill -

L _ O

Exclude Blocked Reactions g

24

] Q.

+ . Engemble URM.Vl Constraint IV >

> Functional constraint of =

growth on specified environments

<
«

Reference: Samal et al., BMC Systems Biology (2010); Samal and Martin, PLoS ONE (2011)



Metabolite degree distribution

Degree of a metabolite is the number of reactions in which the metabolite
participates in the network.

100 T O

10-1 -

1 10 100 1000
k

Sampled networks are scale-free like E. coli !
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Clustering coefficient and Average Path Length

T
RM

T
uRM

T T
uRM-V1  uRM-V§

T T
uRM-V10 E. coli

RM

uRM

uRM-V1  uRM-V§

uRM-V10 E. coli

R: Fixed no. of reactions

RM: Fixed no. of reactions and
metabolites

uRM: Fixed no. of unblocked reactions

and metabolites

uRM-V1: Fixed no. of unblocked reactions
and metabolites and viable in one
environment

uRM-V5: Fixed no. of unblocked reactions
and metabolites and viable in five
environments

uRM-V10: Fixed no. of unblocked reactions
and metabolites and viable in ten
environments

Sampled networks have small-world and
hierarchical architecture!



Fraction of nodes
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In a directed network, the may exist path from
node a to f but lack a path back from node f to a.
Probability that a path exists between two nodes is
an important quantity characterizing directed
networks.

A strongly connected component is a maximal set
of nodes such that for any pair of nodes a and b in
the set there is a directed path from a to b and
from b to a.

The size of largest strong component is an
important characteristic of directed networks.

Sampled networks have a bow-tie architecture similar to real network!



Fraction of nodes in

LSC+IN+OUT

1.0 1

0.8 1

0.6

0.4 7

0.2 7

0.0 1

0.7 -

Global structural properties of real metabolic networks are a
consequence of simple biochemical and functional constraints

>

RM
uRM-V1
B E coli

Increasing level of constraints

2.7

Biological function is the main
driver of large-scale structure in
metabolic networks.

Conjectured by:
A. Wagner (2007) and

Reference: Samal and Martin, PLoS ONE (2011) B. Papp et al. (2008)



Additional constraints reduce the space of possible

networks
—’
Bit Ensemble uRm-Vv10
u\’lL'_‘ﬂ
y e § Ensemble uRm-V5
. Sk o 5 Ensemble uRm-V1
c ' i ims o fpixed NUMPST .—?
= = e abolites L
15 oo ¢ iy Ensemble uRm
*f 04 - Urgavy « Ensemble Rm
%2 0.2 . Y :
fra iciat L
0.0
o7 yatiapiochemie! Ensemble R

reactions

Embedded sets like Russian dolls

Including the viability constraint on the first chemical environment leads to a
reduction by at least a factor 100

Reference: Samal et al, BMC Systems Biology (2010)



High level of genetic diversity in our randomized ensembles

Any two random networks in our most constrained ensemble uRM-v10 differ in
~ 60% of their reactions.

I | 1 I
0 0 0
1 0 1 0
versus : ) versus
E. coli Random network in Random network in Random network in
ensemble uRM-V10 ensemble uRM-V10 ensemble uRM-V10

l l

Hamming distance between the two networks is ~ 60% of the maximum
possible between two bit strings.



Origins of Power law degree distribution: gene
duplication and divergence

Proteins

Before duplication

After duplication

Proteins

Reference: Barabasi and Oltvai (2004)

In Barabasi and Albert model, scale-free networks
arise through two basic mechanism: growth and
preferential attachment.

It has been suggested that a combination of gene
duplication and divergence can explain power laws
observed in biological networks.

Say, genes are chosen at random for duplication
and the duplicated protein has the same interacting
partners in protein interaction network as the
original protein.

Then the high degree proteins over time will gain
more interacting partners by chance.

This can explain the origin of power laws in protein
interaction networks and the line of argument has

been extended to explain power laws in metabolic
networks.



Reaction Degree Distribution

The nature of reaction degree distribution is very different from the metabolite
degree distribution which follows a power law.

The degree of a reaction is the number of metabolites that participate in it.

The reaction degree distribution is bell shaped with typical reaction in the network
involving 4 metabolites.

Frequency

3000

I 0 Currency
B 1 Currency
2500 — ‘ 2 Currency
B8 3 Currency
=== 4 Currency
2000 N 5 Currency
EEEE 6 Currency
[ 7 Currency

1500

1000

500

0_
0 2 4 6 8 10 12

Number of substrates in a reaction

o=
In each reaction, we have counted the number
of currency and other metabolites.

Most reactions involve 4 metabolites of which 2
are currency metabolites and 2 are other
metabolites.



Scale-free versus Scale-rich network:
Origin of Power laws in metabolic networks

Tanaka and Doyle have suggested a classification of metabolites into three

categories based on their biochemical roles
(a) ‘Carriers’ (very high degree) @

(b) ‘Precursors’ (intermediate degree)

(c) ‘Others’ (low degree) n R K

W————————————— Gene duplication and divergence at the

; level of protein interaction networks can
lead to observed power laws in
metabolic networks.

All metabolites (+)

slope = -1.32

Rank

However, the presence of ubiquitous
(high degree) ‘currency’ metabolites
along with low degree ‘other’
metabolites in each reaction can
alternatively explain the observed power
laws (or at least fat tail) in the

metabolite degree distribution.

Precursors
o

10
Metabolite node degree

Reference: Tanaka (2005); Tanaka, Csete, and Doyle (2008)



MCMC sampling method: A computational framework to
address questions in evolutionary systems biology

1. Engineering
models: determine
optimal molecular
design of system

specification (with
respect 1o fitness)

System specifications

3. Determine selective
changes in molecular
design (e.g. by fitness

its. evolution

experiments or
comparative approaches)

2. Mapping functional
metrices (=system
specifications) to fitness

I

Molecular design

'

Mutations
Natural selection

Fitness

Wild-type network Randomly rewired networks
E—a I
S ./..//

(growth, yields, etc.)

wild-type network

Fitness landscape

Reference: Papp et al (2008)



Empirical studies have shown that generalist prokaryotes have
more modular metabolism than specialists

0.5

Empirical studies by the groups of Uri Alon and Eytan

we Ruppin have shown that the metabolic networks of
g 04 generalist prokaryotes (with the ability to live in many
Zo3s environments) are more modular than specialist
2 o5 prokaryotes.
e These observations led to the suggestion that
0.2 environmental variability increases modularity in
°  Simement Va?inabilityT metabolic networks.

o | However, note that the result from these studies is not
e conclusive given the size of the metabolic networks
= | also increases with environmental variability.
< 300 ‘

2250
5 200 We decided to address this question using our
0 MCMC sampling of random viable metabolic
100 | .
. networks that have not been subject to unknown
selection pressures unlike metabolism of real
References: OrganismS.
Parter et al (2007); Kreimer et al (2008)




Sampling of networks with different environmental versatility V.,

» MCMC sampling method can be used to sample Versatility Number of
random viable metabolic networks with a given Veny r?;mlrii
phenotype. 1 7500

» The desired phenotype is viability on a given set of 2 1000
environments. . 000

> If the desired phenotype consists of V,,, different 10 1000

environments, we designate the Environmental
Versatility Index of sampled networks to be V,,,,.

> Vg, =1 refers to networks viable in 1 environment,

V., =2 refers to networks viable in 2 environments,

and so on.




Modularity increases with environmental versatility

—&— Average over different nested sets

<M
r
8

(a)

1510 P\ N 40 20 70 90

The Environmental Versatility Index V,,,, denotes the number of distinct environments
in which a genotype is viable.

The modularity index M for a genotype gives the number of reactions contained in the
FCSs (modules) of that genotype.

Reference: Samal, Wagner*, Martin*, BMC Systems Biology (2011)



Two scenarios for the evolution of modularity

Modularity might result from directional selection favouring change in
one trait while stabilizing selection maintains other traits unchanged.

AMER. ZOOL., 36:36—43 (1996)

Homologues, Natural Kinds and the Evolution of Modularity'

GUNTER P. WAGNER
Center for Compuiational Ecology, Department of Biology, Yale University

Modular fluctuations in evolutionary goals can be sufficient to produce
and maintain modularity. In this scenario, modularity will be lost once
there are no fluctuations in the evolutionary goals.

Spontaneous evolution of modularity
and network motifs

Nadav Kashtan and Urt Alon*

Cepartimath of Mo dar Call Twiogy end Myun of (orrplet Yypvtern, The Weamarn mettuts of Kieecs, Astovat M 100 hres

=9
A

Ldted by Cortn & Callan Jr, Frirceton Urhverwty Princeton, N snd spproved Auget 2 230% (recetred for review May 10, J00%



Functional constraints lead to emergence of modularity

Uri Alon’s Picture

a

Fixed goal
evolution

S

trajectory Goal 1 Start

b v ”\\
Varying goals {
evolution f

Trajectory
on fitness

landscape goal 1
o

Goal 1 *start

Trajectory
on fitness

goal
switch
)

v /

Effective

Goal 2

trajectory

‘Virtual’ varying

start
landscape

Environment 1

Our Picture

Our results suggest a scenario
which can explain the
emergence of modularity in both
non-fluctuating and fluctuating
environment scenario.

The main requirement for
emergence is an increase in the
number of functions that a
network performs.

The intersection of genotype spaces
for two different environments
contains more modular networks.
Modularity is ultimately a property of
the genotype-phenotype map.




Genotype networks: A many-to-one genotype to phenotype map

RNA Sequence Protein Sequence Gene network
DE)
Y

§ % v,

folding E 5 3
) ) \
hairpin loop 2 - : quo

G eno ty p e 5" GUGAUGGAUUAGGAUSLICCUACUCCUULGCLCCRLAAGAUAGUGCGGAGUUCCGAACUUACACGBOGCGCGOULAC '

. u_y
internal loop % 4
c

3 cucqbucb

c Ay u g o
Phenotype
"(_‘
[T T)

multiloop

O I

Secondary structure Three dimensional Gene expression
of pairings structure levels
Reference: Fontana & Schuster (1998) Lipman & Wilbur (1991) Ciliberti, Martin & Wagner (2007)

In the context of RNA, genotype networks are commonly referred to as Neutral networks.

We have studied the properties of the metabolic genotype-phenotype map using our
framework in detail.

Reference: Samal et al, BMC Systems Biology (2010)



Implications: Origins of Evolutionary Innovations

“How do organisms maintain existing phenotype
while exploring for new and better adapted
phenotypes?”

It is important to realize that Darwin’s theory
explains the survival of the fittest but does not
explain the arrival of the fittest.

Our MCMC simulations show that: "Starting with the
reference genotype, one can evolve to very different
genotypes with gradual small changes while
maintaining the existing phenotype”.

Neighborhoods of different genotypes with a given
phenotype can have access to very different novel
phenotypes.

Andreas
VWagner
ORIGINS
EVOLUTIONARY
INNOVATIONS




Floral Organ Specification (FOS) gene regulatory network

B
e - o @ T o o - 0O u O
=533 QEFz 42252335
Inflorescencel1f1 ¢ 0 0 0 1 0 0 0 0 0 0 1 1 0
Inflorescence 121 ¢ ¢ 0 0 1 0 0 0 0 0 O 1 1 1
Inflorescence I3 1 ¢ 0 1 0 1 0 0 0 0 O O 1 1 0
Inflorescencel4| 1 0 0 1 0 1 0 0 O 0O 0 O 1 1 1
Sepalf0 1.1 0 0 0 O 1 O O 1 1 1 1 O
Petalptfo 1 1 0 ¢ o0 1 1 1 0 1 1 1 1 1
Petalp2j 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0
Stamenstti|0 1 1 0 1 ¢ 1 1 1 1 1 0 1 1 1
Stamenst2f 0 1 1 0 1 ¢ 1 1 1 1 1 0 1 1 0
Carpelf 0 1.1 0o 1 ¢ 1 1 0 1 1 0 1 1 O

Reference: Alvarez-Buylla et al, The Arabidopsis Book (2010)

We have studied the Boolean Gene Regulatory Network model for Arabidopsis Floral
Organ Specification network containing 15 genes connected by 46 edges.

There are 10 attractors of the network whose expression states specify different cell
types (shoot apical meristem, sepal, petal, stamen and carpel).

We have developed a Markov Chain Monte Carlo (MCMC) method similar to the
case of metabolic networks to sample the space of functional gene regulatory
networks.



Edge usage in real and sampled networks with functional
constraints

EMF1 EMF1
LFY LFY
APZ AP2
WwWUS Wus
AG AG
TF1 TFLA1
SEP SEP
AP3 AP3
FUL FUL
APl N 55 -:- I 0.2
LUG | LUG
CLF CLF 7 - {01
UFO
UFO i i Il i i i i L i Il i i i i _0
- > N O - F 0 O JdF - 0L o
m~—-— » £ > 4 2 v » 0 T > O C L a3 g - waod > uo>s 4@
S2IGOo0T T RIE TSRS £~ <% E w<k <3083
Arabidopsis network Sampled networks with phenotype

constraints

Reference: Henry, Moneger, Samal* and Martin*, in submission



Summary

We have proposed a null model based on Markov Chain Monte Carlo (MCMC)
sampling to generate benchmark ensembles with desired phenotype for
metabolic networks.

Our realistic benchmark ensembles can be used to distinguish between 'typical’
and 'atypical' properties of a network.

We show that many large-scale structural properties of metabolic networks are
by-products of functional or phenotypic constraints.

Modularity in metabolic networks can arise due to phenotypic constraints of
growth in many different environments.

Our framework can be used to address many questions in evolutionary systems
biology.
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