

2415-11

Winter School on Quantitative Systems Biology

26 November - 7 December, 2011

Topics in Theoretical Neuroscience Pt.3

V. Balasubramanian Univ. of Pennsylvania Philadelphia USA Lecture I: Architecture of The Brain

Lecture 2: Maps in The Brain

Lecture 3: Maps in the brain & interactions in neural populations

Resource allocation in the brain

<u>IDEA</u>: The huge complexity of living systems, arising from the division into diverse functional units, can be understood in terms of a principle -- minimize resources while maximizing function.

Resource allocation in the brain

Previous Lecture:

(1) Retina has multiple output cell types.

(2) We explained the structure of receptive field mosaics of each type.

(3) We then explained the relative proportions of two types: OFF cells and ON cells

<u>A cognitive example: The Sense of Place</u> Grid cells in the brain and the transcendental number e

Xuexin Wei, Jason Prentice, VB, in review 2012

A simple model for a representation of space

cell I	cell 2	cell 3	cell 4	cell 5	cell 6	cell 7	cell 8
lm							

8m linear track

To achieve 1m resolution on an 8m track have 8 place cells, each of which fire when you are in a particular 1m wide location. **This requires 8 cells.**

Something like this may happen in a brain region called the hippocampus (but it's more complicated, and the map is unstable to perturbations of the environment).

Grid Cells (Medial Entorhinal Cortex): a cortical represention of space

Hafting et al Nature 2005

- Scale—increases along dorsal ventral axis
- Orientation—local ensemble share same orientation
- Phase—randomly distributed
- Angle- Hexagonal grids in 2d

Figure 1 | Firing fields of grid cells have a repetitive triangular structure.

Grid pattern forms at the first encounter of an environment

Grids persist in darkness

Grid rescale (C. Barry et al 2007 Nat. Neuro)

Grids rotate according to the visual cue B 11 Hz 12 Hz 10 Hz 0.5 m

A simple modular representation of space

What ratio between scales minimizes the number of cells required achieve a given spatial resolution?

More realistic model

Number of neurons as a function of scaling ratio

Theory matches experiment

Resource allocation in the brain

The role of interactions in neural populations

Interacting networks responding to correlated inputs

Networks can store memories, learn things, perform complex computations.

Pairwise interacting models of response

• The retinal ganglion cell network (and cortical slices) have response distributions with correlations that are well-summarized by a distribution with only pairwise interactions (Schneidman et al., Shlens et al., 2006):

$$\hat{P}(\{\sigma_i\}) = \frac{1}{Z(h,J)} \exp\left[\sum_i h_i \sigma_i + \frac{1}{2} \sum_{i,j} J_{ij} \sigma_i \sigma_j\right]$$

• Generalize to have stimulus dependence (β measures neural reliability):

$$P(\{\sigma_i\}|s) = \frac{\exp\{\beta(\sum_i (h_i^0 + h_i(s))\sigma_i + \frac{1}{2}\sum_{i,j} J_{ij}\sigma_i\sigma_j)\}}{Z(h,J)}$$

• When $J_{ij}=0$, these are independent Linear-Nonlinear-Poisson neurons:

 $P(\{\sigma_i\}|s) = Z^{-1} \prod_i \exp\left[\beta \left(h_i^0 + h_i(s)\right)\sigma_i\right] \implies \langle \sigma_i(s) \rangle = \tanh\left[\beta \left(h_i^0 + h_i(s)\right)\right]$

What can we do with such representations of population activity?

Two neurons: optimal strategy varies with noise

Population coding strategies

- Independence: Each neuron responds independently to input
- Decorrelation: The network decorrelates its inputs
- Error correction: The network fights noise through redundancy
- Synergy: Neural responses synergistically encode stimuli

What strategy should an optimal network follow?

Tkacik, Prentice, Schneidman, VB (PNAS 2010)

Computational consequences of network couplings Example: Lag normalization in the retina

Trenholm, Schwab, Awatramani, VB (in review)

"Lag normalization" in the retina

A class of Direction Selective Ganglion Cells (DSGCs) removes the effects of retinal circuit delays

Wednesday, December 5, 12

Lag normalization is a population effect of gap junctions

Control cells

Masking destroys lag normalization

Blocking gap junctions destroys lag normalization

Paired recordings show that spikes in one DSGC reliably produce spikelets in its neighbor

Lateral coupling explains lag normalization

1

$$I_n(t) = J_n(t) + \alpha I_{n-1}(t)$$

- $J_n(t)$ = Gaussian spatial tuning curve with velocity dependent amplitude g(v)
- $\alpha = \operatorname{gap} \operatorname{junction} \operatorname{coupling}$

$$I_n(t) = \sum_{m=1}^n \alpha^{n-m} J_m(t)$$

Spiking occurs when the current I_n reaches some threshold C.

Lag normalization develops by the sixth neuron in the model array

Resource allocation in the brain

Ongoing work:

- Representation of textures in visual cortex
- Planning of paths based on hippocampal place cells
- Representation of odors by the olfactory cortex
- Representation of structured stimuli by retina

CHALLENGE: Understanding the interactions

The diversity of neural structures and functions is driven by a law of diminishing returns

Koch et al., 2005, 2006 Perge et al., 2009

Wednesday, December 5, 12

Firing events

67 ms of data, viewed as a movie. [data have been smoothed]

Information traffic along the optic nerve

cell type	bits/s	bits/spike	cells	bits	spikes
Brisk-transient	13	1.9	6,000	78,000	41,000
Brisk-sustained	10	1.8	24,000	240,000	133,000
ON DS	6	2.2	7,000	42,000	19,000
ON-OFF DS	8	2.2	12,000	96,000	44,000
Local-edge	7	2.1	20,000	140,000	67,000
Sluggish (other)	9	2.2	31,000	279,000	127,000
Total			100,000	875,000	431,000

• Messages are transmitted asymmetrically - less studied sluggish cells account for most of the traffic

• Scaling up to human optic nerve (million axons) gives a traffic of order an Ethernet cable. This is the same order of magnitude as the amount of information in natural scenes according to Ruderman, 1994.

Wednesday, December 5, 12

Why this organization?

• Given equal coding efficiency for all types, why not use a single type to send all information over a high firing rate axon?

• Perhaps because the cost of signaling increases non-linearly with firing rate.

Comparis				
Туре	LED	Brisk- Transient	Super	
Mean spike rate for cell	4 Hz	8 Hz	40 Hz	
bits/spike	2.1	1.8	1.1	
spikes/s for 300 bits/s traffic over cable	~140	~170	~270 ←	using 26% efficiency)

The dominant metabolic cost in neural signaling is associated with spiking (Attwell & Laughlin; Lennie).

A law of diminishing returns **R**_{max} (R^*, E^*) Information (R) \boldsymbol{E}_{min} **E**_{max} Energy (E)

In any given information channel bits/energy is optimized at a particular firing rate (Balasubramanian, Berry & Kimber, 2001).

Perhaps this is related to the surprising similarity of information rates of all retinal ganglion cells (6-13 bits/s) responding the to natural stimuli.

Resource allocation in the brain

Ongoing work:

- Representation of textures in visual cortex
- Planning of paths based on hippocampal place cells
- Representation of odors by the olfactory cortex
- Representation of structured stimuli by retina

CHALLENGE: Understanding the interactions

The End

Conclusion: How smart can you get?

• Faster neurons: Requires disproportionate investment of resources because of the law of diminishing returns

• More neurons: Requires larger brains, and therefore slower communications, more power. Reducing neuron size to compensate leads to more noise and uncertainty

• Communities: Communicate with other humans specialized to other tasks and think collectively?

• *Technology*: The book, the computer, plugin cognitive modules?

Another Example: The scarcity of S cones and retina's indifference to L/M ratio

Garrigan, Ratliff, Sterling, Brainard, VB (PloS Comp Bio, 2010)

• S cones are scarce (<10%) (e.g., Curcio et al., 1991)

HYPOTHESIS: This is a consequence of maximizing chromatic information transfer from natural scenes.

Back of the envelope estimate

- Neglect the shared information between L & S
- Set the scaling exponents of both L and S arrays to be ~ 0.75
- •Then: $H_{\text{tot}} = N_L^{0.75} H_L^1 + (N N_L)^{0.75} H_S^1$

The optimal mosaic including optical factors

- Attenuation of high frequencies by macular pigment
- Chromatic aberration by the lens
- Shared information between cone types

Wednesday, December 5, 12